Liczby Stirlinga II rodzaju - definicja i własności

Wielkość: px
Rozpocząć pokaz od strony:

Download "Liczby Stirlinga II rodzaju - definicja i własności"

Transkrypt

1 Liczby Stirliga II rodzaju - defiicja i własości Liczby Stirliga II rodzaju ozaczae sybole S(, ) lub { oża defiiować jao współczyii w rozwiięciu gdzie { x x, 0 (1) 0 x x(x 1)... (x + 1), 1 x 0 1. (2) Zostały oe wprowadzoe (raze z liczbai Stirliga I rodzaju) przez Jaesa Stirliga w dziele Methodus Differetialis wyday w Lodyie w rou Defiicja i iterpretacje obiatorycze Defiicja 1. { jest rówe liczbie - bloowych partycji zbioru - eleetowego. (Przypoijy, że partycją zbioru azyway rodzię jego iepustych, parai rozłączych podzbiorów, tóre w suie dają cały zbiór) Na przyład { poieważ zbiór {1, 2, 3, 4 ożey podzielić a dwa bloi astępująco: { { { { {1, {2, 3, 4, {2, {1, 3, 4, {3, {1, 2, 4, {4, {1, 2, 3, { {1, 2, {3, 4, { {1, 3, {2, 4, { {1, 4, {2, 3. UWAGA: Ileroć poiżej będzie owa o przypisywaiu ludzi do stoliów lub do pooi, to przyjujey, że: osoby są rozróżiale; pooje są rozróżiale, p. pouerowae; 1

2 stolii są ierozróżiale (idetycze). Obserwacja 1. Liczba rozieszczeń różych przediotów (p. ule, ażda iego oloru) do idetyczych pudełe, gdy zajętych jest doładie pudełe rówa się {, (, ). Podobie : osób ożey rozsadzić przy doładie stoliach a { sposobów, jeśli przy stoliu oże siedzieć ieograiczoa liczba osób i sposób ich usadzeia przy day stoliu ie a zaczeia. Wyjaśieie: przeprowadź astępujące przyporządowaie: - eleety zbioru przedioty (osoby); - bloi podziału pudeła (stolii); sorzystaj z zasady bijecji i Defiicji 1. Obserwacja 2. Liczba sposobów uloowaia osób w poojach, gdy w ażdy z pooi jest co ajiej jeda osoba jest rówa! { (dzieliy osoby a grup, a astępie grupy przyporządowujey w sposób 1-1 do pooi) rówa Liczba sposobow uloowaia osób w doładie spośród pooi jest ( ) { {!. (3) Łatwo policzyć, że liczba wszystich rozieszczeń osób w poojach jest rówa. Z drugiej stroy ożey policzyć te rozieszczeia suując prawą stroę (3) po 0, 1, 2,...,. Otrzyujey więc: {, (4) 0 czyli rówaie (1) dla N. Obie jego stroy to wieloiay stopia rówe dla wszystich liczb N, a zate taże dla x R. Z powyższego rozuowaia wyia, że rówaie (1) i Defiicja 1 są sobie rówoważe. 2

3 Obserwacja 3. Liczba słów długości złożoych z doładie różych liter wybraych z - zaowego alfabetu rówa się {. Wyjaśieie: przeprowadź astepujące przyporządowaie: - ludzie litery w słowie; - pooje zai alfabetu; sorzystaj z zasady bijecji i rówaia (3). Obserwacja 4. Niech A, B będą zbiorai sończoyi taii, że A, B, ( ). Liczba suriecji f : A B rówa się! {. Wyjaśieie: przeprowadź astępujące przyporządowaie: - ludzie eleety zbioru A; - pooje eleety zbioru B; sorzystaj z zasady bijecji i Obserwacji 2. Obserwacja 5. Liczba będąca iloczye różych liczb pierwszych oże być przedstawioa w postaci iloczyu różych czyiów (ieoieczie będących liczbai pierwszyi) a { sposobów. Wyjaśieie:????? Obserwacja 6. W ryptografii i ryptoaalizie lasyfiuje się słowa wg ich tzw. ciągów odelowych. Polega to a ty, że litery słowa czytae od lewej do prawej są odowae liczbai 1, 2, 3,..., p.: słowo KOMBINA- TORYKA będzie odowae ciągie 1, 2, 3, 4, 5, 6, 7, 8, 2, 9, 10, 1, 7, a słowo MATEMATYKA ciągie 1, 2, 3, 4, 1, 2, 3, 5, 6, 2. Liczba ciągów odelowych odpowiadających słowo -literowy (czyli długości ) sładający się z różych liter jest rówa {. Wsazówa do wyjaśieia: powtarzające się litery właday do pudeła z liczbą. Niech strofa (zwrota) wiersza słada się z wersów. Możey podzielić zbiór jej wersów a lasy w te sposób, że w jedej lasie są wszystie wersy, tóre ryują się ze sobą. Liczba taich -wersowych strof, w tórych ay 3

4 różych ryowań się wersów jest rówa {. Wyjaśieie:????? Obserwacja 7. Rozważy perutacje liczb. Każda perutacja oże być przedstawioa w postaci iloczyu rozłączych cyli. Weźy tylo te perutacje, tórych cyle (a oretie eleety tych cyli) są uporządowae w pewie orety sposób, p. w porządu rosący. Perutacji liczb spełiających tę własość i rozładających się a cyli jest {. Wyjaśieie:????? Reurecja Rozważy usadzeia (+1) osób doooła stoliów (ta, by przy ażdy ze stoliów siedziała co ajiej jeda osoba). Wyróżijy jedą osobę, p. ostatią. Może oa siedzieć przy stoliu saa. Wtedy pozostałe osób będzie siedzieć przy ( 1) stoliach (wszystie zajęte) a { 1 sposobów. Alteratywa ożliwość polega a ty, że wyróżioa osoba dosiada się do toregoś z stoliów zajetych już przez pozostałe osób a { sposobów. Stosując zasady: ożeia i dodawaia, ay, że { + 1 { { + 1 Powyższe rówaie reurecyje, wraz z waruai brzegowyi: { 1, { δ,0, 0 { 0 δ 0,, staowi defiicję ciągu liczb Stirliga II rodzaju i uożliwia wypisaie tablicy ich wartości. (5) Ćwiczeie: Korzystając ze wzoru (5) sporządź tablicę wartości liczb Stirliga II rodzaju dla, 0, 1, 2, 3, 4, 5, 6, 7, 8. 4

5 Wzory Obserwacja 8. Usadzay osób przy stoliach ta, by przy ażdy ze stoliów siedziała co ajiej jeda osoba. Możey to zrobić a { sposobów. Postępujey w astepujący sposób: (1) ustawiay wszystie osoby w przypadowej olejości; (2) pierwsze r 1 osób siada przy pierwszy stoliu, oleje r 2 osoby - przy drugi, itd. do oetu aż ostatie r osób siądzie przy -ty stoliu. Wszystich ustawień osób jest!. Nie liczy się olejość osób siedzących przy ty say stoliu (dzieliy więc! przez r 1!r 2!...r!) oraz ie liczy sie olejość (uporządowaie, uerowaie) stoliów, gdyż założyliśy a początu, że stolii są idetycze (dziely więc jeszcze przez!). Liczby osób przy poszczególych stoliach, czyli ciąg r 1, r 2,..., r, wybieray w dowoly sposób byleby były spełioe warui: stąd ay, że r 1 + r r, r i 1, i 1, 2,...,, { r 1 +r r, r i 1! r 1!r 2!...r!! Obserwacja 9. Załóży, że przy usadzeiach opisaych wyżej przy a stoliach siedzi po jedej osobie, przy b stoliach- po dwie, przy c stoliach - po trzy, itd. W rówaiu (6) sładiów odpowiadajacych taiej sytuacji jest!/(a!b!c!...).wstawiając do (6) ay: {! (1!) a (2!) b (3!) c...!! a!b!c!..., gzie suowaie przebiega po wszystich całowitych liczbach a, b, c,... 0 taich, że a + b + c +..., a + 2b + 3c (6)

6 Otrzyujey więc astępujący wzór: { a+b+c+..., a, b, c,... 0 a+2b+3c+...! (1!) a (2!) b (3!) c...a!b!c!.... (7) Obserwacja 10. Rozważy iy iż wyżej algoryt rozsadzeia osób doooła stoliów (ażdy stoli a być zajęty). Ustawy wszystie osoby w pewy oreśloy porządu, p. w porządu alfabetyczy. Pierwszą osobę sadzay przy pierwszy z brzegu, woly stoliu. Koleje a 1 osób (0 a 1 ) usadzay przy ty say stoliu (a 1 a 1 sposobów). Osobę (a 1 + 2)-gą sadzay przy pierwszy z brzegu, woly stoliu. Koleje a 2 osób (0 a 2 ) usadzay w dowoly sposób przy dwóch zajętych już stoliach (oża to zrobić a 2 a 2 sposobów). Osoba (a 1 + a 2 + 3)-cia siada przy pierwszy z brzegu, woly stoliu, a oleje a 3 osób - przy trzech zajetych uprzedio stoliach (a 3 a 3 sposobów), itd. W te sposób przy ażdy ze stoliów usiądzie co ajiej jeda osoba (będą to : 1, a 1 + 2, a 1 + a 2 + 3, a 1 + a 2 + a 3 + 4,...). Liczby a 1, a 2,..., a 0 wybieray ta, by spełiały warue a 1 + a a. Otrzyujey zate astępujący wzór { a 1 +a a a 1, a 2,...,a 0 1 a 1 2 a 2 3 a 3... a. (8) Obserwacja 11. Jeżeli >, to (8) ożey zapisać w postaci : { i 1 i 2 i 3...i. (9) 1 i 1 i 1... i Dlaczego? Każdy sładi 1 a 1 2 a 2 3 a 3... a słada się z a1 +a a czyiów (liczb ze zbioru 1, 2, 3,..., ). Zastępujey ażdy z czyiów przez i j, j 1, 2, 3,...,, przy czy wartości i j ogą się powtarzać. 6

7 Obserwacja 12. Rozieszczay osób w poojach ta, by żade z pooi ie pozostał pusty. Wiey z Obserwacji 2, że ożey to zrobić a! { sposobów. Obliczyy te wyi w iy sposób. Liczba dowolych rozieszczeń osób w poojach jest rówa, ale zajdą sie w tej liczbie rozieszczeia z pewyi poojai pustyi. Musiy więć odjąć te rozieszczeia, w tórych i-ty poój jest pusty (i 1, 2,..., ). Jest ich ( ) 1 ( 1). Ale odjęliśy w te sposób dwurotie rozieszczeia, w tórych p. pooje i-ty i j-ty są puste (i, j 1, 2,...,, i j). Musiy więc sorygować swoje obliczeia dodając wszystie rozieszczeia w tórych oba pooje są puste, a jest ich ( ) 2 ( 2) przy dowoly wyborze liczb i, j. Postępując dalej zgodie z zasadą włączeń i wyłączeń ay, że {! ( ) ( 1) + 1 ( ) ( ) ( 2) ( 1) ( ). 2 Upraszczając otrzyujey olejy wzór a liczby Stirliga II rodzaju: { 1 )! r0( 1) r( r ( 1) r r r r0 r!( r)!. (10) Źródło: D.Braso:Stirlig ubers ad Bell ubers: their role i cobiatorics ad probability, Math. Scietist 25, 1-31 (2000) 7

Liczby Stirlinga I rodzaju - definicja i własności

Liczby Stirlinga I rodzaju - definicja i własności Liczby Stiriga I rodzaju - defiicja i własości Liczby Stiriga I rodzaju ozaczae symboem s(, ) moża defiiować jao współczyii w rozwiięciu x s(, )x, 0 (1) 0 gdzie x x(x 1)... (x + 1), 1 x 0 1. (2) Zostały

Bardziej szczegółowo

Wykład 6. Przestrzenie metryczne ośrodkowe i zupełne. ρ, gdzie r

Wykład 6. Przestrzenie metryczne ośrodkowe i zupełne. ρ, gdzie r Wyład 6 Przestrzeie etrycze ośrodowe i zupełe. Przypoiay, że zbiór azyway przeliczaly, jeśli jest o rówoliczy ze zbiore wszystich liczb aturalych N, a co ajwyżej przeliczaly, jeśli jest o przeliczaly lub

Bardziej szczegółowo

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011 Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y

Bardziej szczegółowo

Analiza I.1, zima wzorcowe rozwiązania

Analiza I.1, zima wzorcowe rozwiązania Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

KOMBINATORYKA. Oznaczenia. } oznacza zbiór o elementach a, a2,..., an. Kolejność wypisania elementów zbioru nie odgrywa roli.

KOMBINATORYKA. Oznaczenia. } oznacza zbiór o elementach a, a2,..., an. Kolejność wypisania elementów zbioru nie odgrywa roli. KOMBINATORYKA Kombiatoryą azywamy dział matematyi zajmujący się zbiorami sończoymi oraz relacjami między imi. Kombiatorya w szczególości zajmuje się wyzaczaiem liczby elemetów zbiorów sończoych utworzoych

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

Podstawowe techniki zliczania obiektów kombinatorycznych. Szufladkowa zasada Dirichleta, Zasada włączeń i wyłączeń.

Podstawowe techniki zliczania obiektów kombinatorycznych. Szufladkowa zasada Dirichleta, Zasada włączeń i wyłączeń. Materiały dydatyczne Mateatya Dysretna (Wyład 5 Podstawowe technii zliczania obietów obinatorycznych. Szufladowa zasada Dirichleta, Zasada włączeń i wyłączeń. Szufladowa Zasada Dirichleta. Jest rzeczą

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2013/14

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2013/14 Wykład: zad. 35-43 Kowersatoriu 8..03: zad. 44-6 Ćwiczeia 9..03: zad. 6-340 Kolokwiu r 6 5..03 (poiedziałek, 3:5-4:00: ateriał z zad. -384 Kresy zbiorów. Defiicja: Zbiór Z R azyway ograiczoy z góry, jeżeli

Bardziej szczegółowo

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby

Bardziej szczegółowo

IV Uniwersytecka Sobota Matematyczna 14 kwietnia Funkcje tworzące w kombinatoryce

IV Uniwersytecka Sobota Matematyczna 14 kwietnia Funkcje tworzące w kombinatoryce IV Uiwersyteca Sobota Matematycza 4 wietia 208 Fucje tworzące w ombiatoryce Dla ciągu a 0 a a 2... defiiujemy fucję tworzącą: G(x) = a x = a 0 + a x + a 2 x 2 + a 3 x 3 + =0. Zajdź fucje tworzące dla poiższych

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

Krótkie i dość swobodne wprowadzenie do liczb Stirlinga. Jakub Kamiński

Krótkie i dość swobodne wprowadzenie do liczb Stirlinga. Jakub Kamiński Krótie i dość swobode wprowadzeie do liczb Stirliga Jaub Kamińsi 9 styczia 27 LICZBY STIRLINGA PIERWSZEGO RODZAJU Liczby Stirliga pierwszego rodzaju Liczby Stirliga zawdzięczają swoją azwę szociemu matematyowi

Bardziej szczegółowo

Twierdzenie 15.3 (o postaci elementów rozszerzenia ciała o zbiór). Niech F będzie ciałem oraz A F pewnym zbiorem. Niech L<F.

Twierdzenie 15.3 (o postaci elementów rozszerzenia ciała o zbiór). Niech F będzie ciałem oraz A F pewnym zbiorem. Niech L<F. 15. Wyład 15: Podciała, podciała geerowae przez zbiór, rozszerzeia ciał. Charaterystya pierścieia i ciała, ciała proste i lasyfiacja ciał prostych. 15.1. Podciała, podciała geerowae przez zbiór, rozszerzeia

Bardziej szczegółowo

Zajęcia nr. 2 notatki

Zajęcia nr. 2 notatki Zajęcia r otati wietia 5 Wzory srócoego możeia W rozdziale tym podamy ila wzorów tóre ułatwiają obliczaie wielu zadań rachuowych Fat (wzory srócoego możeia) Dla dowolych liczb rzeczywistych a, b zachodzi:

Bardziej szczegółowo

1.3. Przestrzeni. Odwzorowania. Rząd macierzy. Twierdzenie Croneckera- Capellego

1.3. Przestrzeni. Odwzorowania. Rząd macierzy. Twierdzenie Croneckera- Capellego WYKŁD 4 3 Przestrzei Odwzorowaia Rząd acierzy Twierdzeie Croecera- Capellego 3 Przestrzeń Przestrzeń wetorowa Baza przestrzei wetorowej 78 (Przestrzeń ) Niech ozacza zbiór wszystich ciągów -eleetowych

Bardziej szczegółowo

Równania rekurencyjne

Równania rekurencyjne Rówaa reurecyje Ja stosować do przelczaa obetów obatoryczych? zaleźć zwąze reurecyjy, oblczyć la początowych wartośc, odgadąć ogóly wzór, tóry astępe udowaday stosując ducję ateatyczą. W etórych przypadach,

Bardziej szczegółowo

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY Zgodie z dążeiami filozofii pitagorejsiej matematyzacja abstracyjego myśleia powia być dooywaa przy pomocy liczb. Soro ta, to liczby ależy tworzyć w miarę

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333)) 46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

INDUKCJA MATEMATYCZNA

INDUKCJA MATEMATYCZNA MATEMATYKA DYSKRETNA (4/5) dr hab. iż. Małgorzata Stera malgorzata.stera@cs.put.poza.pl www.cs.put.poza.pl/mstera/ INDUKCJA MATEMATYCZNA Matematya Dysreta Małgorzata Stera FUNKCJA SILNIA dla, fucja silia

Bardziej szczegółowo

Analiza I.1, zima globalna lista zadań

Analiza I.1, zima globalna lista zadań Aaliza I., zima 207 - globala lista zadań Marci Kotowsi 8 styczia 208 Podstawy Zadaie. Udowodij, że dla ażdego aturalego liczby 7 2 + oraz 7 2 dzielą się przez 6. Zadaie 2. Rozstrzygij, czy poiższe liczby

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17 Kolokwiu r 5: piątek 8..06, godz. 8:5-9:00, ateriał zad. 40, 50-585. Kolokwiu r 53: piątek 5..06, godz. 8:5-9:00, ateriał zad. 50, 50-59. Kolokwiu r 54: piątek..06, godz. 8:5-9:00, ateriał zad. 83, 50-64.

Bardziej szczegółowo

Parametryzacja rozwiązań układu równań

Parametryzacja rozwiązań układu równań Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

Kombinatorycznie o tożsamościach kombinatorycznych

Kombinatorycznie o tożsamościach kombinatorycznych Kombiatoryczie o tożsamościach ombiatoryczych Beata Bogdańsa, Szczeci Odczyt zawiera propozycję dydatyczą usystematyzowaej i samowystarczalej prezetacji tematu: Tożsamości dotyczace symbolu dwumieego.

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a,, a będą dowolymi liczbami Sumę a + a + + a zapisuje się zazwyczaj w postaci (czytaj: suma od do a ) Za Σ to duża greca litera sigma,

Bardziej szczegółowo

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego.

Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego. Rachue rawdoodobieństwa MAP064 Wydział Eletroii, ro aad. 008/09, sem. leti Wyładowca: dr hab. A. Jurlewicz Wyład 8: Zmiee losowe dysrete. Rozłady Beroulliego (dwumiaowy), Pascala, Poissoa. Przybliżeie

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia Wy lad 8 Zasadicze twierdzeie algebry. Poj ecie pierścieia 1 Zasadicze twierdzeie algebry i jego dowód Defiicja 8.1. f: C C postaci Wielomiaem o wspó lczyiach zespoloych azywamy fucj e f(x) = a x + a 1

Bardziej szczegółowo

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych

Bardziej szczegółowo

Wyższe momenty zmiennej losowej

Wyższe momenty zmiennej losowej Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

Twierdzenie Cayleya-Hamiltona

Twierdzenie Cayleya-Hamiltona Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest

Bardziej szczegółowo

Geometrycznie o liczbach

Geometrycznie o liczbach Geometryczie o liczbach Geometryczie o liczbach Łukasz Bożyk Dodatią liczbę całkowitą moża iterpretować jako pole pewej figury składającej się z kwadratów jedostkowych Te prosty pomysł pozwala w aturaly

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń

Bardziej szczegółowo

Twierdzenia o funkcjach ciągłych

Twierdzenia o funkcjach ciągłych Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość

Bardziej szczegółowo

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. Sprawdzian nr 4: (poniedziałek), godz. 10:15-10:35 (materiał zad.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. Sprawdzian nr 4: (poniedziałek), godz. 10:15-10:35 (materiał zad. Sprawdzia r 4: 4..04 (poiedziałek, godz. 0:5-0:35 (ateriał zad. -400 Kresy zbiorów. Defiicja: Zbiór Z R azyway ograiczoy z góry, jeżeli M R x M. Każdą liczbę rzeczywistą M R spełiającą waruek x M azyway

Bardziej szczegółowo

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d.

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d. Jarosław Wróblewski Matematyka dla Myślących 009/10 3 Wzory skrócoego możeia działaia a wielomiaach Procety Elemety kombiatoryki: dwumia Newtoa i trójkąt Pascala (cd) paździerika 009 r 0 Skometować frgmet

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu

Bardziej szczegółowo

( ) WŁASNOŚCI MACIERZY

( ) WŁASNOŚCI MACIERZY .Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

KOMBINATORYKA ZADANIA

KOMBINATORYKA ZADANIA KOMBINATORYKA ZADANIA Magdalea Rudź 25 marca 2017 1 Zadaie 1. a Ile istieje liczb aturalych sześciocyfrowych? b Ile istieje liczb aturalych sześciocyfrowych takich, w których cyfra setek to sześć? 1.1

Bardziej szczegółowo

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb

Bardziej szczegółowo

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego

Bardziej szczegółowo

Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy:

Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy: Matematya dysretna - wyład 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produtu artezjańsiego X Y, tórego elementami są pary uporządowane (x, y), taie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

Podstawowe pojęcia. Próba losowa. Badanie próby losowej

Podstawowe pojęcia. Próba losowa. Badanie próby losowej METODY PROBABILISTYCZNE I STATYSTYKA WYKŁAD 8: STATYSTYKA OPISOWA. ROZKŁADY PRAWDOPODOBIEŃSTWA WYSTĘPUJĄCE W STATYSTYCE. Małgorzata Krętowska Wydział Iforatyki Politechika Białostocka Podstawowe pojęcia

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Automatya i Robotya Aaliza Wyład dr Adam Ćmiel cmiel@agh.edu.pl Rachue różiczowy fucji wielu zmieych W olejych wyładach uogólimy pojęcia rachuu różiczowego i całowego fucji jedej zmieej a przypade fucji

Bardziej szczegółowo

c 2 + d2 c 2 + d i, 2

c 2 + d2 c 2 + d i, 2 3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI Piotr KOZIERSKI WYKORZYSTAIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDETYFIKACJI UKŁADÓW AUTOMATYKI STRESZCZEIE W artyule przedstawioo sposób idetyfiacji parametryczej obietów ieliiowych zapisaych w przestrzei

Bardziej szczegółowo

Statystyka opisowa - dodatek

Statystyka opisowa - dodatek Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

P k k (n k) = k {O O O} = ; {O O R} =

P k k (n k) = k {O O O} = ; {O O R} = Definicja.5 (Kombinacje bez powtórzeń). Każdy -elementowy podzbiór zbioru A wybrany (w dowolnej olejności) bez zwracania nazywamy ombinacją bez powtórzeń. Twierdzenie.5 (Kombinacje bez powtórzeń). Liczba

Bardziej szczegółowo

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3 35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(

Bardziej szczegółowo

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Schemat oceiaia Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. . (odp. a)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. . (odp. a) ZADANIA - ZESTAW 1 Zadanie 11 Rzucamy trzy razy monetą A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie Oreślić zbiór zdarzeń elementarnych Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie

Bardziej szczegółowo

Matematyka dyskretna Kombinatoryka

Matematyka dyskretna Kombinatoryka Matematya dysreta Kombiatorya Adrzej Szepietowsi 1 Ci agi Zastaówmy siȩ, ile ci agów d lugości moża utworzyć z elemetów zbioru zawieraj acego symboli. Jeżeli zbiór symboli zawiera dwa elemety: to moża

Bardziej szczegółowo

Wiadowmości wstępne z rachunku prawdopodobieństwa

Wiadowmości wstępne z rachunku prawdopodobieństwa Biotechologia, Chemia, Chemia Budowlaa - Wydział Chemiczy - 1 Wiadowmości wstępe z rachuu prawdopodobieństwa Zdecydowaa więszość procesów fizyczych, techiczych, społeczych, eoomiczych itp, przebiega w

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12 Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a

Bardziej szczegółowo

ZASTOSOWANIE METODY STOLIKÓW EKSPERCKICH NA LEKCJACH MATEMATYKI SCENARIUSZE ZAJĘĆ

ZASTOSOWANIE METODY STOLIKÓW EKSPERCKICH NA LEKCJACH MATEMATYKI SCENARIUSZE ZAJĘĆ ZASTOSOWANIE METODY STOLIKÓW EKSERCKICH NA LEKCJACH MATEMATYKI SCENARIUSZE ZAJĘĆ Opracowała: mgr Ewa Atropik Koiecza Świebodzi 005 r Zastosowaie metody stolików eksperckich a lekcjach matematyki Wstęp

Bardziej szczegółowo

Metody badania zbieżności/rozbieżności ciągów liczbowych

Metody badania zbieżności/rozbieżności ciągów liczbowych Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy 12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!

Bardziej szczegółowo

Sformułowanie zagadnienia aproksymacji w sensie najmniejszych kwadratów

Sformułowanie zagadnienia aproksymacji w sensie najmniejszych kwadratów WYKŁAD APROKSYMACJA WIELOMIANOWA I ZAGADNIENIE NAJMNIEJSZYCH KWADRAÓW Sforułowaie zagadieia aprosyaci w sesie aieszych wadratów Rozważy zbiór putów (węzłów) a płaszczyźie {( x y ), 0,.., }, W typowy zadaiu

Bardziej szczegółowo

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

i statystyka matematyczna Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, M. Przybycień Rachunek prawdopodobieństwa i statystyka

i statystyka matematyczna Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, M. Przybycień Rachunek prawdopodobieństwa i statystyka Rachue prawdopodobieństwa i statystya matematycza Dr hab. iż.. Mariusz Przybycień Literatura: Rachue prawdopodobieństwa i statystya matematycza w zadaiach, tom I i II, W. Krysici i i., PWN 200. Wstęp do

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach,

Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, Rachue prawdopodobieństwa i statystya matematycza Dr hab. iż. Mariusz Przybycień Literatura: Rachue prawdopodobieństwa i statystya matematycza w zadaiach, tom I i II, W. Krysici i i., PWN 2005. Wstęp do

Bardziej szczegółowo

KOMBINATORYKA. Problem przydziału prac

KOMBINATORYKA. Problem przydziału prac KOMBINATORYKA Dział matematyki zajmujący się badaniem różnych możliwych zestawień i ugrupowań, jakie można tworzyć z dowolnego zbioru skończonego. Zbiory skończone, najczęściej wraz z pewną relacją obiekty

Bardziej szczegółowo

Ekonomia matematyczna - 2.1

Ekonomia matematyczna - 2.1 Ekoomia matematycza - 2.1 Przestrzeń produkcyja Zakładamy,że w gospodarce występuje towarów, każdy jako akład ( surowiec ) lub wyik ( produkt ) w procesach produkcji. Kokrety proces produkcji jest reprezetoway

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B C A B A A A B D

Bardziej szczegółowo

Dydaktyka matematyki III-IV etap edukacyjny (wykłady)

Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Dydaktyka matematyki III-IV etap edukacyjy (wykłady) Wykład r 12: Fukcja wykładicza cd. Ciągłość fukcji. Pochoda fukcji Semestr zimowy 2018/2019 Fukcja wykładicza (cd.) propozycja Podobie jak w przykładach

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

Kombinacje, permutacje czyli kombinatoryka dla testera

Kombinacje, permutacje czyli kombinatoryka dla testera Magazie Kombiacje, permutacje czyli ombiatorya dla testera Autor: Jace Oroje O autorze: Absolwet Wydziału Fizyi Techiczej, Iformatyi i Matematyi Stosowaej Politechii Łódziej, specjalizacja Sieci i Systemy

Bardziej szczegółowo

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo