Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy przydziału

Wielkość: px
Rozpocząć pokaz od strony:

Download "Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy przydziału"

Transkrypt

1 Istrukcja do ćwiczeń laboratoryjych z przediotu: Badaia operacyje Teat ćwiczeia: Probley przydziału Zachodiopoorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki Szczeci 20 Opracował: Dr iż. Artur Berliński >22<

2 Probley przydziału Proble przydziału ozacza odpowiedią alokację szeroko pojętych zasobów. Najczęściej chodzi o przydział zadań produkcyjych do poszczególych iejsc pracy, optyaly przez wzgląd a jedo z kryteriów, jak p. iializacja kosztów lub czasu wykoaia zadań plaowych czy też aksyalizacja efektów ilości lub wartości wyprodukowaych dóbr. Zadaie optyalego przydziału proble ajkorzystiejszego skojarzeia środków z celai, przy czy każdy środek oże być użyty tylko jede raz. Założeia klasyczego zadaia przydziału: - liczba środków (iejsc produkcyjych) - liczba celów (wyrobów, zadań) x - ziee decyzyje; x = jeżeli i-ty cel jest realizoway przez j-ty środek; x =0 jeżeli i-ty cel ie jest realizoway przez j-ty środek; [i=,2,,; j=,2,,;] c - paraetr probleu; korzyść związaa z realizacją i-tego celu przez j-ty środek [i=,2,,; j=,2,,;] Zadaie przydziału odel decyzyjy ( > ), adwyżka środków ad celai >23<

3 Zadaie przydziału odel decyzyjy ( < ), adwyżka celów ad środkai Proble przydziału oża także rozpatrywać w sposób ilościowy. Paraetrai odelu będą wówczas astępujące wielkości: i ideks celu, wyrobu lub czyości j ideks środków lub iejsca produkcji ilość wyrobów (czyości) do wykoywaia. ilość iejsc produkcyjych (staowisk, aszy, zakładów, fabryk). C i ( i =, 2,..., ) założoa wielkość produkcji j-tego wyrobu. B j ( j =, 2,..., ) dopuszczaly czas pracy i-tego iejsca. Zadaie przydziału ilości czasu pracy Fukcja celu (iializacja łączego czasu pracy wszystkich iejsc przy produkcji wszystkich wyrobów): Ograiczeia: U ( x) = j= i= x B i a x x i= j= C j i=... (bilas czasu pracy staowisk) j= (bilas wielkości produkcji) Paraetr: a wydajość i-tego iejsca przy wykoywaiu j-tego wyrobu ( p. szt./i. ). Ziea decyzyja: x czas pracy i-tego iejsca przy wykoywaiu j-tego wyrobu >24<

4 Zadaie przydziału - liczby zadań Fukcja celu: U ( x) = a x, (iializacja łączego czasu pracy wszystkich i= j= iejsc przy produkcji wszystkich wyrobów) lub U ( x) = x, (aksyalizacja łączej produkcji) i= j= Ograiczeia: j= i= a x B x C j i i=... (bilas czasu pracy staowisk) j= (bilas wielkości produkcji) a czas pracy i-tego iejsca przy wykoywaiu j-tego wyrobu (p. i.). >25<

5 x - ilość j-tego wyrobu jaką ależy wytworzyć a i-ty iejscu (ziea decyzyja). Probley do rozwiązaia w raach ćwiczeń laboratoryjych Zadaie Przedsiębiorstwo zatrudia dwoje pracowików, który uszą zostać przydzieloe zadaia. Czas wykoaia każdego zadaia (w godz.) przez pracowików przedstawia tabela. Zad Pracowicy aia P P2 Z 0,8 0,6 Z2 2,0,5 Z3 0,7 0,6 Z4 0,4 0,2 Z4 0,2 0,4 Z6 0,3 0,5 Każdy pracowik oże wykoywać tylko trzy zadaia. Każde zadaie usi być wykoywae przez tylko jedego pracowika. Należy ułożyć LZD, którego rozwiązaie będzie takie przyporządkowaie zadań pracowiko, aby ziializować łączy czas pracy. Zadaie 2 Trzy rodzaje koparek ogą wykoywać 4 rodzaje prac. Przedsiębiorstwo dyspouje dziesięcioa koparkai typu A, czterea typu B oraz piętastoa typu C. Zapotrzebowaie a koparki przy pracach I rodzaju wyosi 5 koparek, przy pracach II rodzaju 8, III rodzaju 0 i przy pracach IV rodzaju 6 koparek dowolego typu. Dziea wydajość koparek 3/dzień) podaa została w tabeli. Dokoać (posługując się algoryte trasportowy) przydziału koparek do poszczególych typów prac tak, aby zaksyalizować wielkość wykoaego w ciągu dia wykopu. Zadaie 3 Fira realizujące kopleksową budowę siłowi wiatrowych realizuje jedocześie 6 podobych przedsięwzięć iwestycyjych, z których każdy jest realizoway w 4 etapach: budowa dróg dojazdowych i fudaetów, otaż asztów i godoli, przyłączeie do sieci elektroeergetyczej oraz testowaie i uruchoieie. Etapy te są realizowae przez 4 wyspecjalizowae zespoły: A, B, C, D. Możliwości realizacji zleceń są jedak ograiczoe ze względu a istiejące zasoby. Poszczególe przedsięwzięcia różią się korzyściai (zyskie), jakie przyoszą firie oraz pracochłoością. Dae o poszczególych przedsięwzięciach (w jedostkach pieiężych oraz jedostkach czasu) zawarto w tabeli. >26<

6 Każda z realizowaych iwestycji powia być realizowaa i zakończoa w ty say okresie czasu. Pewe przedsięwzięcia są ze sobą powiązae astępującyi uwarukowaiai: a) realizacja iwestycji 2 uieożliwia realizację iwestycji 5, b) realizacja iwestycji wyaga realizacji iwestycji 6, c) jedoczesa realizacja iwestycji 3, 4, 5 jest ieożliwa. Opracować odel decyzyjy przy założeiu, że ależy zaleźć optyaly pla realizacji iwestycji pozwalający a aksyalizację zysku przedsiębiorstwa. Rozwiązaie zaleźć za poocą prograu WiQSB. Przyjąć xi= realizacja i-tego przedsięwzięcia, xi=0 odrzuceie realizacji i-tego przedsięwzięcia (biare ziee decyzyje). Zadaie 4 Określić optyaly przydział 5 robotików do wykoywaia czterech prac, ając daa w tabeli poiżej liczbę braków, jaka wytwarzają w ciągu tygodia (zak ozacza, ze robotik ie a kwalifikacji do wykoywaia daej pracy). Zadaie 5 Asortyet trzech wyrobów oża wykoywać a trzech staowiskach roboczych. Zając jedostkowe zużycie czasu pracy aszy, jedostkowe koszty produkcji oraz cey wyrobów. Ustalić przydział produkcji poszczególy staowisko tak, aby zysk ze sprzedaży wyrobów był ożliwie ajwyższy, przy założeiu że: dopuszczaly czas pracy każdej aszyy wyosi 480 iut oraz każdego wyrobu Należy wyprodukować co ajiej 20 szt. Maszyy M M2 M3 Zużycie czasu pracy [i] Jedostkowy koszt produkcji [zł/szt] W W2 W3 W W2 W Cey wyrobów [zł/szt] >27<

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem)

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem) D. Miszczyńska, M.Miszczyński KBO UŁ, Badaia operacyje (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assigmet Problem) Bliskim "krewiakiem" ZT (w sesie podobieństwa modelu decyzyjego) jest zagadieie

Bardziej szczegółowo

Zestaw II Odpowiedź: Przeciętna masa ciała w grupie przebadanych szczurów wynosi 186,2 g.

Zestaw II Odpowiedź: Przeciętna masa ciała w grupie przebadanych szczurów wynosi 186,2 g. Zadaia przykładowe z rozwiązaiami Zadaie Dokoao pomiaru masy ciała 8 szczurów laboratoryjych. Uzyskao astępujące wyiki w gramach: 70, 80, 60, 90, 0, 00, 85, 95. Wyzaczyć przeciętą masę ciała wśród zbadaych

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)

Bardziej szczegółowo

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:

oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że: Zadaie. Niech zmiee losowe: X t,k = μ + α k + β t + ε t,k, k =,2,, K oraz t =,2,, T, ozaczają łącze wartości szkód odpowiedio dla k-tego kotraktu w t-tym roku. O składikach aszych zmieych zakładamy, że:

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Systemy operacyjne

Systemy operacyjne Systemy operacyje 26.11.2010 Zasady poprawości harmoogramu w każdej chwili procesor może wykoywać tylko jedo zadaie w każdej chwili zadaie może być obsługiwae przez co ajwyżej jede procesor Zadaie Z j

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Klasyfikacja inwestycji materialnych ze względu na ich cel:

Klasyfikacja inwestycji materialnych ze względu na ich cel: Metodologia obliczeia powyższych wartości Klasyfikacja iwestycji materialych ze względu a ich cel: mające a celu odtworzeie środków trwałych lub ich wymiaę w celu obiżeia kosztów produkcji, rozwojowe:

Bardziej szczegółowo

OPTYMALIZACJA LOKALIZACJI DLA NOWOPOWSTAŁEGO OBIEKTU

OPTYMALIZACJA LOKALIZACJI DLA NOWOPOWSTAŁEGO OBIEKTU STUDI I PRCE WYDZIŁU NUK EKONOMICZNYCH I ZRZĄDZNI NR 36, T. a Turczak * Zachodiopoorska Szkoła Bizesu w Szczeciie Patrycja Zwiech ** Uiwersytet Szczeciński 2 OPTYMLIZCJ LOKLIZCJI DL NOWOPOWSTŁEGO OBIEKTU

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII AKADEMIA MORSKA W SZCZECINIE Cetrum Iżyierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczeie 5 Aaliza statystycza wyików pomiarów pozycji GNSS Szczeci, 010 Zespół wykoawczy: Dr iż. Paweł Zalewski Mgr

Bardziej szczegółowo

TESTY LOSOWOŚCI. Badanie losowości próby - test serii.

TESTY LOSOWOŚCI. Badanie losowości próby - test serii. TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI

Bardziej szczegółowo

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie

Bardziej szczegółowo

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Łukasz WOJCIECHOWSKI, Tadeusz CISOWSKI, Piotr GRZEGORCZYK ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Streszczeie W artykule zaprezetowao algorytm wyzaczaia optymalych parametrów

Bardziej szczegółowo

1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767

1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767 Egzami maturaly z iformatyki Zadaie. (0 pkt) Każdy z puktów tego zadaia zawiera stwierdzeie lub pytaie. Zazacz (otaczając odpowiedią literę kółkiem) właściwą kotyuację zdaia lub poprawą odpowiedź. W każdym

Bardziej szczegółowo

PODSTAWOWE ZAGADNIENIA METODOLOGICZNE

PODSTAWOWE ZAGADNIENIA METODOLOGICZNE PODSTAWOWE ZAGADNIENIA METODOLOGICZNE. Wprowadzeie W ekoomii i aukach o zarządzaiu obserwuje się tedecję do ilościowego opisu zależości miedzy zjawiskami ekoomiczymi. Umożliwia to - zobiektywizowaie i

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7, Matematyka ubezpieczeń majątkowych.0.008 r. Zadaie. r, Zmiea losowa N ma rozkład ujemy dwumiaowy z parametrami (, q), tz.: Pr( N k) (.5 + k) (.5) k! Γ Γ * Niech k ozacza taką liczbę aturalą, że: * k if{

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2013/14

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2013/14 Wykład: zad. 35-43 Kowersatoriu 8..03: zad. 44-6 Ćwiczeia 9..03: zad. 6-340 Kolokwiu r 6 5..03 (poiedziałek, 3:5-4:00: ateriał z zad. -384 Kresy zbiorów. Defiicja: Zbiór Z R azyway ograiczoy z góry, jeżeli

Bardziej szczegółowo

, dla n = 1, 2, 3, 4 : 2

, dla n = 1, 2, 3, 4 : 2 Ćwiczeia VI Uwagi do zadań -5 : W każdym z zadań proszę : A. arysować graf przejść i macierz itesywości B. podać graiczą itesywość zgłoszeń λ gr dla której system jest już iestabily C. obliczyć prawdopodobieństwa

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

AUDYT SYSTEMU GRZEWCZEGO

AUDYT SYSTEMU GRZEWCZEGO Wytycze do audytu wykoao w ramach projektu Doskoaleie poziomu edukacji w samorządach terytorialych w zakresie zrówoważoego gospodarowaia eergią i ochroy klimatu Ziemi dzięki wsparciu udzieloemu przez Isladię,

Bardziej szczegółowo

Bezrobocie. wysiłek. krzywa wysiłku pracownika E * płaca realna. w/p *

Bezrobocie. wysiłek. krzywa wysiłku pracownika E * płaca realna. w/p * dr Barłomiej Rokicki Bezrobocie Jedym z główych powodów, dla kórych a ryku pracy obserwujemy poziom bezrobocia wyższy od auralego (czyli akiego, kórego zasadiczo ie da się obiżyć) jes o, iż płace wyzaczae

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1 (MAP 1024) LISTY ZADAŃ

ANALIZA MATEMATYCZNA 1 (MAP 1024) LISTY ZADAŃ ANALIZA MATEMATYCZNA (MAP 0) LISTY ZADAŃ Listy zadań przezaczoe są dla studetów którzy program matematyki szkoły poadgimazjalej zają jedyie a poziomie podstawowym Obejmują iezbęde do dalszej auki zagadieia

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU

ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Dr iż. Staisław NOGA oga@prz.edu.pl Politechika Rzeszowska ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Streszczeie: W publikacji

Bardziej szczegółowo

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej 1 Artykuł techiczy Joatha Azañó Dział ds. Zarządzaia Eergią i Jakości Sieci CVM-ET4+ Zgody z ormami dotyczącymi efektywości eergetyczej owy wielokaałowy aalizator sieci i poboru eergii Obeca sytuacja Obece

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

Egzamin maturalny z informatyki Poziom rozszerzony część I

Egzamin maturalny z informatyki Poziom rozszerzony część I Zadaie 1. Długość apisów biarych (7 pkt) Opisaa poiżej fukcja rekurecyja wyzacza, dla liczby aturalej 0, długość apisu uzyskaego przez sklejeie biarych reprezetacji liczb aturalych od 1 do 1. ukcja krok

Bardziej szczegółowo

Metody badania zbieżności/rozbieżności ciągów liczbowych

Metody badania zbieżności/rozbieżności ciągów liczbowych Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy

Bardziej szczegółowo

4. PRZEKŁADNIKI PRĄDOWE I NAPIĘCIOWE

4. PRZEKŁADNIKI PRĄDOWE I NAPIĘCIOWE 4. PRZEŁDN PRĄDOWE NPĘOWE 4.. Wstęp 4.. Przekładiki prądowe Przekładikie prądowy prądu zieego azywa się trasforator przezaczoy do zasilaia obwodów prądowych elektryczych przyrządów poiarowych oraz przekaźików.

Bardziej szczegółowo

Przykładowy arkusz z rozwiązaniami. Arkusz II poziom rozszerzony

Przykładowy arkusz z rozwiązaniami. Arkusz II poziom rozszerzony Przykładowy arkusz z rozwiązaiai Arkusz II pozio rozszerzoy ( pkt) Pukt A( -, -) jest wierzchołkie robu, którego jede z boków zawiera się w prostej k o rówaiu x - y - 0 Środkie syetrii tego robu jest pukt

Bardziej szczegółowo

Ekonomia matematyczna 2-2

Ekonomia matematyczna 2-2 Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy 12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!

Bardziej szczegółowo

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...

Bardziej szczegółowo

Moduł 4. Granica funkcji, asymptoty

Moduł 4. Granica funkcji, asymptoty Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae

Bardziej szczegółowo

ZADANIA NA ĆWICZENIA 3 I 4

ZADANIA NA ĆWICZENIA 3 I 4 Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.

Bardziej szczegółowo

Scenariusz lekcji: Kombinatoryka utrwalenie wiadomości

Scenariusz lekcji: Kombinatoryka utrwalenie wiadomości Sceariusz lekcji: Kombiatoryka utrwaleie wiadomości 1 1. Cele lekcji a) Wiadomości Uczeń: za pojęcia: permutacja, wariacja i kombiacja, zdarzeie losowe, prawdopodobieństwo, za iezbęde wzory. b) Umiejętości

Bardziej szczegółowo

Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki

Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki 52 Sławomir Herma Sławomir HERMA atedra Iżyierii Produkcji, ATH w Bielsku-Białej E mail: slawomir.herma@gmail.com Harmoogramowaie liii motażowej jako elemet projektowaia cyfrowej fabryki Streszczeie: W

Bardziej szczegółowo

WNIOSEK W SPRAWIE ZMIAN:

WNIOSEK W SPRAWIE ZMIAN: Załączik r do uchwały r 309 Zarządu Dzielicy Ursyów m.st. Warszawy z dia 25 paździerika 20 r WNIOSEK W SPRAWIE ZMIAN: ) WIELOLETNIEJ PROGNOZY BUDŻETÓW *, W TYM: b) WYDATKÓW BIEŻĄCYCH w tym UE* Obszar Staowisko

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne D o u ż y t k u w e w ę t r z e g o Katedra Iżyierii i Aparatury Przemysłu Spożywczego POMIARY WARSZTATOWE Ćwiczeia laboratoryje Opracowaie: Urszula Goik, Maciej Kabziński Kraków, 2015 1 SUWMIARKI Suwmiarka

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

Agenda. Piotr Sawicki Optymalizacja w transporcie. Politechnika Poznańska WIT ZST 1. Kluczowe elementy wykładu

Agenda. Piotr Sawicki Optymalizacja w transporcie. Politechnika Poznańska WIT ZST 1. Kluczowe elementy wykładu trasporcie Tytuł: 05 Klasyfikaca odeli plaowaia sieci Modele: PoPr_KT; PoPr_KT+KM Zastosowaie prograowaia liiowego Autor: Piotr SAWICKI Zakład Systeów Trasportowych WIT PP piotr.sawicki@put.poza.pl piotr.sawicki.pracowik.put.poza.pl

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 3 Algorytmy grafowe ( )

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 3 Algorytmy grafowe ( ) Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 3 Algorytmy grafowe (26.03.12)

Bardziej szczegółowo

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej). Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy

Bardziej szczegółowo

Składka ubezpieczeniowa

Składka ubezpieczeniowa Przychody zakładów ubezpieczeń Przychody i wydatki zakładów ubezpieczeń Składka ubezpieczeiowa 60-95 % Przychody z lokat 5-15 % Przychody z reasekuracji 5-30 % Wydatki zakładów ubezpieczeń Odszkodowaia

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3. KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski

Bardziej szczegółowo

Zadanie laboratoryjne "Wybrane zagadnienia badań operacyjnych"

Zadanie laboratoryjne Wybrane zagadnienia badań operacyjnych Zadanie laboratoryjne "Wybrane zagadnienia badań operacyjnych" 1. Zbudować model optymalizacyjny problemu opisanego w zadaniu z tabeli poniżej. 2. Rozwiązać zadanie jak w tabeli poniżej z wykorzystaniem

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są

Bardziej szczegółowo

Załącznik 5. do Umowy nr EPS/[ ]/2016 sprzedaży energii elektrycznej na pokrywanie strat powstałych w sieci przesyłowej. zawartej pomiędzy [ ]

Załącznik 5. do Umowy nr EPS/[ ]/2016 sprzedaży energii elektrycznej na pokrywanie strat powstałych w sieci przesyłowej. zawartej pomiędzy [ ] Załączik 5 do Umowy r EPS/[ ]/ sprzedaży eergii elektryczej a pokrywaie strat powstałych w sieci przesyłowej zawartej pomiędzy Polskie Sieci Elektroeergetycze Spółka Akcyja [ ] a WARUNKI ZABEZPIECZENIA

Bardziej szczegółowo

Nieklasyczne modele kolorowania grafów

Nieklasyczne modele kolorowania grafów 65 Nieklasycze modele kolorowaia grafów 66 Kolorowaie sprawiedliwe Def. Jeli wierzchołki grafu G moa podzieli a k takich zbiorów iezaleych C,...,C k, e C i C j dla wszystkich i,j,...,k, to mówimy, e G

Bardziej szczegółowo

O PEWNEJ MOŻLIWOŚCI UWZGLĘDNIENIA SUBSTYTUCJI NAKŁADÓW W MODELACH DEA. 1. Wstęp

O PEWNEJ MOŻLIWOŚCI UWZGLĘDNIENIA SUBSTYTUCJI NAKŁADÓW W MODELACH DEA. 1. Wstęp B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 2007 Bogusław GUZIK* O PEWNEJ MOŻLIWOŚCI UWZGLĘDNIENIA SUBSTYTUCJI NAKŁADÓW W MODELACH DEA W klasyczych wariatach etody DEA (p. CCR czy super-efficiecy

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

Twoja firma. Podręcznik użytkownika. Aplikacja Grupa. V edycja, kwiecień 2013

Twoja firma. Podręcznik użytkownika. Aplikacja Grupa. V edycja, kwiecień 2013 Twoja firma Podręczik użytkowika Aplikacja Grupa V edycja, kwiecień 2013 Spis treści I. INFORMACJE WSTĘPNE I LOGOWANIE...3 I.1. Wstęp i defiicje...3 I.2. Iformacja o możliwości korzystaia z systemu Aplikacja

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

4. MODELE ZALEŻNE OD ZDARZEŃ

4. MODELE ZALEŻNE OD ZDARZEŃ 4. MODELE ZALEŻNE OD ZDARZEŃ 4.. Wrowadzeie W sysemach zależych od zdarzeń wyzwalaie określoego zachowaia się układu jes iicjowae rzez dyskree zdarzeia. Modelowaie akich syuacji ma a celu symulacyją aalizę

Bardziej szczegółowo

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie

Bardziej szczegółowo

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI Ć wiczeie 7 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z RZEIENNIKA CZĘSTOTLIWOŚCI Wiadomości ogóle Rozwój apędów elektryczych jest ściśle związay z rozwojem eergoelektroiki Współcześie a ogół

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

Ćwiczenie nr 3. Bilans cieplny urządzenia energetycznego. Wyznaczenie sprawności cieplnej urządzenia kotłowego zasilanego gazem ziemnym

Ćwiczenie nr 3. Bilans cieplny urządzenia energetycznego. Wyznaczenie sprawności cieplnej urządzenia kotłowego zasilanego gazem ziemnym Termodyamika ćwiczeia laboratoryje Ćwiczeie r 3 Temat: Bilas cieply urządzeia eergetyczego. Wyzaczeie sprawości cieplej urządzeia kotłowego zasilaego gazem ziemym Miejsce ćwiczeń: Laboratorium Techologii

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r.

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r. Dzieik Ustaw Nr 251 14617 Poz. 1508 1508 ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dia 21 paździerika 2011 r. w sprawie sposobu podziału i trybu przekazywaia podmiotowej dotacji a dofiasowaie

Bardziej szczegółowo

Warszawa, dnia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia 18 października 2012 r.

Warszawa, dnia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia 18 października 2012 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dia 18 paździerika 2012 r. w sprawie szczegółowego zakresu obowiązków uzyskaia

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r. Część I. Matematyka finansowa Komisja Egzamiacyja dla Aktuariuszy XXXVI Egzami dla Aktuariuszy z 0 paździerika 2005 r. Część I Matematyka fiasowa Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Niech dur() ozacza duratio

Bardziej szczegółowo

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4 Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium

Bardziej szczegółowo

χ 2 = + 2π 2 Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej: σ

χ 2 = + 2π 2 Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej: σ χ Niech ziea losowa a rozkład oralyn(; µ,). Zajdziey rozkład zieej: µ Stadaryzjąc zieą losową µ otrzyjey stadaryzoway rozkład Gassa: ( ;, ) ep N 0 π Rozkład zieej a więc postać: d ( X + ) N N ep d π Rozważy

Bardziej szczegółowo

Chłodnictwo i Kriogenika - Ćwiczenia Lista 2

Chłodnictwo i Kriogenika - Ćwiczenia Lista 2 Chłodictwo i Kriogeika - Ćwiczeia Lista 2 dr hab. iż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechika Wrocławska Wydział Mechaiczo-Eergetyczy Katedra Termodyamiki, Teorii Maszy i Urządzeń

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

ANALIZA DANYCH DYSKRETNYCH

ANALIZA DANYCH DYSKRETNYCH ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,

Bardziej szczegółowo

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI Grupa: 1. 2. 3. 4. 5. LABORATORIUM ELEKTROENERGETYKI Data: Ocea: ĆWICZENIE 3 BADANIE WYŁĄCZNIKÓW RÓŻNICOWOPRĄDOWYCH 3.1. Cel ćwiczeia Celem ćwiczeia jest:

Bardziej szczegółowo

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej

Bardziej szczegółowo

ZASTOSOWANIE METODY STOLIKÓW EKSPERCKICH NA LEKCJACH MATEMATYKI SCENARIUSZE ZAJĘĆ

ZASTOSOWANIE METODY STOLIKÓW EKSPERCKICH NA LEKCJACH MATEMATYKI SCENARIUSZE ZAJĘĆ ZASTOSOWANIE METODY STOLIKÓW EKSERCKICH NA LEKCJACH MATEMATYKI SCENARIUSZE ZAJĘĆ Opracowała: mgr Ewa Atropik Koiecza Świebodzi 005 r Zastosowaie metody stolików eksperckich a lekcjach matematyki Wstęp

Bardziej szczegółowo

IMPUTACJE I JĄDRO GRY

IMPUTACJE I JĄDRO GRY IMPUTACJE I JĄDRO GRY Staisław Kowalik Katedra Zarządzaia i Iżyierii bezpieczeństwa, Politechika Śląska Akademicka 2, 44-100 Gliwice, Polska e-mail: Staislaw.Kowalik@polsl.pl Abstrakt: Praca dotyczy gier

Bardziej szczegółowo

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu

Bardziej szczegółowo

PLANOWANIE PROCESÓW WYTWARZANIA

PLANOWANIE PROCESÓW WYTWARZANIA Politechika Pozańska Zakład Zarządzaia i Iżyierii Jakości PLANOWANIE PROCESÓW WYTWARZANIA Materiały pomocicze do projektu z przedmiotu: Zarządzaie produkcją i usługami Opracował Krzysztof ŻYWICKI Pozań,

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć

Bardziej szczegółowo