Teoria i metody optymalizacji
|
|
- Radosław Czarnecki
- 6 lat temu
- Przeglądów:
Transkrypt
1 eoria i metody optymalizaci Programowaie liiowe całowitoliczbowe PCL Metodologia podziału i ograiczeń Brach ad Boud (B&B) ma c A Z echique Metodologia podziału i ograiczeń B&B { A b i Z } Podstawą metodologii B&B est przegląd drzewa rozwiązań. Wyorzystue się at sończoości zbioru moŝliwych wartości zmieych całowitoliczbowych w przypadu ograiczoych zadań PCL. Etapy metody: -podział -gałęzieie -obliczaie górych i dolych oszacowań uci celu. Osłabieie tóre prowadzi do zadaia PL: { A b } eoria i metody optymalizaci eoria i metody optymalizaci Metodologia podziału i ograiczeń B&B Metodologia podziału i oszacowań B&B Podział. Przymimy Ŝe zadaie PL zostało rozwiązae dla wierzchoła v przy czym () ma ie wszystie sładowe całowitoliczbowe. Przyładowo iech pewa zmiea ] Podział tóry est przy tym rozbiciem zbioru est astępuący: * i { i { < i i <. ]} { < y > }} Gdzie <a> est amieszą liczbą całowitą więszą lub rówą a [a] zaś ozacza awięszą liczbę całowitą mieszą lub rówą a. i ończoość. ZałóŜmy Ŝe aŝda ze zmieych est ograiczoa i e graica góra wyosi u. Niech { A α H { α β u β u całowite... } całowite... }. Zadaie PL est poŝądaym osłabieiem zadaia PCL gdyŝ dołączoe ograiczeia daą górą i dolą graicę dla poszczególych zmieych. Zagadieia PL przy załoŝeiu ograiczoości zmieych rozwiązue się algorytmem dualym symples. eoria i metody optymalizaci eoria i metody optymalizaci Metoda Brach ad Boud Ograiczeia a zares zmieych Oparta a podeściu podział i ograiczeie Ogóla idea metody polega a wyborze zmiee do podziału i rozwiązywaiu zadań PL KaŜdy podział zawęŝa zbiór rozwiązań dopuszczalych Wartość optymala uci celu LP est górym ograiczeiem optymale wartości uci celu PCL. Wartość uci celu PCL dla dowolego rozwiązaia całowitoliczbowego est dolym ograiczeiem optymale wartości uci celu PCL. PCL LP ograiczeia a całowitoliczbowość zmieych Narzuceie idywidualego zaresu dopuszczalych wartości poszczególym zmieym ie spełiaących waruów całowitoliczbowości d d g [ ] [ ] g Przymue się Ŝe: d g M M - dostateczie duŝa liczba całowita eoria i metody optymalizaci eoria i metody optymalizaci
2 eoria i metody optymalizaci Ograiczeia a olee zmiee Graicza reprezetaca przestrzei rozwiązań za pomocą drzewa biarego W sesie geometryczym w zbiorze rozwiązań dopuszczalych zadaia PL wyciae est pasmo rozwiązań: [ ] < [ ] < co prowadzi do podziału tego zbioru a dwa podzbiory. eoria i metody optymalizaci eoria i metody optymalizaci. Zasady usuwaia zadań z listy zadań Zadaie PL est sprzecze Zadaie PL zostało uŝ podzieloe Istiee zadaie spełiaące warue całowitoliczbowości o więsze wartości uci celu.. Zasady dzieleia zadaia w przypadu problemu masymalizaci Gdy ie est spełioy warue całowitoliczbowości ale zadaie PL ma awięszą wartość uci celu spośród zadań zaduących się a liście. Przyład zadaia PCL ma 6 Rozwiązaie PL - - X Rozwiązaie PCL X X eoria i metody optymalizaci eoria i metody optymalizaci Drzewo rozwiązań Przyład zadaia PCL [ ] [..] 9 [ 86] ma 7 8 [.667 ] Zbiór pusty Rozwiązaie PL Rozwiązaie PCL eoria i metody optymalizaci eoria i metody optymalizaci
3 eoria i metody optymalizaci Przegląd pośredi metodologia podziału i ograiczeń dla wetora biarego Przegląd pośredi metodologia podziału i ograiczeń dla wetora biarego śądaie biarości wetora ie est ograiczeiem zadaia gdy est zaa sończoa góra g graica u dla sładowe dla Zi u { s... sp} Jest oo rówowaŝe uładowi ograiczeń: p s δ δ dla p aŝ dego δ lub... pdlaaŝ dego Etapy metody: podział wybór pewe zmiee i przyęcie oraz { { } { } * F { Wi } { W i } { W } eoria i metody optymalizaci eoria i metody optymalizaci Podział pośredi Programowaie liiowe całowitoliczbowe metodologia odcięć oszacowaia wierzchołowi v przyporządoway est problem: ma z c c F ai bi ai si i... m F lub F. ma { A ZałóŜmy Ŝe istieą oraz taie Ŝe: A c b i { A A } Z oraz zadaie osłabioe w stosuu do zadaia (): ma ma całowitoliczbowe rozwiązaie optymale opt. Wówczas opt est rozwiązaiem optymalym zadaia (). c }. () eoria i metody optymalizaci eoria i metody optymalizaci Metoda odcięć Odcięcia w metodzie orm całowitych () ZałóŜmy Ŝe mamy reprezetacę problemu () w postaci R N eoria i metody optymalizaci ma c Q { A }. y y i... m i RN i Podstawowe odcięcie cie ([ h ] yi [ hyi ]) [ h] yi [ hyi] RN y RN ( y s i ( i ] eoria i metody optymalizaci i i i i ] RN i i ]) i i RN i i RN ] y i s musi być liczbą całowitą: i i s. ]. ) ( i ] est całowite. RN i ] )
4 eoria i metody optymalizaci Zadaie programowaia liiowego PL dla zmieych całowitych ma X / / / / -/ / 9/ / -/ / - / s - - X : 6 Z Rozwiązaie zadaia PL dla R z dodaym odcięciem dla zmiee s Wybrae odcięcie: s MoŜliwe odcięcia: Kolee iterace algorytmu odcięć metoda dualą simples ablica optymala ale ie całowitoliczbowa s / / / / -/ / / / -/ - - s s Dodao owe odcięcie s s / / / / -/ / / / -/ - - s -/ -/ -/ Rozwiązaie dopuszczale optymale i całowitoliczbowe [ s s ] [] 7 eoria i metody optymalizaci eoria i metody optymalizaci Heurystycze reguły wyboru wiersza źródłowego Reguły wyboru wiersza w metodzie orm całowitych NaleŜy zbudować odcięcie a agłębsze tz. usuwaące awięszy moŝliwy obszar ie zawieraący putów całowitoliczbowych. Odcięcie stae się głębsze eśli i a i PoŜądae est aby i było moŝliwie duŝe a i było moŝliwie małe dla R N ( I ) ( II ) ( III ) r ma i i r i ma i r i RN R N r i ma i r Dla oreśloego i R N eoria i metody optymalizaci eoria i metody optymalizaci Badaie całowitoliczbowości rozwiązaia PCL Optymale rozwiązaie zadaia PCL W obliczeiach omputerowych liczba rzeczywista r est tratowaa ao liczba całowita eśli mi { r } ε Nierozpozaie całowitoliczbowości moŝe powodować: wyoaie iepotrzebych iteraci dołączeie iepoprawych odcięć r Rozwiązaie dopuszczale zadaia PCL est ego rozwiązaiem optymalym gdy są spełioe trzy warui: (i) prymara dopuszczalość y i i... m (ii) całowitoliczbowość y i całowite i...m; (iii) duala dopuszczalość y dla wszystich R N ; utratę rozwiązaia optymalego. I a odwrót błęde stwierdzeie całowitoliczbowości moŝe spowodować iepoprawe zaończeie obliczeń. eoria i metody optymalizaci eoria i metody optymalizaci
5 eoria i metody optymalizaci Przegląd algorytmów metodologii odcięć. Metoda orm całowitych- ie spełioy warue całowitoliczbowości y i dla i...m. Całowitoliczbowy algorytm dualy ie spełioy warue prymale dopuszczalości: y i dla i... m. Całowitoliczbowy algorytm prymaly ie spełioy warue duale dopuszczalości: y dla R N Algorytm odcięć dla zadaia PCL Kro Zadź rozwiązaie spełiaące dwa spośród trzech wymieioych waruów. Idź do Krou. Kro - est a optymalość Jeśli trzeci warue est spełioy top. W przeciwym wypadu idź do Krou. Kro - Odciaie i elimiaca Doda odcięcie z odpowiedio dobraą wartością h. Dooa elimiaci aby zachować dwa wybrae warui. MoŜe zaistieć oieczość wyoaia więsze liczby roów elimiaci. Wróć do Krou. eoria i metody optymalizaci eoria i metody optymalizaci Czy procedura rozwiązaia zadaia PCL dla zmieych rzeczywistych a późie zaorągleie wyiów do wartości całowitych est prawidłowa?? Rozwiązaie zadaia PCL Wetor rozwiązań Wartość PrzybliŜeie całowite Wartość [.;.]. [] Zadaie sprzecze [] 8 Zadaie PCL [[] eoria i metody optymalizaci
Metoda najszybszego spadku
Metody Gradietowe W tym rozdziale bdziemy rozwaa metody poszuiwaia dla fucji z przestrzei R o wartociach rzeczywistych Metody te wyorzystuj radiet fucji ja rówie wartoci fucji Przypomijmy, czym jest zbiór
IV Uniwersytecka Sobota Matematyczna 14 kwietnia Funkcje tworzące w kombinatoryce
IV Uiwersyteca Sobota Matematycza 4 wietia 208 Fucje tworzące w ombiatoryce Dla ciągu a 0 a a 2... defiiujemy fucję tworzącą: G(x) = a x = a 0 + a x + a 2 x 2 + a 3 x 3 + =0. Zajdź fucje tworzące dla poiższych
Ciągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych
EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI
będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,
Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego
Model Lesliego. Oznaczmy: 0 m i liczba potomstwa pojawiającego się co jednostkę czasu u osobnika z i-tej grupy wiekowej, i = 1,...
Model Lesliego Macierze Lesliego i Markowa K. Leśiak Wyodrębiamy w populaci k grup wiekowych. Po każde edostce czasu astępuą arodziy i zgoy oraz starzeie (przechodzeie do astępe grupy wiekowe). Chcemy
Rachunek różniczkowy funkcji wielu zmiennych
Automatya i Robotya Aaliza Wyład dr Adam Ćmiel cmiel@agh.edu.pl Rachue różiczowy fucji wielu zmieych W olejych wyładach uogólimy pojęcia rachuu różiczowego i całowego fucji jedej zmieej a przypade fucji
Twierdzenia o funkcjach ciągłych
Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość
Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:
Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego
Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011
Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y
Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).
Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Analiza I.1, zima wzorcowe rozwiązania
Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw
3 Arytmetyka. 3.1 Zbiory liczbowe.
3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy
D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem)
D. Miszczyńska, M.Miszczyński KBO UŁ, Badaia operacyje (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assigmet Problem) Bliskim "krewiakiem" ZT (w sesie podobieństwa modelu decyzyjego) jest zagadieie
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1
30. Obliczyć wartość graicy ( 0 ( ( ( 4 +1 + 1 4 +3 + 4 +9 + 3 4 +7 +...+ 1 4 +3 + 1 ( ( 4 +3. Rozwiązaie: Ozaczmy sumę występującą pod zakiem graicy przez b. Zamierzamy skorzystać z twierdzeia o trzech
Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb
PODSTAWOWE ZAGADNIENIA METODOLOGICZNE
PODSTAWOWE ZAGADNIENIA METODOLOGICZNE. Wprowadzeie W ekoomii i aukach o zarządzaiu obserwuje się tedecję do ilościowego opisu zależości miedzy zjawiskami ekoomiczymi. Umożliwia to - zobiektywizowaie i
APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne
APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość
f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n
Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby
zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12
Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a
1. Granica funkcji w punkcie
Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera
Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki
INDUKCJA MATEMATYCZNA
MATEMATYKA DYSKRETNA (4/5) dr hab. iż. Małgorzata Stera malgorzata.stera@cs.put.poza.pl www.cs.put.poza.pl/mstera/ INDUKCJA MATEMATYCZNA Matematya Dysreta Małgorzata Stera FUNKCJA SILNIA dla, fucja silia
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń
Analiza I.1, zima globalna lista zadań
Aaliza I., zima 207 - globala lista zadań Marci Kotowsi 8 styczia 208 Podstawy Zadaie. Udowodij, że dla ażdego aturalego liczby 7 2 + oraz 7 2 dzielą się przez 6. Zadaie 2. Rozstrzygij, czy poiższe liczby
Ciągi i szeregi liczbowe. Ciągi nieskończone.
Ciągi i szeregi liczbowe W zbiorze liczb X jest określoa pewa fukcja f, jeŝeli kaŝdej liczbie x ze zbioru X jest przporządkowaa dokładie jeda liczba pewego zbioru liczb Y Przporządkowaie to zapisujem w
I kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4
Zaawansowane programowanie
Zaawasowae programowaie wykład 5: algorytmy dokłade prof. dr hab. iż. Marta Kasprzak Istytut Iformatyki, Politechika Pozańska lgorytmy dokłade lgorytmy dokłade służą rozwiązywaiu problemów w sposób dokłady
Egzamin maturalny z informatyki Poziom rozszerzony część I
Zadaie 1. Długość apisów biarych (7 pkt) Opisaa poiżej fukcja rekurecyja wyzacza, dla liczby aturalej 0, długość apisu uzyskaego przez sklejeie biarych reprezetacji liczb aturalych od 1 do 1. ukcja krok
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
Zadania z algebry liniowej - sem. I Liczby zespolone
Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy
Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej
I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n
I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.
Wyższe momenty zmiennej losowej
Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla
n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka
Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji
http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy
MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU
Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów
Lista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R
Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą
Rozkład normalny (Gaussa)
Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i
Funkcja generująca rozkład (p-two)
Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są
Pattern Classification
Pattern Classification All materials in these slides were taen from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stor, John Wiley & Sons, 2000 with the permission of the authors
RÓWNANIA RÓŻNICZKOWE WYKŁAD 11
RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest
Wykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA064 Wyział Elektroiki, rok aka 2008/09, sem leti Wykłaowca: r hab A Jurlewicz Wykła 3: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług
oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:
Zadaie. Niech zmiee losowe: X t,k = μ + α k + β t + ε t,k, k =,2,, K oraz t =,2,, T, ozaczają łącze wartości szkód odpowiedio dla k-tego kotraktu w t-tym roku. O składikach aszych zmieych zakładamy, że:
Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego
Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia
Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,
Matematyka ubezpieczeń majątkowych.0.008 r. Zadaie. r, Zmiea losowa N ma rozkład ujemy dwumiaowy z parametrami (, q), tz.: Pr( N k) (.5 + k) (.5) k! Γ Γ * Niech k ozacza taką liczbę aturalą, że: * k if{
z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X
Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
3. Wykład III: Warunki optymalności dla zadań bez ograniczeń
3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie
Chemia Teoretyczna I (6).
Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez
Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa
Mare Be±a, Statystya matematycza, wyªad 3 38 3 Statystyi zupeªe 3. Wyªadicze rodziy rozªadów prawdopodobie«stwa Zacziemy od deicji Deicja 3. Rodzi rozªadów {µ θ } θ Θ azywamy wyªadicz rodzi rozªadów -
EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI
Prawdopodobieństwo i statystyka r.
Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)
Wykład 11. a, b G a b = b a,
Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są
ELEMENTY SYSTEMÓW KOLEJKOWYCH
.Kowalsi Wybrae zagadieia z rocesów sochasyczych EEMENTY SYSTEMÓW KOEJKOWYCH WYBRANE ZAGADNIENIA uca Kowalsi Warszawa 8 .Kowalsi Sysemy Obsługi ieraura:.kowalsi, maeriały dydaycze z rocesów sochasyczych.
8. Optymalizacja decyzji inwestycyjnych
8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy
12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!
P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +
Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch
ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n)
ZADANIA - ZESTAW Zadaie.. Wyzaczyć m (), D ( ) dla procesu symetryczego (p = q =,) błądzeia przypadkowego. Zadaie.. Narysuj graf łańcucha Markowa symetrycze (p = q =,) błądzeie przypadkowe z odbiciem.
Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia
Wy lad 8 Zasadicze twierdzeie algebry. Poj ecie pierścieia 1 Zasadicze twierdzeie algebry i jego dowód Defiicja 8.1. f: C C postaci Wielomiaem o wspó lczyiach zespoloych azywamy fucj e f(x) = a x + a 1
LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY
LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY Zgodie z dążeiami filozofii pitagorejsiej matematyzacja abstracyjego myśleia powia być dooywaa przy pomocy liczb. Soro ta, to liczby ależy tworzyć w miarę
Wykład 8: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA5 Wyział Elektroiki, rok aka 20/2, sem leti Wykłaowca: r hab A Jurlewicz Wykła 8: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług rozkłau
ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
a 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy
Parametryzacja rozwiązań układu równań
Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie
Statystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych
Prawdopodobieństwo i statystyka r.
Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie
Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska
Zestaw zadań do skryptu z Teorii miary i całki Katarzya Lubauer Haa Podsędkowska Ciała σ - ciała. Zbadaj czy rodzia A jest ciałem w przestrzei X=[0] a) A = X 0 b) A = X 0 3 3 c) A = { X { }{}{ 0}{ 0 }
21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,
CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre
7. OBLICZENIA WIELKOŚCI ZWARCIOWYCH ZA POMOCĄ KOMPUTERÓW
A. Kaici: warcia w sieciach eletroeergetyczych 7. OBCNA WKOŚC WARCOWCH A POOCĄ KOPUTRÓW 7.. astosowaie metody potecjałów węzłowych do obliczaia zwarć przy założeiu jedaowych sił eletromotoryczych geeratorów
θx θ 1, dla 0 < x < 1, 0, poza tym,
Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.
2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1
Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.
Analiza matematyczna i algebra liniowa
Aaliza matematycza i algebra liiowa Materiały pomocicze dla studetów do wyładów Rachue różiczowy ucji wielu zmieych. Pochode cząstowe i ich iterpretacja eoomicza. Estrema loale. Metoda ajmiejszych wadratów.
PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).
TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ
Metody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Modele i arzędzia optymalizacji w systemach iformatyczych zarządzaia Prof. dr hab. iż. Joaa Józefowska Istytut Iformatyki Orgaizacja zajęć 8 godzi wykładów prof. dr hab. iż. J. Józefowska www.cs.put.poza.pl/jjozefowska
Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne
Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n.
Przedziały ufości W tym rozdziale będziemy zajmować się przede wszystkim zadaiami związaymi z przedziałami ufości Będą as rówież iteresować statystki pozycyje oraz estymatory ajwiększej wiarygodości (Eg
Zadanie 3. ( ) Udowodnij, że jeśli (X n, F n ) jest martyngałem, to. X i > t) E X n. . t. P(sup
Szkice rozwiązań zadań z serii dwuastej oraz części zadań z kartkówki. Zadaie 1. Niech (X, F ) będzie martygałem. Czy X jest domykaly, jeśli ciąg EX l X jest zbieży? X jest zbieży prawie a pewo? X jest
Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 11
Matematyka I Bezpieczeństwo jądrowe i ochroa radiologicza Semestr zimowy 2018/2019 Wykład 11 Całka ozaczoa podstawowe pojęcia Defiicja podziału odcika Podziałem P odcika < a, b > a części azywamy zbiór
PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X
PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac
Twierdzenia graniczne:
Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości
Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze
Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...
Czas trwania obligacji (duration)
Czas rwaia obligacji (duraio) Do aalizy ryzyka wyikającego ze zmia sóp proceowych (szczególie ryzyka zmiay cey) wykorzysuje się pojęcie zw. średiego ermiu wykupu obligacji, zwaego rówież czasem rwaia obligacji
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2013/14
Wykład: zad. 35-43 Kowersatoriu 8..03: zad. 44-6 Ćwiczeia 9..03: zad. 6-340 Kolokwiu r 6 5..03 (poiedziałek, 3:5-4:00: ateriał z zad. -384 Kresy zbiorów. Defiicja: Zbiór Z R azyway ograiczoy z góry, jeżeli
EGZAMIN MATURALNY Z INFORMATYKI
Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy
Gramatyka operatorowa
Gramatyki z pierwszeństwem operatorów Teoria kompilacji Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka operatorowa Definicja: G = G BK jest gramatyką operatorową (i) (ii) G jest gramatyką