THE DEMPSTER-SHAFER MODEL OF MECHANICAL OBJECT DURABILITY IN LABORATORY CONDITIONS
|
|
- Bartłomiej Markowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Joural of KONES Iteral Cobustio Egies 2005, vol. 12, 3-4 THE DEMPSTE-SHAFE MODEL OF MECHANICAL OBJECT DUABILITY IN LABOATOY CONDITIONS Katarzya Topolsa* Mariusz Topolsi** *Politechia Wrocławsa, Wydział Mechaiczy Istytut Kostrucji i Esploatacji Maszy ul.łuasiewicza 7/9, Wrocław tel.: e-ail: atarzya.topolsa@pwr.wroc.pl **Politechia Wrocławsa, Wydział Eletroii Katedra Systeów i Sieci Koputerowych ul. Jaiszewsiego 11/17 Wrocław e-ail: ariusz.topolsi@pwr.wroc.pl Abstract I the wor the odel of free fro defect paraeters deteriatio of echaical objects is preseted. The ew iforatio sythesis was proposed, i which the coefficiet of reliability is ot deteried but the Depster cobiatio rule is used. Based o the sythesis of idepedet experts rules the ass fuctios were deteried ad used for covictio deteriatio i that the object is usable. The values of deteried ass fuctios are used i further covictio calculatios of occurred free fro daage paraeters. I the aalysis the part specified odel was assued i which issig specificatio is ot copleet. MODEL DEMPSTEA-SHAFEA DO OCENY TWAŁOŚCI OBIEU MECHANICZNEGO W WAUNKACH LABOATOYJNYCH Streszczeie W pracy przedstawioo odel wyzaczaia paraetrów ieuszadzalości obietów echaiczych. Zapropoowao ową sytezę iforacji, w tórej ie wyzacza się współczyia pewości, ale stosuje się regułę obiacji Depstera. Na podstawie sytezy iezależych reguł espertów wyzaczae są fucje asy, wyorzystywae do wyzaczaia przeoaia w to, że obiet jest zdaty do użytu. Wartości wyzaczoych fucji asy są dalej wyorzystywae do obliczeia przeoań współwystępowaia paraetrów ieuszadzalości. W aalizie założoo odel częściowo wyspecyfioway, w tóry ie uzupełia się braującej specyfiacji. 1. Wstęp Ocea trwałości obietu echaiczego w waruach laboratoryjych przy subietywy jej wyzaczaiu oże oazać się ieprecyzyja, iepeła. ozpatrując ją w ategoriach czysto probabilistyczych oże oazać się, że oszacowaie prawdopodobieństw waruowych wystąpieia pewej zieej pod waruie, zaistieia grupy zieych oże oazać się ie ożliwe. Może być to przyczyą iepełej specyfiacji iforacji. Uszodzeia daego fragetu ostrucji echaiczej ają charater agły, zużyciowy 307
2 lub starzeiowy, a zagadieia aprawialości ie są brae pod uwagę [1]. Podstawową wadą etod iezawodości są: przyjęcie uproszczeń opisu daych towarzyszących obieto echaiczy, ja i bra iforacji o tych obietach. Przy zaworach z powłoai ceraiczyi, ożey przyjąć, że iepewyi wielościai opisującyi ostrucję zaworu są: wytrzyałość zęczeiowa, zużycie graicze oraz wyiar rytyczy pęięcia (ziee podstawowe). Czyiai zewętrzyi (otestowyi) wpływającyi a ziee podstawowe oże być oddziaływaie teperatury a elee prędość obrotowa wału z zaocoway zawore i oczywiście czas esploatacji. Zdjęcie budowy staowisa badawczego zajduje się a rys. 1. ys. 1. Zdjęcie staowisa badawczego Fig. 1. Picture of ivestigative positio Poieważ ziee opisujące ostrucje ają charater iepewy, a oceia ich jest subietywa a podstawie ocey espertów, to do wyzaczeia prawdopodobieństw wystąpieia ieuszadzalości ja i jej paraetrów (podstawowych i otestowych) przyjęto odel Depstera-Shafera, dalej w srócie będziey azywać go DS. 2. Mateatyczy opis zadaia rozpozawaia Poieważ w przypadu powło ceraiczych eleet uszodzoy ie będzie podlegał aprawie, więc gotowość obietu [1], prawdopodobieństwo a posteriori gotowości (jeżeli obiet ie jest aprawiay) jest defiiowae [1] jao: K g ( t) = ( t). (2.1) W aszy wypadu po oresie pracy urządzeia Δ t poddajey subietywej oceie procetowe uszodzeie eleetu porytego powłoą ceraiczą. Zaleca się w celu doładiejszej aalizy aby aaliza była dooywaa co ajiej przez dwóch espertów (są to iforacje iezależe). Przyjijy zate astępującą postać ieuszadzalości:, PP, PW = = =, PP (, ω) = Bel ( S) = Bel, PW = Bel ω); S;, PP 0 τ < t)}, ω)} Bel 0 τ < t},, PW S)}, (2.2) 308
3 gdzie: t czas esploatacji części ostrucyjej, L głęboość pęięcia, T S = [ S u p ] - wetor wytrzyałości, S u - wielość pęięcia, S p - zużycie powłoi ceraiczej, TP teperatura zaworu w tracie badań, ω - prędość obrotowa [obr/i] tarczy z zaworai, olejy eleet baday, PP paraetry pracy, PW paraetry wytrzyałości, Bel ω) - ozacza fucję przeoaia, w to, że obiet jest zdaty. Przez fucję przeoaia w sesie teorii DS rozuie się taą fucję Bel:2^{θ } [0,1], że Bel(A) = ( B) = 1, (2.3) B A gdzie (B) jest fucją asy w sesie teorii DS. Przez fucję asy w sesie teorii DS rozuie się fucję :2^{θ } [0,1] spełiającą warui: θ A 2 ( A) = 1, (2.4) ( φ ) = 0, (2.5) ( A) 0 A 2 θ. (2.6) ozpatrując dwa rozłady 1 i 2, oża dooać ich połączeia, otrzyując owy rozład bazowy według reguły 1( A) 2( B) A B= C (C) =. (2.7) 1( A) 2( B) A B φ Ocea ażdego esperta o wartości ieuszadzalości będzie wyzaczaa a podstawie reguł: eguła esperta: JEŻELI obiet pracował w day przedziale, czasu Δt i wystąpiły w ty czasie wartości paraetrów t, ω TO obiet jest ieuszodzoy A ( ω) (2.8) ze średią wartością fucji asy ie iejszą iż i ie więszą iż E E + 309
4 Kiedy ay dwie iezależe opiie ieuszadzalości w postaci reguły (2.8) to wyzaczeie średich wartości fucji asy dla ażdej opiii esperta oża dooać za poocą prostej zależości: gdzie: E ozacza esperta. E ( t, L E E+, ω )) = +, (2.9) 2 Ta otrzyae wartości fucji asy od -espertów łączyy za poocą reguły obiacji Depstera (2.7). Następie łatwo oża wyzaczyć wartość fucji przeoaia (2.3 tóra w oteście ta postawioego zadaia będzie iała postać: Bel ( AE (,,,, )) ( (,,,, ) 1K E t L S TP ω = E 1 E AE 1 E t L S TP ω K K (2.10) gdzie: E ( (,, )) 1K E AE 1 E t ω Φ κ K - jest rozłade fucji asy złożoy z iezależych rozładów wyzaczoych przez espertów. Oczywistą uwagą jest fa że wszystie wartości paraetrów w zadaych odstępach czasowych są ierzoe, obliczae i zapaiętywae. W dalszej części załadać będziey, że reguły espertów są iesprzecze. Poieważ ocea poszczególych paraetrów jest iepewa oraz ieprecyzyja zate paraetry tj. ω oża przedstawić w sposób rozyty. Przyładowe fucje przyależości zawarto a rys. 2, gdzie ozaczeia BM, M, D, BD, są to ziee ligwistycze (Bardzo Mały, Małyredi, Duży, Bardzo Duży). Wartości ax dla ażdej zieej są wyzaczae subietywie a podstawie poiaru - przy jaich wartościach baday obiet stracił właściwości do dalszej esploatacji. Wartości te ulegają ziaie, wtedy, gdy a podstawie badań iej próbi oceiy, że jej zdolość do pracy ończy się przy iych wyższych wartościach ax. W te sposób po - próbach ożey a pewy pozioie istotości ustalić graicze wartości dla ażdej zieej. W celu wyzaczeia zależości iędzy paraetrai oża wyorzystać regułę waruowaia [4]. Jeżeli jesteśy zaiteresowai hipotezai ależącyi do pewego iepustego podzbioru Δ całej przestrzei. Wówczas odwzorowaie Γ oża przedstawić: Γ Δ ({ }) = Γ { ω} ω ( Δ). (2.11) Przy tai założeiu iara Bel przyjuje postać: Bel ( H Δ) = ( Bel( H ( Δ) ) Bel( Δ) )/( 1 Bel( Δ) ). (2.12) 310
5 ys. 2. Przyładowe fucje przyależości Fig 2. The istaces of pertaied fuctios 3. Przyład pratyczy Przyjijy dla uproszczeia, że ay tylo trzy cechy opisujące obie i iech to będą: t i TP. Niech teraz przestrzeń staów dla aszego probleu a postać = t S TP, gdzie p. S - ozacza stay rozyte zdarzeia zużycia powłoi ceraiczej {M, D}. Oczywiście L M-ozacza ały, a D- duży i przypisae i orete fucje przyależości ( Κ) _, podobie dla pozostałych zieych, tórych wartości oża przedstawić jao rozyte. Ostateczie przestrzeń staów 3-wyiarowej zieej ( oże się sładać p. z 8 eleetów. (podobą aalizę oża odaleźć z pozycji [4]). f Zate: 1 D D D 311
6 2 D D M 3 D M D 4 D M M 5 M D D 6 M D M 7 M M D 8 M M M Za poocą wyzaczoych przez espertów wartości asy dla ieuszadzalości obietu ożey teraz wyzaczyć róże przeoaia, p. że soro obiet pracuje róti czas (oża tutaj dla potrzeb aalizy wyostrzyć wartość czasu i podać go w przedziale liczb rzeczywistych [2]) i teperatura palia jest duża to p. uszodzeie powierzchi zaworu z powłoą ceraiczą jest ałe. Załaday, że pali a wysoą teperaturę. W aszy wypadu odwzorowaie Γ : Ω 2 a postać: Γ Δ ({ A ( }) = { }, ({ ( }) = {,,, } będzie iała postać: 3, 7 ( A) = 0 Γ Δ ). A, to -fucja (1.5) , ({ }) = ( A ( ) 3, 7 E E TP ({,,,,, }) = ( A ( ) E E TP dla ażdego iego podzbioru przestrzei. Przyjijy, że ({ }) =0.98, atoiast ({,,, }) 3, 7 = , Niech Δ będzie podzbiore przestrzei odpowiadający rótieu oresowi pracy urządzeia, Δ ={ 5, 6, 7, 8 }. Zgodie z rówaiai (2.11) i (2.12) ożey zodyfiować odwzorowaie (2.11) i zapisać je w astępującej postaci: Γ Δ ({ A ( }) = { 7 }, Γ Δ ({ A ( }) = { 6, 8 }, to -fucja (2.4) będzie iała postać: ( A) = 0 ({ }) = ( A ( ) 7 E E TP ({ }) = ( A ( ), 6 8 E E TP dla ażdego iego podzbioru przestrzei Δ. Wyzaczy teraz przeoaie, że soro obiet pracuje róti czas i teperatura palia jest duża, to uszodzeie powierzchi zaworu z powłoą ceraiczą jest ałe Bel { } Δ) = ( Bel( {, } ({,,, })) Bel( {,,, }))/ 1 Bel( {,,, }) 8 8 ( ). ( Teraz w prosty sposób oża obliczyć, że ({,, }) Z czego otrzyujey: Bel = , 4 312
7 ({ 7} Δ) Bel =0,98. W podoby sposób oża wyzaczyć waruowe przeoaia dla iych obiacji przestrzei = t S TP. Na ażdy etapie wiosowaia otrzyujey róże wartości S i TP w dziedziie czasu t. Możey wyzaczyć charaterystyi (t)(t)(. Jeżeli do aalizy zastosujey więcej zieych opisujących obie to w te sposób ożey wyzaczyć więcej charaterysty. Należy przyjąć odpowiedi odel estyacji paraetrów szuaych fucji i a podstawie obliczeń zastosować je do wyzaczeia ońcowych charaterysty. Dla przypadu (2.2) ożey wyzaczyć pewą zależość: = ( ω ) = Bel ω); 0 τ < t} = α exp{ β t}. (2.13) Zając paraetry α i β, ożey wyzaczyć czas po tóry, iezawodość osiągie oretą wartość z zależości: 1 ( t) t = l. (2.14) β α = ( ω ) = Bel ω); 0 τ < t} = exp{ 0.04 t}. Charaterystyi otrzyae drogą syulacyją przedstawioo a rys. 3. ys. 3. Wyresy iezawodości od czasu Fig. 3. Graphs of reliability fro tie Wyres rys. 3 jest tylo wyiie syulacji dla dowolie dobraych ograiczeń i wartości zieych ieuszadzalości. Ziea Z=(t). Naiesioe puty a wyresie, są to wyii poiarów ieuszadzalości co pewie zaday czas do oetu zużycia 313
8 graiczego. Przyłady daych rzeczywistych oża będzie ipleetować podczas badań laboratoryjych. Należy wtedy dobrać odpowiedio paraetry iezawodości, tóre w ajwięszy stopiu, dysryiują ieuszadzalość. Moża oczywiście geerować wyresy powierzchiowe poazujące wpływ dwóch, trzech paraetrów a siebie oraz a ieuszadzalość. 4. Literatura: [1] Nowaowsi T., Metodya progozowaia i iezawodości obietów echaiczych, Oficya Wydawicza Politechii Wrocławsiej, Wrocław [2] utowsa D., Pilińsi M., utowsi L.ieci euroowe, algoryty geetycze i systey rozyte. Wydawictwo Nauowe PWN, Łódź [3] Wieczorowsi., Zielińsi., Koputerowe geeratory liczb losowych. Wydawictwa Nauowo Techicze, Warszawa [4] Wierzchoń S., Metody reprezetacji i przetwarzaia iforacji iepewej w raach teorii Depstera-Shafera, Istytut Podstaw Iforatyi Polsiej Aadeii Nau, Warszawa [5] Woźia M., Podstawy oputerowego rozpozawaia sterowaych łańcuchów Marowa z regułai esperta i ciągie uczący algoryty i ich zastosowaie w diagostyce edyczej, Praca dotorsa r 2/96, Politechia Wrocławsa,
Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
H brak zgodności rozkładu z zakładanym
WSPÓŁZALEŻNOŚĆ PROCESÓW MASOWYCH Test zgodości H : rozład jest zgody z załadaym 0 : H bra zgodości rozładu z załadaym statystya: p emp i p obszar rytyczy: K ;, i gdzie liczba ategorii p Przyład: Wyoujemy
Techniczne Aspekty Zapewnienia Jakości
Istytut Techologii Maszy i Automatyzacji Politechii Wrocławsiej Pracowia Metrologii i Badań Jaości Wrocław, dia Ro i ierue studiów. Grupa (dzień tygodia i godzia rozpoczęcia zajęć) Techicze Aspety Zapewieia
χ 2 = + 2π 2 Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej: σ
χ Niech ziea losowa a rozkład oralyn(; µ,). Zajdziey rozkład zieej: µ Stadaryzjąc zieą losową µ otrzyjey stadaryzoway rozkład Gassa: ( ;, ) ep N 0 π Rozkład zieej a więc postać: d ( X + ) N N ep d π Rozważy
Rozkład χ 2 = + 2π 2. Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej:
Rozkład χ Niech ziea losowa a rozkład oralyn(; µ,). Zajdziey rozkład zieej: µ Stadaryzjąc zieą losową µ otrzyjey stadaryzoway rozkład Gassa: ( ;, ) ep N 0 π Rozkład zieej a więc postać: d ( X + ) N N ep
Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy
Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej
Prawdopodobieństwo i statystyka r.
Prawdopodobieństwo i statystyka.0.00 r. Zadaie Rozważy astępującą, uproszczoą wersję gry w,,woję. Talia składa się z 5 kart. Dobrze potasowae karty rozdajey dwó graczo, każdeu po 6 i układay w dwie kupki.
1.3. Przestrzeni. Odwzorowania. Rząd macierzy. Twierdzenie Croneckera- Capellego
WYKŁD 4 3 Przestrzei Odwzorowaia Rząd acierzy Twierdzeie Croecera- Capellego 3 Przestrzeń Przestrzeń wetorowa Baza przestrzei wetorowej 78 (Przestrzeń ) Niech ozacza zbiór wszystich ciągów -eleetowych
Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań
KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.
Podstawowe pojęcia. Próba losowa. Badanie próby losowej
METODY PROBABILISTYCZNE I STATYSTYKA WYKŁAD 8: STATYSTYKA OPISOWA. ROZKŁADY PRAWDOPODOBIEŃSTWA WYSTĘPUJĄCE W STATYSTYCE. Małgorzata Krętowska Wydział Iforatyki Politechika Białostocka Podstawowe pojęcia
ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU
Dr iż. Staisław NOGA oga@prz.edu.pl Politechika Rzeszowska ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Streszczeie: W publikacji
Pattern Classification
atter Classificatio All materials i these slides were tae from atter Classificatio d ed by R. O. Duda,. E. Hart ad D. G. Stor, Joh Wiley & Sos, 000 with the permissio of the authors ad the publisher Chapter
Rachunek różniczkowy funkcji wielu zmiennych
Automatya i Robotya Aaliza Wyład dr Adam Ćmiel cmiel@agh.edu.pl Rachue różiczowy fucji wielu zmieych W olejych wyładach uogólimy pojęcia rachuu różiczowego i całowego fucji jedej zmieej a przypade fucji
tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze
R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
OCENA NIEZAWODNOŚCI BUDYNKÓW NA TERENACH WSTRZĄSÓW GÓRNICZYCH ASSESSMENT OF BUILDING RELIABILITY IN MINING TREMOR AREAS
GÓRNICTWO I GEOLOGIA 21 To 5 Zeszyt 2 Jerzy KWIATEK Główy Istytut Górictwa, Katowice OCENA NIEZAWODNOŚCI BUDYNKÓW NA TERENACH WSTRZĄSÓW GÓRNICZYCH Streszczeie. Podstawą ocey ożliwości przeprowadzeia projetowaej
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
Anna Czapkiewicz Przykłady zależności pomiędzy dochodem a wydatkami na konsumpcję w przypadku losowości zmiennej niezależnej
Przykłady zależości poiędzy dochode a wydatkai a kosupcję w przypadku losowości zieej iezależej Maagerial Ecooics, 65-74 27 Ekooia Meedżerska 27, r, s. 65 74 * Przykłady zależości poiędzy dochode a wydatkai
Rozkład normalny (Gaussa)
Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i
INDUKCJA MATEMATYCZNA
MATEMATYKA DYSKRETNA (4/5) dr hab. iż. Małgorzata Stera malgorzata.stera@cs.put.poza.pl www.cs.put.poza.pl/mstera/ INDUKCJA MATEMATYCZNA Matematya Dysreta Małgorzata Stera FUNKCJA SILNIA dla, fucja silia
Wyższe momenty zmiennej losowej
Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla
n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka
Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu
Algorytm wyznaczania krotności diagnostycznej struktury opiniowania diagnostycznego typu PMC 1
BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 18, 2003 Algoryt wyznaczania rotności diagnostycznej strutury opiniowania diagnostycznego typu PMC 1 Artur ARCIUCH Załad Systeów Koputerowych, Instytut Teleinforatyi
Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego.
Rachue rawdoodobieństwa MAP064 Wydział Eletroii, ro aad. 008/09, sem. leti Wyładowca: dr hab. A. Jurlewicz Wyład 8: Zmiee losowe dysrete. Rozłady Beroulliego (dwumiaowy), Pascala, Poissoa. Przybliżeie
f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n
Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechia Warszawsa Wydział Samochodów i Maszy Roboczych Istytut Podstaw Budowy Maszy Załad Mechaii http://www.ipbm.simr.pw.edu.pl/ Teoria maszy i podstawy automatyi semestr zimowy 206/207 dr iż. Sebastia
Statystyka Wzory I. Analiza struktury
Uiwersytet Ekooiczy w Katowicach Wzory I. Aaliza struktury 1. Miary tedecji cetralej (średie, przecięte Średia arytetycza Dla sz. ważoego Dla sz. ważoego dla z. ciągłej Dla szeregu wyliczającego: dla zieej
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI
Piotr KOZIERSKI WYKORZYSTAIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDETYFIKACJI UKŁADÓW AUTOMATYKI STRESZCZEIE W artyule przedstawioo sposób idetyfiacji parametryczej obietów ieliiowych zapisaych w przestrzei
Analiza I.1, zima globalna lista zadań
Aaliza I., zima 207 - globala lista zadań Marci Kotowsi 8 styczia 208 Podstawy Zadaie. Udowodij, że dla ażdego aturalego liczby 7 2 + oraz 7 2 dzielą się przez 6. Zadaie 2. Rozstrzygij, czy poiższe liczby
DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie
DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 5 płaszczyzna fazowa Poniższe ateriały tylo dla
1. Błąd średni pomiaru. Leica DISTO
Aaliza dokładości poiarów Charakterystyką dokładości istruetów poiarowych jest błąd średi poiaru. Wykoywae poiary bezpośredie w tereie pośrediczą zwykle w wyzaczaiu pewych wielkości ie poddających się
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
Lista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011
Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y
WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ
WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ Wstęp. Za wyjątie nielicznych funcji, najczęściej w postaci wieloianów, dla tórych ożna znaleźć iniu na drodze analitycznej, pozostała więszość
ZADANIA NA ĆWICZENIA 3 I 4
Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI
CHARAKERYSYKI CZĘSOLIWOŚCIOWE PODSAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUOMAYKI Do podstawowych form opisu dyamii elemetów automatyi (oprócz rówań różiczowych zaliczamy trasmitację operatorową s oraz trasmitację
kpt. dr inż. Marek BRZOZOWSKI kpt. mgr inż. Zbigniew LEWANDOWSKI Wojskowy Instytut Techniczny Uzbrojenia
pt. dr iż. Mare BRZOZOWSKI pt. mgr iż. Zbigiew LEWANDOWSKI Wojsowy Istytut Techiczy Uzbrojeia METODA OKREŚLANIA ROZRÓŻNIALNOŚCI OBIEKTÓW POWIETRZNYCH PRZEZ URZĄDZENIA RADIOLOKACYJNE Z WYKORZYSTANIEM LOTÓW
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są
LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY
LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY Zgodie z dążeiami filozofii pitagorejsiej matematyzacja abstracyjego myśleia powia być dooywaa przy pomocy liczb. Soro ta, to liczby ależy tworzyć w miarę
Zajęcia nr. 2 notatki
Zajęcia r otati wietia 5 Wzory srócoego możeia W rozdziale tym podamy ila wzorów tóre ułatwiają obliczaie wielu zadań rachuowych Fat (wzory srócoego możeia) Dla dowolych liczb rzeczywistych a, b zachodzi:
DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie
DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 6 ułady dysretne o wielu stopniach swobody Poniższe
Twierdzenie 15.3 (o postaci elementów rozszerzenia ciała o zbiór). Niech F będzie ciałem oraz A F pewnym zbiorem. Niech L<F.
15. Wyład 15: Podciała, podciała geerowae przez zbiór, rozszerzeia ciał. Charaterystya pierścieia i ciała, ciała proste i lasyfiacja ciał prostych. 15.1. Podciała, podciała geerowae przez zbiór, rozszerzeia
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechia Warszawsa Wydział Samochodów i Maszy Roboczych Istytut Podstaw Budowy Maszy Załad Mechaii http://www.ipbm.simr.pw.edu.pl/ Teoria maszy i podstawy automatyi semestr zimowy 07/08 dr iż. Sebastia
Metody Podejmowania Decyzji
Metody Podejmowaia Decyzji Wzrost liczby absolwetów w Politechice Wrocławsiej a ieruach o luczowym zaczeiu dla gospodari opartej a wiedzy r UDA-POKL.04.0.0-00-065/09-0 Recezet: Prof. dr hab. iż. Ja Iżyowsi
Prawdopodobieństwo i statystyka
Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
ANALIZA DANYCH DYSKRETNYCH
ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,
Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
ZARYS METODY OPISU KSZTAŁTOWANIA SKUTECZNOŚCI W SYSTEMIE EKSPLOATACJI WOJSKOWYCH STATKÓW POWIETRZNYCH
Henry TOMASZEK Ryszard KALETA Mariusz ZIEJA Instytut Techniczny Wojs Lotniczych PRACE AUKOWE ITWL Zeszyt 33, s. 33 43, 2013 r. DOI 10.2478/afit-2013-0003 ZARYS METODY OPISU KSZTAŁTOWAIA SKUTECZOŚCI W SYSTEMIE
Zeszyty naukowe nr 9
Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę
Ćwiczenia rachunkowe TEST ZGODNOŚCI 2 PEARSONA ROZKŁAD GAUSSA
Ćwiczeia rachuowe TEST ZGODOŚCI PEARSOA ROZKŁAD GAUSSA UWAGA: a stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz alulacyjy do programu Calc paietu Ope Office, iezbędy podczas
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy przydziału
Istrukcja do ćwiczeń laboratoryjych z przediotu: Badaia operacyje Teat ćwiczeia: Probley przydziału Zachodiopoorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki Szczeci 20 Opracował:
APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne
APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość
Elementy modelowania matematycznego
Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,
Rozkłady statystyk z próby Twierdzenia graniczne
Rozkłady statystyk z róby Twierdzeia graicze PRÓBA LOSOWA Próbą losową rostą azyway ciąg -zieych losowych iezależych i osiadających jedakowe rozkłady takie jak rozkład zieej losowej w oulacji geeralej
KOMBINATORYKA. Oznaczenia. } oznacza zbiór o elementach a, a2,..., an. Kolejność wypisania elementów zbioru nie odgrywa roli.
KOMBINATORYKA Kombiatoryą azywamy dział matematyi zajmujący się zbiorami sończoymi oraz relacjami między imi. Kombiatorya w szczególości zajmuje się wyzaczaiem liczby elemetów zbiorów sończoych utworzoych
Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)
Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością
Metoda najszybszego spadku
Metody Gradietowe W tym rozdziale bdziemy rozwaa metody poszuiwaia dla fucji z przestrzei R o wartociach rzeczywistych Metody te wyorzystuj radiet fucji ja rówie wartoci fucji Przypomijmy, czym jest zbiór
IV Uniwersytecka Sobota Matematyczna 14 kwietnia Funkcje tworzące w kombinatoryce
IV Uiwersyteca Sobota Matematycza 4 wietia 208 Fucje tworzące w ombiatoryce Dla ciągu a 0 a a 2... defiiujemy fucję tworzącą: G(x) = a x = a 0 + a x + a 2 x 2 + a 3 x 3 + =0. Zajdź fucje tworzące dla poiższych
P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +
Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch
VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.
KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski
Analiza matematyczna i algebra liniowa
Aaliza matematycza i algebra liiowa Materiały pomocicze dla studetów do wyładów Rachue różiczowy ucji wielu zmieych. Pochode cząstowe i ich iterpretacja eoomicza. Estrema loale. Metoda ajmiejszych wadratów.
Dodatek 10. Kwantowa teoria przewodnictwa I
Dodate 10 Kwatowa teoria przewodictwa I Teoria lascza iała astępujące aaet: (1) zierzoe wartości średiej drogi swobodej oazał się o ila rzędów wielości więsze iż oczeiwae () teoria ie dawała poprawc zależości
Wrocław 2003 STATECZNOŚĆ. STATYKA 2 - projekt 1 zadanie 2
Wrocław 00 STATECZNOŚĆ STATYKA - projet zadanie . Treść zadania Dla ray o scheacie statyczny ja na rysunu poniżej należy : - Sprawdzić czy uład jest statycznie niezienny - Wyznaczyć siły osiowe w prętach
UWAGI O GRANICZNYCH ROZKŁADACH EKSTREMALNYCH STATYSTYK POZYCYJNYCH
D I D A C T I C S O F M A T H E M A T I C S No. 5-6 (9-0) 009 Rafał Korzoe (Wrocław) UWAGI O GRANICZNYCH ROZKŁADACH EKSTREMALNYCH STATYSTYK POZYCYJNYCH Abstract. I may practical issues to deal with etreme
Problemy niezawodnościowo-eksploatacyjne. dotyczące układów zasilających. elektronicznego systemu bezpieczeństwa.
aua Problemy iezawodościowo-esploatacyje uładów zasilających eletroicze systemy bezpieczeństwa Waldemar Szulc Wyższa Szoła Meedżersa w Warszawie, Wydział Iformatyi Stosowaej i Techi Bezpieczeństwa Streszczeie:
Model Lesliego. Oznaczmy: 0 m i liczba potomstwa pojawiającego się co jednostkę czasu u osobnika z i-tej grupy wiekowej, i = 1,...
Model Lesliego Macierze Lesliego i Markowa K. Leśiak Wyodrębiamy w populaci k grup wiekowych. Po każde edostce czasu astępuą arodziy i zgoy oraz starzeie (przechodzeie do astępe grupy wiekowe). Chcemy
Twierdzenia o funkcjach ciągłych
Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość
Ćwiczenie 2 ESTYMACJA STATYSTYCZNA
Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej
Krótkie i dość swobodne wprowadzenie do liczb Stirlinga. Jakub Kamiński
Krótie i dość swobode wprowadzeie do liczb Stirliga Jaub Kamińsi 9 styczia 27 LICZBY STIRLINGA PIERWSZEGO RODZAJU Liczby Stirliga pierwszego rodzaju Liczby Stirliga zawdzięczają swoją azwę szociemu matematyowi
Przykład Obliczenie wskaźnika plastyczności przy skręcaniu
Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego
Chemiczne metody analizy ilościowej (laboratorium)
Cheicze etody aalizy ilościowej (laboratoriu) Broiaoetria 9. Przygotowaie iaowaego roztworu broiau (V) potasu Broia(V) potasu ależy do stosowaych w aalizie cheiczej substacji podstawowych. oże być otrzyay
JEDNOWYMIAROWA ZMIENNA LOSOWA
JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:
Teoria i metody optymalizacji
eoria i metody optymalizaci Programowaie liiowe całowitoliczbowe PCL Metodologia podziału i ograiczeń Brach ad Boud (B&B) ma c A Z echique Metodologia podziału i ograiczeń B&B { A b i Z } Podstawą metodologii
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Bezpieczeństwo i niezawodność w geotechnice Kalibracja częściowych współczynników bezpieczeństwa według Eurokodu EC7-1
Bezpieczeństwo i iezawodość w geotechice Kalibracja częściowych współczyiów bezpieczeństwa według Euroodu EC7-1 Dr hab iż Włodzimierz Brząała, prof PWr Politechia Wrocławsa, Wydział Budowictwa Lądowego
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.
Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,
Statystyka Matematyczna Anna Janicka
Statystyka Matematycza Aa Jaicka wykład XIV, 06.06.06 STATYSTYKA BAYESOWSKA CD. Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej
Statystyka Matematyczna Anna Janicka
Statystyka Matematycza Aa Jaicka wykład XIII, 30.05.06 STATYSTYKA BAYESOWSKA Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej
STEROWANIE STRUKTUR DYNAMICZNYCH. Zastosowanie sterowania typu Sky-hook w układach redukcji drgań
STEROWANIE STRUKTUR DYNAMICZNYCH Zastosowanie sterowania typu Sy-hoo w uładach reducji drgań gr inż. Łuasz Jastrzębsi Katedra Autoatyzacji Procesów - Aadeia Górniczo-Hutnicza Kraów, 20 LISTOPADA 2013 Plan
Podstawy rachunku prawdopodobieństwa (przypomnienie)
. Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń
UOGÓLNIONA MIARA DOPASOWANIA W MODELU LINIOWYM
UOGÓLNIONA MIARA DOPASOWANIA W MODELU LINIOWYM Wojciech Zieliński Katedra Ekonoetrii i Statystyki, SGGW Nowoursynowska 159, PL-0-767 Warszawa wojtekzielinski@statystykainfo Streszczenie: W odelu regresji
Prawdopodobieństwo i statystyka
Zadanie Rozważmy następujący model strzelania do tarczy. Współrzędne puntu trafienia (, Y ) są niezależnymi zmiennymi losowymi o jednaowym rozładzie normalnym N ( 0, σ ). Punt (0,0) uznajemy za środe tarczy,
Analiza I.1, zima wzorcowe rozwiązania
Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw
Składka ubezpieczeniowa
Przychody zakładów ubezpieczeń Przychody i wydatki zakładów ubezpieczeń Składka ubezpieczeiowa 60-95 % Przychody z lokat 5-15 % Przychody z reasekuracji 5-30 % Wydatki zakładów ubezpieczeń Odszkodowaia
θx θ 1, dla 0 < x < 1, 0, poza tym,
Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.
ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n)
ZADANIA - ZESTAW Zadaie.. Wyzaczyć m (), D ( ) dla procesu symetryczego (p = q =,) błądzeia przypadkowego. Zadaie.. Narysuj graf łańcucha Markowa symetrycze (p = q =,) błądzeie przypadkowe z odbiciem.
Liczby Stirlinga II rodzaju - definicja i własności
Liczby Stirliga II rodzaju - defiicja i własości Liczby Stirliga II rodzaju ozaczae sybole S(, ) lub { oża defiiować jao współczyii w rozwiięciu gdzie { x x, 0 (1) 0 x x(x 1)... (x + 1), 1 x 0 1. (2) Zostały
ĆWICZENIE 1 Symulacja doświadczeń losowych Statystyka opisowa Estymacja parametryczna i nieparametryczna T E O R I A
ĆWICZENIE Symulacja doświadczeń losowych Statystya opisowa Estymacja parametrycza i ieparametrycza T E O R I A Opracowała: Katarzya Stąpor Opis programu MS EXCEL. Iformacje ogóle Program Microsoft Excel
Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
Analiza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że
t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody
ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji
I. Podzielność liczb całkowitych
I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc