ESTYMACJA MIARY MARTYNGAŁOWEJ NA PODSTAWIE CEN OPCJI Z GIEŁDY PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE

Wielkość: px
Rozpocząć pokaz od strony:

Download "ESTYMACJA MIARY MARTYNGAŁOWEJ NA PODSTAWIE CEN OPCJI Z GIEŁDY PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE"

Transkrypt

1 METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XV/4, 04, str ESTYMACJA MIARY MARTYNGAŁOWEJ NA PODSTAWIE CEN OPCJI Z GIEŁDY PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE Paweł Klber Katedra Ekonom Matematycznej, Unwersytet Ekonomczny w Poznanu e-mal: Streszczene: W artykule prezentujemy zastosowane szacowana mary martyngałowej dla ndeksu WIG0 z Gełdy Paperów Wartoścowych w Warszawe. Marę martyngałową szacujemy na podstawe cen opcj na ten ndeks. Przyjmujemy, że mara martyngałowa jest meszanną rozkładów logarytmczno-normalnych, a parametry rozkładu szacujemy mnmalzując sumę kwadratów błędów wyceny. Otrzymane wynk porównujemy z modelem zakładającym rozkład logarytmczno-normalny. Jak przykład rozważamy zmany mary martyngałowej na początku marca 04 r., po rozpoczęcu kryzysu na Kryme. Słowa kluczowe: wycena martyngałowa, rozkład prawdopodobeństwa mplkowany przez ceny opcj, awersja do ryzyka, realna mara probablstyczna, wykrywane wydarzeń WPROWADZENIE Jedną z podstawowych reguł nowoczesnej teor fnansów jest zasada wyceny martyngałowej. Zgodne z tą zasadą cena dowolnego nstrumentu fnansowego jest równa wartośc oczekwanej zdyskontowanych przepływów zwązanych z tym nstrumentem, przy czym wartość oczekwana jest wyznaczana ne na podstawe rzeczywstych prawdopodobeństw, ale przy przyjęcu pewnej sztuczne wprowadzonej mary probablstycznej, nazywanej marą martyngałową. Mara ta to rozkład prawdopodobeństwa, który przyjmowałby hpotetyczny Patrz np. Musela, M., Rutkowsk, M. (008) Martngale Methods n Fnancal Modellng, Sprnger lub Plska, S.R. (005) Wprowadzene do matematyk fnansowej. Modele z czasem dyskretnym, WNT, Warszawa.

2 38 Paweł Klber nwestor pozbawony awersj do ryzyka, przy założenu, że jego wycena nstrumentów fnansowych byłaby zgodna z obserwowaną wyceną rynkową dlatego określa sę ją także jako marę neutralną względem ryzyka (ang. rskneutral measure). Na rynku mamy zatem do czynena z dwoma różnym maram probablstycznym: marą rzeczywstą P, opsującą rzeczywste prawdopodobeństwa różnych pozomów cen oraz marą martyngałową Q, zawerającą nformacje na temat wyceny rynkowej. Ta druga mara zawera nformacje o oczekwanach rynków, co do przyszłego rozwoju sytuacj, oraz o awersj nwestorów wobec ryzyka. Gęstość mary martyngałowej względem mary rzeczywstej nazywana jest rynkową ceną ryzyka określa nechęć nwestorów do ryzyka w możlwych przyszłych stanach śwata. W pracy [Breeden, Ltzenberg 978] zauważono, że marę martyngałową dla dowolnego, przyszłego momentu T można wyznaczyć na podstawe opcj europejskch, których termnem wykonana jest T, jeżel stneje odpowedno dużo opcj o różnej cene wykonana. W teoretycznym przypadku, jeżel stneje neskończene wele opcj (kupna lub sprzedaży) z dowolną ceną wykonana, gęstość mary martyngałowej można otrzymać jako drugą pochodną funkcj ceny opcj w zależnośc od ceny wykonana. W praktyce opcj jest jednak skończene wele, skąd pojawła sę koneczność opracowana nnych metod wyznaczana mary martyngałowej, których przegląd można znaleźć w opracowanu [Bahra 997]. Oszacowana mary martyngałowej mają dwa podstawowe zastosowana. Perwszym jest wykrywane możlwośc arbtrażu, na co zwrócono uwagę już w [Breeden, Ltzenberg 978]. Jeśl przy aktualnych cenach rynkowych ne można znaleźć gęstośc mary martyngałowej prawdopodobeństwa pewnych stanów śwata są ujemne oznacza to, że opcje o różnych cenach wykonana są nepoprawne wycenone. Możlwe jest wówczas stworzene strateg opcyjnej (portfela złożonego z trzech opcj kupna, taka stratega nazywana jest spreadem motyla 3 ) pozwalającej na wykorzystane możlwośc arbtrażu. Oprócz tego oszacowana take stosowane są w analze zdarzeń rynkowych wykrywanu oczekwań rynków. W [Bahra 997] przedstawono klka propozycj wykorzystana tego podejśca przez władze monetarne (m.n. do oceny oczekwań skutecznośc poltyk penężnej oczekwań nflacyjnych). W artykule [Jackwerth, Rubnsten 996] przedstawono pewną metodę szacowana mary martyngałowej na podstawe cen opcj na ndeks S&P 500. Jak stwerdzono, po kryzyse gełdowym z paźdzernka 987 roku martyngałowe prawdopodobeństwa dużych spadków wartośc ndeksu są welokrotne wększe nż odpowedne prawdopodobeństwa w merze rzeczywstej, wyznaczone przy założenu normalnośc stóp zwrotu, co dowodz zmany oczekwań. Kryzys ten badano także Patrz np. Bjork, T. (009) Arbtrage Theory n Contnuous Tme, Oxford Unversty Press. 3 Patrz np. Hull, J. (009) Optons, Futures and Other Dervatves, Prentce Hall, s. 5.

3 Estymacja mary martyngałowej na podstawe cen opcj 39 w [Bates 99]. W artykule [Melck, Thomas 997] zastosowano analzowano zmany oczekwana na rynku ropy naftowej po wojne w Zatoce Perskej w roku 990. Autorzy wykazal, że po wojne rozkład martyngałowy zmenł kształt pojawł sę w nm gruby prawy ogon. Problem analzy rynku ropy naftowej był następne podejmowany w pracach [Sadorsky 00] [Gagnon, Power 03] W pracy [Mandler 00] porównano kształt rozkładu w tygodnach, w których odbywały sę zebrana Rady Prezesów Europejskego Banku Centralnego z rozkładem martyngałowym w tygodnach bez zebrań wykazano stotne różnce mędzy tym rozkładam. Zmany mary martyngałowej, wyznaczonej na podstawe opcj na kontrakty futures LIFFE-Eurbor charakteryzowały sę dużą różnorodnoścą ne zdołano uzyskać jednoznacznych rezultatów. Natomast w pracy [Brru, Fglewsk 0] oszacowana rozkładów prawdopodobeństwa wykorzystano do analzy kryzysu fnansowego 008 roku. W pracy [Wang 009] zastosowano oszacowana mary martyngałowej dla ndeksu FTSE 00 przy założenu, że proces stochastyczny opsujący wartość ndeksu posada skok pokazano, że zdolność predykcyjna modelu takego modelu jest lepsza W artykule [Aït-Sahala, Jacod 009] zaproponowano metodę wykrywana skoków w procese cen akcj opartą na szacowanu mary martyngałowej na podstawe cen opcj. W pracy [Chab-Yo, Garca, Renault 008] wykorzystal przekształcena mar martyngałowych do próby wyjaśnena zagadk nadmernej prem za ryzyko 4 W artykule [Zegler 007] podjęto próbę wyjaśnena tzw. uśmechu zmennośc (ang. volatlty smle), przyjmując, że może on być wywołany przez agregację mar martyngałowych nwestorów o różnych oczekwanach. W pracach [Lu et al. 007], [de Vncent-Humphereys, Noss 0] oraz [de Vncent-Humphereys, Pugvert 0] podjęto próbę powązana mary martyngałowej z marą rzeczywstą. Zwrócono uwagę, że mara martyngałowa, oszacowana na podstawe cen opcj, może stanowć uzupełnene prognoz tworzonych na podstawe danych hstorycznych, jeśl uda sę znaleźć odpowedną transformację od prawdopodobeństw martyngałowych do prawdopodobeństw rzeczywstych. Jako taką transformację proponowano m.n. funkcję rozkładu beta, uogólnone rozkłady beta oraz przekształcena oparte na funkcj użytecznośc ze stałą awersją do ryzyka. W artykule podejmujemy próbę oszacowana mar martyngałowych dla zdarzeń na Gełdze Paperów Wartoścowych w Warszawe na podstawe opcj na ndeks WIG0. Zastosowane standardowych metod na rynku polskm zwązane jest z poważnym problemam, poneważ opcje znajdujące sę w obroce na GPW są mało płynne. W zwązku z tym do szacowana rozkładu martyngałowego należy stosować podejśce parametryczne z małą lczbą parametrów. Oszacowane 4 Patrz Mehra, R., Prescott, E.C. (985) The Equty Premum: A Puzzle, Journal of Monetary Economcs, vol. 5, ss

4 40 Paweł Klber rozkłady można następne porównywać z rozkładem martyngałowym otrzymanym z modelu Blacka-Scholesa, podobne jak robono to w [Melck, Thomas 997] [Mandler 00], wnoskować stąd o zmanach oczekwań nwestorów ch skłonnośc do akceptacj ryzyka w odpowedz na pewne wydarzena rynkowe. ESTYMACJA MIARY MARTYNGAŁOWEJ NA PODSTAWIE CEN OPCJI EUROPEJSKICH Rozważmy europejską opcję kupna z termnem wykonana T ceną wykonana K. Zgodne z zasadą wyceny martyngałowej cena tej opcj w chwl 0 wynos rt Q c( K, T ) = e E [( S K ) ] + T, () gdze S T to cena nstrumentu, na który opcja jest wystawona, Q to mara martyngałowa, a r jest stopą zwrotu wolną od ryzyka. Należy podkreślć, że Q zwązana jest z konkretnym momentem wykonana T - określa rozkład cen nstrumentu S w tym właśne momence. Zakładając, że rozkład ten jest cągły, oznaczmy jego gęstość przez (x). Wzór () można zatem zapsać w postac q T + rt ( x K ) c ( K, T) = e q ( x) dx. () K Podobne, cenę opcj sprzedaży z ceną wykonana K możemy wyrazć następującym wzorem: ( K x) T rt p( K, T ) e qt ( x) dx. (3) = K 0 Różnczkując dwukrotne obe strony równana () względem K otrzymujemy rt c( K, T) qt ( x) = e (4) K Podobne, z równana (3) można otrzymać następującą zależność rt p( K, T) qt ( x) = e. (5) K Zatem jeśl posada sę obserwacje cen opcj (kupna lub sprzedaży) przy wszystkch możlwych cenach wykonana, można wyznaczyć rozkład martyngałowy. W praktyce jest to oczywśce nemożlwe notowanych jest jedyne klka opcj na dany nstrument z różnym cenam wykonana. Gęstość mary martyngałowej można jednak oszacować na podstawe obserwowanych cen opcj, przyjmując odpowedne założena, co do postac tej gęstośc. Przegląd stosowanych metod można znaleźć w [Aparco, Hodges 998] oraz [Fusa, Roncoron 008]. Ponżej przedstawamy krótką charakterystykę różnych podejść.

5 Estymacja mary martyngałowej na podstawe cen opcj 4. Podejśce neparametryczne, oparte na regresj kernelowej, zostało zaproponowane w [Aït-Sahala, Lo 998]. Wymaga ono jednak odpowedno dużej lczby obserwacj. W warunkach polskch, gdze rynek opcyjny jest mało płynny, tej metody ne można zastosować.. Podejśce oparte na dopasowywanu zmennośc w modelu. W pracach [Rubnsten 994], [Jackwerth, Rubnsten 996], [Jackwerth 999] zastosowano w tym celu mplkowane drzewa dwumanowe. Natomast w artykułach [Durpe 994] [Derma, Kan 994] wykorzystano uśmech zmennośc W obu tych podejścach przyjmuje sę pewne założena co do przyszłych zmennośc nstrumentu podstawowego, aby otrzymać w modelu obserwowane na rynku ceny opcj. 3. Podejśce oparte na przyjęcu modelu dyfuzj ze skokam do opsu zman cen nstrumentu podstawowego zostało przedstawone w artykułach [Hull, Whte 987], [Heston 993], [Bates 99], [Wang 009]. Głównym problemem w tym podejścu jest brak wzorów analtycznych na cenę opcj w modelu dyfuzj ze skokam. Opcje są wycenane numeryczne, co znaczne wydłuża czas oblczeń. 4. W pracach [Shmko 993], [Dumas, et al. 998] przyjęto pewną sparametryzowaną postać powerzchn zmennośc (wyrażającej zmenność mplkowaną w zależnośc od ceny wykonana termnu wykonana). Na podstawe oszacowanej powerzchn zmennośc wyznaczono marę martyngałową, korzystając z wzorów (4) (5). 5. W artykułach [Melck, Thomas 997] [Söderlnd, Svensson 997] zastosowano parametryczną postać funkcj gęstośc mary martyngałowej, a następne szacowano parametry mnmalzując różnce mędzy teoretycznym obserwowanym cenam opcj. W oblczenach w tym artykule przyjmemy to ostatne podejśce. Podobne, jak w [Melck, Thomas 997] przyjmujemy, że martyngałowy rozkład prawdopodobeństwa cen nstrumentu bazowego w chwl wykonana jest meszanną rozkładów logarytmczno-normalnych. Gęstość rozkładu ma zatem postać: T k q ( x) = w f ( x, µ, σ ), (6) = gdze wag w > 0 sumują sę do jednośc ( w = ), zaś f ( x, µ, σ ) to k = gęstość rozkładu logarytmczno-normalnego z parametram µ σ : f ( x, µ, σ ) = exp ln x ln S0 µ T + σ T (7) xσ πt σ T Ceny opcj w takm modelu są średnm ważonym cen wyznaczonych na podstawe wzoru Blacka-Scholesa. Ceny opcj kupna wynoszą

6 4 Paweł Klber k µ + σ T rt c( K, T ) = e w S 0e N( d ) KN( d ), (8) = gdze S 0 jest obecną ceną nstrumentu podstawowego, N ( ) to funkcja dystrybuanty standardowego rozkładu normalnego, a współczynnk d oraz d są równe 5 σ S K µ ln 0 ln + + T d =, (9) σ T σ S K µ ln 0 ln + T d =. (0) σ T Natomast cena opcj sprzedaży jest równa k ( ) µ + σ T rt p( K, T ) = e w KN d S0e N( d ). () = Ze wzoru (8), podstawając K = 0, można też otrzymać cenę termnową (futures) nstrumentu podstawowego która wynos U T = e rt k = w S e µ + σ T 0 Oszacowane mary martyngałowej polega na wyznaczenu odpowednch wartośc parametrów µ, σ, w, =..., k. Dla meszanny k rozkładów logarytmcznych należy oszacować 3k parametrów. Współczynnk modelu można kalbrować mnmalzując sumy kwadratów odchyleń mędzy teoretycznym obserwowanym cenam opcj. Załóżmy, że dysponujmy obserwacjam n cen opcj kupna c, c,, c n o cenach wykonana K, K,, K n m cen opcj sprzedaży p, p,, p m o cenach wykonana H, H,, H m, a wszystke opcje mają ten sam termn wykonana T. Wektor () 5 Jak można zauważyć, wzory te różną sę od standardowej wersj w lcznku brak jest parametru r (stopy wolnej od ryzyka). Jest to spowodowane tym, że we wzorze Blacka- Scholesa parametry dryfu ( µ ) dyfuzj (σ ) są wyznaczone w merze rzeczywstej, natomast tutaj są to parametry mary martyngałowej.

7 Estymacja mary martyngałowej na podstawe cen opcj 43 parametrów θ = ( µ,..., µ k, σ,..., σ k, w,..., wk ) doberamy rozwązując następujące zadane optymalzacj nelnowej n mn θ = pod warunkem, że m rt ( c c( K, T )) + ( p p( H, T )) + ( UT e S ) 0 =, (3) σ, σ,..., 0 oraz w, w,..., 0, w =. (4) σ k > w k DANE I PROCEDURA OBLICZENIOWA Do estymacj rozkładu prawdopodobeństwa mary martyngałowej na Gełdze Paperów Wartoścowych w Warszawe posłużylśmy sę danym dotyczącym cen opcj na ndeks WIG0. Notowana cen opcj oraz wartośc ndeksu zaczerpnęlśmy z bazy danych EIKON Thomson Reuters. Oszacowana przeprowadzalśmy dla czterech momentów, odpowadających termnom zapadalnośc czterech ser opcj: marca 04, 0 czerwca 04, 9 wrześna 04 9 grudna 04 r. Dla każdej ser notowano opcje o różnych cenach wykonana, przy czym ceny wykonana dla opcj kupna sprzedaży były zawsze take same. Dla ser o termne wykonana marca 04 oraz 0 czerwca 04 r. notowano opcje o cenach wykonana: 800, 900, 000, 00, 00, 300, 400, 500, 600, 700, 800, 900, Dla ser o termne wykonana 9 wrześne 04 r. ceny wykonana były następujące: 000, 00, 00, 300, 400, 500, 600, 700, 800, 900, Dla ser o termne wykonana 9 grudna 04 r. ceny wykonana to: 000, 00, 00, 300, 400, 500, 600, 700, 800, 900. Rynek opcj w badanym okrese ne był bardzo płynny. W przypadku każdej ser stnały dn sesyjne, w których ne odbywały sę żadne transakcje na opcje z tej ser. Na ogół bardzej płynne były tańsze opcje ne w cene (out-of-themoney), przy czym opcje najtańsze charakteryzowały sę najwększą płynnoścą. W przypadku opcj kupna były to zatem opcje z wyższą ceną wykonana, a w przypadku opcj sprzedaży z nższą ceną wykonana. Na ogół bardzej płynne były opcje o krótszym termne wykonana (a węc z wcześnejszych ser).w przypadku braku transakcj GPW jako cenę zamknęca podaje cenę wyznaczoną na podstawe wzoru Blacka-Scholesa. Uwzględnając te notowana przy szacowanu mary martyngałowej, otrzymalbyśmy oszacowana obcążone w kerunku rozkładu logarytmczno-normalnego, co obnżyłoby moc testów stosowanych do sprawdzana, czy rozkłady martyngałowe stóp zwrotu różną sę stotne od rozkładu normalnego. Dlatego do oszacowana mary martyngałowej w każdym dnu uwzględnalśmy jedyne notowana opcj, którym w danym dnu handlowano. k =

8 44 Paweł Klber Z uwag na nską płynność małą lczbę opcj podlegających obrotow, muselśmy przyjąć rozkład o małej lczbe parametrów. Przyjęlśmy podejśce opsane w [Melck, Thomas 997], zgodne z którym mara martyngałowa jest meszanną rozkładów logarytmczno-normalnych. W [Melck, Thomas 997] analzowano ceny ropy naftowej w okrese perwszej wojny w Zatoce Perskej przyjęto wobec tego, że rozkład martynagłowy jest meszanną trzech rozkładów logarytmczno-normalnych, które były zwązane z trzema oczekwanym przez rynek rozwązanam kryzysu poltycznego: ) powrotem do sytuacj sprzed kryzysu, ) poważnym uszkodzenem nfrastruktury wydobywczej w krajach Zatok Perskej, 3) kontynuacją sytuacj kryzysowej. W przypadku meszanny trzech rozkładów logarytmczno-normalnych lczba parametrów do oszacowana wynos 0. Z powodu nskej płynnośc opcj notowanych na Gełdze Paperów Wartoścowych w Warszawe zdecydowalśmy sę na przyjęce, że mara martyngałowa stanow meszannę jedyne dwóch rozkładów logarytmczno-normalnych. Lczba parametrów do oszacowana wynos wówczas jedyne 7. Przyjęce meszanny dwóch rozkładów ma oprócz tego naturalną nterpretację ekonomczną: nwestorzy mogą oczekwać kontynuacj obecnego trendu lub mogą sę spodzewać zakłóceń na gełdze warszawske lub w całym regone Europy Wschodnej. Dla każdego dna z okresu od lpca 03 r. do 9 marca 04 r. wykonywalśmy oblczena dla każdej ser opcj, która była notowana w tym dnu. Marę martyngałową szacowalśmy na podstawe cen opcj, dla których wykonywano transakcje (dzenny wolumen obrotu był wększy od zera). W przypadku, gdy lczba takch opcj była mnejsza nż 8, dla danego dna ne wykonywalśmy oblczeń. Tabela przedstawa podstawowe nformacje dotyczące. próby. Jak można zauważyć, dla opcj z ser czerwcowej, wrześnowej grudnowej ne można było przeprowadzć oblczeń w wększość dn sesyjnych z powodu zbyt małej lczby opcj, na które odbywały sę transakcje. Znaczne bardzej płynne były opcje z ser marcowej. Możlwe było dokonane oszacowań dla 36 dn sesyjnych (z łącznej próby 79 dn). Tabela. Informacje dotyczące uwzględnonych w badanu ser opcj Sera opcj Okres (data wykonana) obserwacj marcowa (.3.04) czerwcowa (0..04) wrześnowa (9.9.04) grudnowa (9..04) Źródło: opracowane własne Lczba dn w próbe Lczba dn w badanu Lczba aktywnych opcj (średna) Aktywnych opcj sprzedaży (średna) ,3 6, , 3, 9,0, 58 5,9,8

9 Estymacja mary martyngałowej na podstawe cen opcj 45 Uwag: Do badana brano tylko aktywne opcje, tj. take, dla których odbywały sę transakcje w danym dnu sesyjnym. Ostatne dwe kolumny podają, le takch opcj (kupna sprzedaży) przypadało średno na dzeń sesyjny w okrese obserwacj. W próbe, na podstawe której dokonywano oszacowań, uwzględnono jedyne dn sesyjne, w których lczba aktywnych opcj przekraczała 8. WYNIKI Prawdopodobeństwa martyngałowe wyznaczalśmy mnmalzując sumę kwadratów odchyleń cen teoretycznych od cen rynkowych, czyl rozwązując zadane (3)-(4). Oblczena przeprowadzono numeryczne za pomocą funkcj przygotowanych w pakece R 6. Dla porównana, oprócz szacowana mary martyngałowej w modelu z meszanną dwóch rozkładów logarytmcznonormalnych (model ten oznaczamy lterą M), wyznaczylśmy też tę marę przyjmując, że jej rozkład jest logarytmczno-normalny (model ten oznaczamy lterą L), czyl że spełnone są założena modelu Blacka-Scholesa. Tabela zawera nformacje na temat dopasowana obu model. Kolumy druga trzeca zawerają dane dotyczące średnej wartośc mnmalzowanej funkcj celu (3) oraz odchylena standardowego tej welkośc, oblczone na podstawe wszystkch dn, dla których dokonywano oblczeń. Tabela zawera też nformacje o błędze średnokwadratowym (MSE) oraz średnm błędze względnym (MAPE). Tabela. Jakość dopasowana modelu logarytmczno-normalnego modelu z meszanną rokładów. Suma kwadratów odchyleń MSE MAPE Sera Model L Model M Model L Model M Model L Model M marcowa 700, 86,6 (93,9) (95,) 9,98 7,07 0,3 0,40 czerwcowa 8448, 454,4 (399,6) (9,) 4,5 8,48 0,49 0,3 wrześnowa 360,0 09,9 (65,4) (9,9),44 3,80 0,9 0,09 grudnowa 88,3 03, (733,6) (8,8) 5,46,66 0,09 0,04 Źródło: oblczena własne Tabela 3 zawera statystyk oszacowanych parametrów dla modelu mary martyngałowej opartym na meszanne rozkładów logarytmczno-normalnych. Przedstawone wartośc maksymalne, mnmalne, średne odchylena standardowe zostały oblczone na podstawe wynków ze wszystkch dn, w który możlwe było 6 R Core Team (03) R: A language and envronment for statstcal computng. R Foundaton for Statstcal Computng, Venna, Austra.

10 46 Paweł Klber wykonane oszacowań. Jak można zauważyć rozkład perwszy w meszanne rozkładów charakteryzuje sę mnejszą wartoścą oczekwaną ( µ < µ ) wększym odchylenem standardowym ( σ > σ ). Można go zatem znterpretować jako oczekwany przez nwestorów gorszy stan śwata w przyszłośc, w którym realzują sę nższe stopy zwrotu przy wększej zmennośc. Parametr w, określający udzał perwszego rozkładu w meszanne rozkładów można zatem znterpretować jako współczynnk nepokoju, oznaczający oczekwane przez nwestorów prawdopodobeństwo realzacj tego gorszego stanu. Tabela 3. Statystyk oszacowanych parametrów modelu M Sera µ µ σ σ w marzec Max -0,09 5,467 0,58 0,7 0,805 Średna -,6 0,68 0,48 0, 0,338 Mn -4,083-0,0 0,000 0,000 0,09 Odch. std. 3,59 0,484 0,095 0,037 0,70 czerwec Max -0,09 0, 5,45,43,000 Średna -,07 0,878 0,56 0,367 0,504 Mn -0,879 -,4 0,000 0,000 0,000 Odch. std. 3,755,306 0,70 0,450 0,09 wrzeseń Max -0,08 4,67 3,668 7,05,000 Średna -,74 0,309 3,70 0,753 0,8 Mn -68,533 -,097 0,354 0,09 0,06 Odch. std. 8,3,0 4,0,550 0,99 grudzeń Max -0,,08 9,733 7,876,000 Średna -5,64 0,75,63,365 0,368 Mn -35,93-0,653 0,0 0,86 0,000 Odch. std. 9,686 0,689 3,09,339 0,375 Źródło: oblczena własne W Tabel 4 znajdują sę charakterystyk otrzymanych rozkładów. Tabela zawera nformacje na temat wartośc oczekwanej, odchylena standardowego, współczynnka skośnośc kurtozy nadwyżkowej zarówno oszacowanych rozkładów logarytmczno-normalnych, jak meszanny takch rozkładów (model M). Tabela zawera średne wartośc charakterystyk, a w nawasach podano odchylena standardowe. Jak łatwo zauważyć, stosując meszannę rozkładów logarytmczno-normalnych otrzymuje sę na ogół wyższe oszacowana odchylena standardowego kurtozy.

11 Estymacja mary martyngałowej na podstawe cen opcj 47 Tabela 4. Charakterystyk otrzymanych rozkładów Wartość oczekwana Odchylene std. Wsp. Skośnośc Kurtoza (nadw.) Wartość oczekwana Odchylene std. Wsp. Skośnośc Kurtoza (nadw.) Źródło: oblczena własne marcowa czerwcowa wrześnowa grudnowa 430,49 (84,9) 45,43 (8,) 83,5 (48,) 0,9 (0,) 433,94 (85,63) 50,40 (8,07) -58,67 (5,40) 0,50 (3,3) 356,8 (9,) 505,78 (74,4) 498,58 (049,85),70 (6,8) 38,45 (,95) 55,5 (48,0) 940,9 (64,09),8 (99,53) Model L 376,70 (70,38) 403,4 (3,58) 08,89 (35,3) 0,48 (0,09) Model M 406,07 (85,64) 433,74 (43,37) 58,33 (93,46) 5,6 (,79) 343,88 (6,74) 470,84 (8,9) 88,37 (5,85) 0,67 (0,07) 355,33 (49,54) 53,58 (46,6) 89,3 (4,78) 6,37 (8,77) Rysunek przedstawa wartośc parametru w dla opcj ser marcowej czerwcowej. Najwększe wartośc parametr ten osąga na początku marca po rozpoczęcu sę nepokojów na Kryme ( marca Rada Federacj Rosj wyrazła zgodę na użyce wojsk rosyjskch na Kryme, a marca parlament Krymu ogłosł nepodległość). Podobne, najwększe różnce mędzy wartoścam oczekwanym oraz mędzy odchylenam standardowym rozkładów stanowących meszannę, równeż występują na początku marca. Ne dotyczy to opcj z ser wrześnowej grudnowej; być może z uwag na ch małą płynność. Reakcję na wydarzena można także wykryć w momentach szacowanych rozkładów. Ponedzałek to dzeń gwałtowanego skoku zarówno skośnośc, jak kurtozy dla marcowej ser opcj. Współczynnk skośnośc spadł do -55,7, a nadwyżkowa kuroza wzrosła do 8,, podczas gdy poprzednego dna sesyjnego, r. welkośc te wynosły odpowedno -75, 8 0,8, a we wcześnejszych dnach utrzymywały sę na zblżonym pozome. Rysunk 3 4 przedstawają wykresy funkcj gęstośc oszacowanych rozkładów, zarówno dla modelu M, jak dla modelu L, odpowedno w dnach r.

12 48 Paweł Klber Rysunek. Wartość parametru w dla opcj z ser marcowej (lna cągła) czerwcowej (lna przerywana) Źródło. opracowane własne Rysunek 3. Meszanna rozkładów logarytmczno-normalnych (lna cągła) pojedynczy (lna przerywana) rozkład logarytmczno-normalny dla cen opcj z dna Źródło: opracowane własne

13 Estymacja mary martyngałowej na podstawe cen opcj 49 Rysunek 4. Meszanna rozkładów logarytmczno-normalnych (lna cągła) pojedynczy rozkład logarytmczno-normalny (lna przerywana) dla cen opcj z dna Źródło: opracowane własne WNIOSKI W artykule oszacowalśmy mary martyngałowe, reprezentujące rynkowe oczekwana odnośne przyszłych cen, na podstawe cen opcj na ndeks WIG0. Rozważylśmy dwa modele: w perwszym z nch przyjęto rozkład logarytmcznonormalny, a w drugm - meszannę dwóch takch rozkładów. Drug z tych model ma oczywstą nterpretację: rozkłady w meszanne reprezentują dwa możlwe stany śwata w przyszłośc, których oczekuje rynek. Parametr przedstawający procentowy udzał rozkładów w meszanne można wówczas nterpretować jako współczynnk nepokoju co do przyszłego rozwoju sytuacj rynkowej. Mmo nskej płynnośc opcj notowanych na Gełdze Paperów Wartoścowych w Warszawe, próba oszacowana parametrów mary martyngałowej zakończyła sę powodzenem dla welu dn sesyjnych. Należy jednak zwrócć uwagę, że dotyczy to opcj o krótkm okrese do wykonana. Opcje o dłuższym okrese są zbyt mało płynne. Próbując wykorzystać szacunk mary martyngałowej do prognozowana ekonomcznego, jak to zaproponowano to np. w. [de Vncent-Humphereys, Noss 0], należy ogranczyć sę jedyne do prognoz krótkotermnowych. Wynk badań pokazały, że zastosowane meszanny rozkładów daje zazwyczaj wyższe charakterystyk rozproszena rozkładu (warancję kurtozę). Na ogół model z meszanną rozkładów był lepej dopasowany do danych nż model oparty na pojedynczym rozkładze logarytmczno-normalnym.

14 50 Paweł Klber BIBLIOGRAFIA Aït-Sahala, Y., Lo, A.W. (000) Nonparametrc rsk management and mpled rsk averson, Journal of Econometrcs, vol. 94, ss Aït-Sahala, Y., Jacod, J. (009) Testng for jumps n a dscretely observed process. The Annals of Statstcs, vol. 37, ss Aparco, S., Hodges, S. (998) Impled rsk-neutral dstrbuton: a comparson of estmaton methods, workng paper, Warwck Unversty. Bahra B. (997) Impled rsk-neutral probablty densty functons from opton prces: theory and applcaton, Bank of England Workng Paper No. 66. Bates D.S. (99) The crash of 87: was t expected? The evdence from opton markets, Journal of Fnance, vol. 46, ss Bjork, T. (009) Arbtrage Theory n Contnuous Tme, Oxford Unversty Press. Brru, J., Fglewsk, S. (0) An anatomy of a meltdown: the rsk neutral densty from the S&P 500 n the fall of 008, Journal of Fnancal Markets, vol. 5, ss Breeden, D.T., Ltzenberg, L.H. (978) Prces of state-contngent clam mplct n opton prces, Journal of Busness, vol. 5, ss Chab-Yo, F., Garca, R., Renault, E. (008) State dependence can explan the rsk averson puzzle, Revew of Fnancal Studes, vol., ss Derman E., Kan I. (994) Rdng on a smle, Rsk, vol. 7, ss Dumas, B., Flemng, J., Whaley, R. (998) Impled volatlty functons: emprcal test, Journal of Fnance, vol. 53, ss Durpe, B. (994) Prcng wth a smle, Rsk, vol. 7, ss Fusa G., Roncoron, A. (008) Implementng Models n Quanttatve Fnance: Methods and Cases, Sprnger. Gagnon, M.-H., Power, G.J. (03) Investor rsk averson and market shocks: event studed usng optons on crude ol, workng paper, SSRN, (dostęp:.3.04). Heston, S. (993) A closed-form soluton for optons wth stochastc volatlty applcaton to bond and currency optons, Revew of Fnancal Studes, vol. 6, ss Hull, J. (009) Optons, Futures and Other Dervatves, Prentce Hall. Hull, J., Whte, A. (987) The prcng of optons on assets wth stochastc volatltes, Journal of Fnance, vol. 4, ss Jackwerth, J. (999) Opton mpled rsk-neutral dstrbutons and mpled bnomal trees: a lterature revew, Journal of Dervatves, vol. 7, ss Jackwerth, J., Rubnsten M. (996) Recoverng probablty dstrbutons from opton prces, Journal of Fnance, vol. 5, ss Lu, X., Shackleton, M.B., Taylor, S.J., Xu, X. (007) Closed-form transformatons from rsk-neutral to real-world dstrbutons, Journal of Bankng and Fnance, vol. 3, ss Mandler, M. (00) Comparng rsk-neutral probablty densty functons mpled by opton prces market uncertanty and ECB-councl meetngs, referat prezentowany na 9 th Annual Meetng of the European Fnance Assocaton, Berln. Mehra, R., Prescott, E.C. (985) The Equty Premum: A Puzzle, Journal of Monetary Economcs, vol. 5, ss

15 Estymacja mary martyngałowej na podstawe cen opcj 5 Melck, W.R., Thomas C.P. (997) Recoverng an asset s mpled PDF from opton prces: an applcaton to crude ol durng Gulf crss, Journal of Fnancal and Quanttatve Analyss, vol. 3, ss Musela, M., Rutkowsk, M. (008) Martngale Methods n Fnancal Modellng, Sprnger. Plska, S.R. (005) Wprowadzene do matematyk fnansowej. Modele z czasem dyskretnym, WNT, Warszawa. R Core Team (03) R: A language and envronment for statstcal computng. R Foundaton for Statstcal Computng, Venna, Austra. Rubnsten, M. (994) Impled bnomal trees, Journal of Fnance, vol. 49, ss Sadorsky, P. (00) Rsk factor n stock returns of Canadan ol and gas companes, Energy Economcs, vol. 3, ss Shmko, D. (993) Bounds of probablty, Rsk, vol. 6, ss Söderlnd, P, Svensson, L. (997) New technques to extract market expectatons from fnancal nstruments, Journal of Monetary Economcs, vol. 40, ss de Vncent-Humphereys, R., Pugvert, J. (0) A quanttatve mrror on the Eurbor market usng mpled probablty densty functons, Eurasan Economc Revew, vol., ss. -3. de Vncent-Humphereys, R., Noss, R. (0) Estmatng probablty dstrbutons of future asset prces: emprcal transformatons from opton-mples rsk-neutral to real-world densty functon, Bank of England Workng Paper No Wang, Y.-H. (009). The mpact of jump dynamcs on the predctve power of optonmpled denstes. Journal of Dervatves, vol. 6, ss. 9-. Zegler, A. (007). Why does mpled rsk averson smle? Revew of Fnancal Studes, vol. 0, ss ESTIMATION OF RISK NEUTRAL MEASURE FOR POLISH STOCK MARKET Abstract: In the paper we present the usage of rsk neutral measure estmaton to the analyss of the ndex WIG0 from Polsh stock market. The rsk neutral measure s calculated from the prces of the optons on that ndex. We assume that rsk neutral measure s the mxture of lognormal dstrbutons. The parameters of the dstrbutons are estmated by mnmzng the sum of squares of prcng errors. Obtaned results are then compared wth the model based on a sngle lognormal dstrbuton. As an example we consder changes n rsk neutral dstrbuton at the begnnng of March 04, after the outbreak of poltcal crss n the Crmea. Keywords: rsk-neutral prcng, opton-mpled densty, rsk averson, realworld measure, event study

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

Wpływ płynności obrotu na kształtowanie się stopy zwrotu z akcji notowanych na Giełdzie Papierów Wartościowych w Warszawie

Wpływ płynności obrotu na kształtowanie się stopy zwrotu z akcji notowanych na Giełdzie Papierów Wartościowych w Warszawie Agata Gnadkowska * Wpływ płynnośc obrotu na kształtowane sę stopy zwrotu z akcj notowanych na Gełdze Paperów Wartoścowych w Warszawe Wstęp Płynność aktywów na rynku kaptałowym rozumana jest przez nwestorów

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20 Darusz Letkowsk Unwersytet Łódzk BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG0 Wprowadzene Teora wyboru efektywnego portfela nwestycyjnego zaproponowana przez H. Markowtza oraz jej rozwnęca

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Sera: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 1905 Adranna MASTALERZ-KODZIS Unwersytet Ekonomczny w Katowcach OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH

WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH SCRIPTA COMENIANA LESNENSIA PWSZ m. J. A. Komeńskego w Leszne R o k 0 0 8, n r 6 TOMASZ ŚWIST* WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH

Bardziej szczegółowo

Modelowanie struktury stóp procentowych na rynku polskim - wprowadzenie

Modelowanie struktury stóp procentowych na rynku polskim - wprowadzenie Mgr Krzysztof Pontek Katedra Inwestycj Fnansowych Ubezpeczeń Akadema Ekonomczna we Wrocławu Modelowane struktury stóp procentowych na rynku polskm - wprowadzene Wprowadzene Na rynku stóp procentowych analzowana

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

Zastosowanie wybranych miar płynności aktywów kapitałowych na Giełdzie Papierów Wartościowych w Warszawie S.A.

Zastosowanie wybranych miar płynności aktywów kapitałowych na Giełdzie Papierów Wartościowych w Warszawie S.A. Joanna Olbryś * Zastosowane wybranych mar płynnośc aktywów kaptałowych na Gełdze Paperów Wartoścowych w Warszawe S.A. Wstęp Płynność aktywu kaptałowego ne jest zmenną obserwowalną [Acharya, Pedersen, 2005,

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Grzegorz PRZEKOTA ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Zarys treśc: W pracy podjęto problem dentyfkacj cykl gełdowych.

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

MODELE COPULA M-GARCH O ROZKŁADACH NIEZMIENNICZYCH NA TRANSFORMACJE ORTOGONALNE

MODELE COPULA M-GARCH O ROZKŁADACH NIEZMIENNICZYCH NA TRANSFORMACJE ORTOGONALNE Mateusz Ppeń Unwersytet Ekonomczny w Krakowe MODELE COPULA M-GARCH O ROZKŁADACH NIEZMIENNICZYCH NA TRANSFORMACJE ORTOGONALNE Wprowadzene W analzach emprycznych przeprowadzonych z wykorzystanem welorównanowych

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.

Bardziej szczegółowo

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m

Bardziej szczegółowo

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów.

Bardziej szczegółowo

O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH

O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH Mateusz Baryła Unwersytet Ekonomczny w Krakowe O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH Wprowadzene

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Ryzyko inwestycji. Ryzyko jest to niebezpieczeństwo niezrealizowania celu, założonego przy podejmowaniu określonej decyzji. 3.

Ryzyko inwestycji. Ryzyko jest to niebezpieczeństwo niezrealizowania celu, założonego przy podejmowaniu określonej decyzji. 3. PZEDMIIOT : EFEKTYWNOŚĆ SYSTEMÓW IINFOMTYCZNYCH 3. 3. Istota, defncje rodzaje ryzyka Elementem towarzyszącym każdej decyzj, w tym decyzj nwestycyjnej, jest ryzyko. Wynka to z faktu, że decyzje operają

Bardziej szczegółowo

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

Nota 1. Polityka rachunkowości

Nota 1. Polityka rachunkowości Nota 1. Poltyka rachunkowośc Ops przyjętych zasad rachunkowośc a) Zasady ujawnana prezentacj nformacj w sprawozdanu fnansowym Sprawozdane fnansowe za okres od 01 styczna 2009 roku do 31 marca 2009 roku

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/3, 2015, str. 248 257 ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ Sławomr

Bardziej szczegółowo

Ćwiczenie 10. Metody eksploracji danych

Ćwiczenie 10. Metody eksploracji danych Ćwczene 10. Metody eksploracj danych Grupowane (Clusterng) 1. Zadane grupowana Grupowane (ang. clusterng) oznacza grupowane rekordów, obserwacj lub przypadków w klasy podobnych obektów. Grupa (ang. cluster)

Bardziej szczegółowo

OeconomiA copernicana 2013 Nr 3. Modele ekonometryczne w opisie wartości rezydualnej inwestycji

OeconomiA copernicana 2013 Nr 3. Modele ekonometryczne w opisie wartości rezydualnej inwestycji OeconomA coperncana 2013 Nr 3 ISSN 2083-1277, (Onlne) ISSN 2353-1827 http://www.oeconoma.coperncana.umk.pl/ Klber P., Stefańsk A. (2003), Modele ekonometryczne w opse wartośc rezydualnej nwestycj, Oeconoma

Bardziej szczegółowo

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model Jadwga LAL-JADZIAK Unwersytet Zelonogórsk Instytut etrolog Elektrycznej Elżbeta KAWECKA Unwersytet Zelonogórsk Instytut Informatyk Elektronk Ocena dokładnośc estymacj funkcj korelacyjnych z użycem modelu

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrcal Engneerng 015 Mkołaj KSIĄŻKIEWICZ* OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

MIARY ZALEŻNOŚCI ANALIZA STATYSTYCZNA NA PRZYKŁADZIE WYBRANYCH WALORÓW RYNKU METALI NIEŻELAZNYCH

MIARY ZALEŻNOŚCI ANALIZA STATYSTYCZNA NA PRZYKŁADZIE WYBRANYCH WALORÓW RYNKU METALI NIEŻELAZNYCH Domnk Krężołek Unwersytet Ekonomczny w Katowcach MIARY ZALEŻNOŚCI ANALIZA AYYCZNA NA PRZYKŁADZIE WYBRANYCH WALORÓW RYNKU MEALI NIEŻELAZNYCH Wprowadzene zereg czasowe obserwowane na rynkach kaptałowych

Bardziej szczegółowo

Analiza ryzyka jako instrument zarządzania środowiskiem

Analiza ryzyka jako instrument zarządzania środowiskiem WARSZTATY 2003 z cyklu Zagrożena naturalne w górnctwe Mat. Symp. str. 461 466 Elżbeta PILECKA, Małgorzata SZCZEPAŃSKA Instytut Gospodark Surowcam Mneralnym Energą PAN, Kraków Analza ryzyka jako nstrument

Bardziej szczegółowo

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Alcja Wolny-Domnak Unwersytet Ekonomczny w Katowcach MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Wprowadzene

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

PORÓWNANIE METOD PROSTYCH ORAZ METODY REGRESJI HEDONICZNEJ DO KONSTRUOWANIA INDEKSÓW CEN MIESZKAŃ

PORÓWNANIE METOD PROSTYCH ORAZ METODY REGRESJI HEDONICZNEJ DO KONSTRUOWANIA INDEKSÓW CEN MIESZKAŃ PORÓWNANIE METOD PROSTYCH ORAZ METODY REGRESJI HEDONICZNEJ DO KONSTRUOWANIA INDEKSÓW CEN MIESZKAŃ Radosław Trojanek Katedra Inwestycj Neruchomośc Unwersytet Ekonomczny w Poznanu e-mal: r.trojanek@ue.poznan.pl

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

Krzysztof Borowski Zastosowanie metody wideł cenowych w analizie technicznej

Krzysztof Borowski Zastosowanie metody wideł cenowych w analizie technicznej Krzysztof Borowsk Zastosowane metody wdeł cenowych w analze technczne Wprowadzene Metoda wdeł cenowych została perwszy raz ogłoszona przez Alana Andrewsa 1 w roku 1960. Trzy lne wchodzące w skład metody

Bardziej szczegółowo

D Archiwum Prac Dyplomowych - Instrukcja dla studentów

D Archiwum Prac Dyplomowych - Instrukcja dla studentów Kraków 01.10.2015 D Archwum Prac Dyplomowych - Instrukcja dla studentów Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu Rolnczego m. H. Kołłątaja

Bardziej szczegółowo

Analiza korelacji i regresji

Analiza korelacji i regresji Analza korelacj regresj Zad. Pewen zakład produkcyjny zatrudna pracownków fzycznych. Ich wydajność pracy (Y w szt./h) oraz mesęczne wynagrodzene (X w tys. zł) przedstawa ponższa tabela: Pracownk y x A

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Ewa Szymank Katedra Teor Ekonom Akadema Ekonomczna w Krakowe ul. Rakowcka 27, 31-510 Kraków STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Abstrakt Artykuł przedstawa wynk badań konkurencyjnośc

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

Regulacje i sądownictwo przeszkody w konkurencji między firmami w Europie Środkowej i Wschodniej

Regulacje i sądownictwo przeszkody w konkurencji między firmami w Europie Środkowej i Wschodniej Łukasz Goczek * Regulacje sądownctwo przeszkody w konkurencj mędzy frmam w Europe Środkowej Wschodnej Wstęp Celem artykułu jest analza przeszkód dla konkurencj pomędzy frmam w Europe Środkowej Wschodnej.

Bardziej szczegółowo

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36, T. 1 Barbara Batóg *, Jacek Batóg ** Unwersytet Szczecńsk ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI

Bardziej szczegółowo

WYBÓR PORTFELA PAPIERÓW WARTOŚCIOWYCH ZA POMOCĄ METODY AHP

WYBÓR PORTFELA PAPIERÓW WARTOŚCIOWYCH ZA POMOCĄ METODY AHP Ewa Pośpech Unwersytet Ekonomczny w Katowcach Wydzał Zarządzana Katedra Matematyk posp@ue.katowce.pl WYBÓR PORTFELA PAPIERÓW WARTOŚCIOWYCH ZA POMOCĄ METODY AHP Streszczene: W artykule rozważano zagadnene

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

EFEKT PRZEDZIAŁOWY WSPÓŁCZYNNIKA DETERMINACJI MODELU RYNKU

EFEKT PRZEDZIAŁOWY WSPÓŁCZYNNIKA DETERMINACJI MODELU RYNKU OPTIMUM. STUDIA EKONOMICZNE NR 2 (68) 2014 Joanna OLBRYŚ 1 EFEKT PRZEDZIAŁOWY WSPÓŁCZYNNIKA DETERMINACJI MODELU RYNKU Streszczene W lteraturze przedmotu zauważa sę, że konsekwencją obecnośc zakłóceń w

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

MODELOWANIE PROCESU PODEJMOWANIA DECYZJI PRZEZ RADĘ POLITYKI PIENIĘŻNEJ

MODELOWANIE PROCESU PODEJMOWANIA DECYZJI PRZEZ RADĘ POLITYKI PIENIĘŻNEJ Ewa Dzwok Unwersytet Ekonomczny w Katowcach MODELOWANIE PROCESU PODEJMOWANIA DECYZJI PRZEZ RADĘ POLITYKI PIENIĘŻNEJ Wprowadzene Rozwój rynku fnansowego nese ze sobą koneczność jego sterowana nadzorowana

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

Proste modele ze złożonym zachowaniem czyli o chaosie

Proste modele ze złożonym zachowaniem czyli o chaosie Proste modele ze złożonym zachowanem czyl o chaose 29 kwetna 2014 Komputer jest narzędzem coraz częścej stosowanym przez naukowców do ukazywana skrzętne ukrywanych przez naturę tajemnc. Symulacja, obok

Bardziej szczegółowo

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz NAFTA-GAZ marzec 2011 ROK LXVII Tadeusz Kwlosz Instytut Nafty Gazu, Oddzał Krosno Zastosowane metody statystycznej do oszacowana zapasu strategcznego PMG, z uwzględnenem nepewnośc wyznaczena parametrów

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak

Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak Ocena jakoścowo-cenowych strateg konkurowana w polskm handlu produktam rolno-spożywczym dr Iwona Szczepanak Ekonomczne, społeczne nstytucjonalne czynnk wzrostu w sektorze rolno-spożywczym w Europe Cechocnek,

Bardziej szczegółowo

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO Artur Zaborsk Unwersytet Ekonomczny we Wrocławu ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO Wprowadzene Od ukazana

Bardziej szczegółowo

USTAWA z dnia 20 lipca 2001 r. o kredycie konsumenckim

USTAWA z dnia 20 lipca 2001 r. o kredycie konsumenckim Kancelara Sejmu s. 1/18 USTAWA z dna 20 lpca 2001 r. o kredyce konsumenckm Opracowano na podstawe: Dz.U. z 2001 r. Nr 100, poz. 1081, z 2003 r. Nr 109, poz. 1030. Art. 1. Ustawa reguluje zasady tryb zawerana

Bardziej szczegółowo

SYSTEM ZALICZEŃ ĆWICZEŃ

SYSTEM ZALICZEŃ ĆWICZEŃ AMI, zma 010/011 mgr Krzysztof Rykaczewsk System zalczeń Wydzał Matematyk Informatyk UMK SYSTEM ZALICZEŃ ĆWICZEŃ z Analzy Matematycznej I, 010/011 (na podst. L.G., K.L., J.M., K.R.) Nnejszy dokument dotyczy

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

ZASTOSOWANIE MODELU PANELOWEGO DO BADANIA NADWYśEK KAPITAŁOWYCH W BANKACH KOMERCYJNYCH W POLSCE WSTĘP

ZASTOSOWANIE MODELU PANELOWEGO DO BADANIA NADWYśEK KAPITAŁOWYCH W BANKACH KOMERCYJNYCH W POLSCE WSTĘP Monka Gładysz, Katedra Ekonom Polyk Gospodarczej SGGW, e-mal: gladysz@alpha.sggw.waw.pl ZASTOSOWANIE MODELU PANELOWEGO DO BADANIA NADWYśEK KAPITAŁOWYCH W BANKACH KOMERCYJNYCH W POLSCE Streszczene: Dane

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Mara Konopka Katedra Ekonomk Organzacj Przedsęborstw Szkoła Główna Gospodarstwa Wejskego w Warszawe Analza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Wstęp Polska prywatyzacja

Bardziej szczegółowo

Optymalizacja portfela z wykorzystaniem koherentnych transformujących miar ryzyka

Optymalizacja portfela z wykorzystaniem koherentnych transformujących miar ryzyka Grażyna Trzpot Unwersytet Ekonomczny w Katowcach Wydzał Informatyk Komunkacj Katedra Demograf Statystyk Ekonomcznej grazyna.trzpot@ue.katowce.pl Optymalzacja portfela z wykorzystanem koherentnych transformujących

Bardziej szczegółowo

MODEL NADWYŻKI FINANSOWEJ PRZEDSIĘBIORSTWA DEWELOPERSKIEGO. SYMULACYJNE STUDIUM PRZYPADKU

MODEL NADWYŻKI FINANSOWEJ PRZEDSIĘBIORSTWA DEWELOPERSKIEGO. SYMULACYJNE STUDIUM PRZYPADKU Tadeusz Czernk Unwersytet Ekonomczny w Katowcach Wydzał Fnansów Ubezpeczeń Katedra Matematyk Stosowanej tadeusz.czernk@ue.katowce.pl Danel Iskra Unwersytet Ekonomczny w Katowcach Wydzał Fnansów Ubezpeczeń

Bardziej szczegółowo

Model oceny ryzyka w działalności firmy logistycznej - uwagi metodyczne

Model oceny ryzyka w działalności firmy logistycznej - uwagi metodyczne Magdalena OSIŃSKA Unwersytet Mkołaja Kopernka w Torunu Model oceny ryzyka w dzałalnośc frmy logstycznej - uwag metodyczne WSTĘP Logstyka w cągu ostatnch 2. lat stała sę bardzo rozbudowaną dzedzną dzałalnośc

Bardziej szczegółowo

TRENDS IN THE DEVELOPMENT OF ORGANIC FARMING IN THE WORLD IN THE YEARS 1999-2012

TRENDS IN THE DEVELOPMENT OF ORGANIC FARMING IN THE WORLD IN THE YEARS 1999-2012 Mara GOLINOWSKA, Mchał KRUSZYŃSKI, Justyna JANOWSKA-BIERNAT Unwersytet Przyrodnczy we Wrocławu, Instytut Nauk Ekonomcznych Społecznych Pl. Grunwaldzk 24A, 50-367 Wrocław e-mal: mara.golnowska@up.wroc.pl

Bardziej szczegółowo

Wykłady Jacka Osiewalskiego. z Ekonometrii. CZĘŚĆ PIERWSZA: Modele Regresji. zebrane ku pouczeniu i przestrodze

Wykłady Jacka Osiewalskiego. z Ekonometrii. CZĘŚĆ PIERWSZA: Modele Regresji. zebrane ku pouczeniu i przestrodze Wykłady Jacka Osewalskego z Ekonometr zebrane ku pouczenu przestrodze UWAGA!! (lstopad 003) to jest wersja neautoryzowana, spsana przeze mne dawno temu od tego czasu ne przejrzana; ma status wersj roboczej,

Bardziej szczegółowo

ZASADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERSKIE

ZASADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERSKIE Zasady wyznazana depozytów zabezpezaąyh po wprowadzenu do obrotu op w rela lent-buro malerse ZAADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERKIE

Bardziej szczegółowo

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono

Bardziej szczegółowo

Analiza regresji modele ekonometryczne

Analiza regresji modele ekonometryczne Analza regresj modele ekonometryczne Klasyczny model regresj lnowej - przypadek jednej zmennej objaśnającej. Rozpatrzmy klasyczne zagadnene zależnośc pomędzy konsumpcją a dochodam. Uważa sę, że: - zależność

Bardziej szczegółowo

OPTYMALIZACJA PROCESU PRZESIEWANIA W PRZESIEWACZACH WIELOPOKŁADOWYCH

OPTYMALIZACJA PROCESU PRZESIEWANIA W PRZESIEWACZACH WIELOPOKŁADOWYCH Prace Naukowe Instytutu Górnctwa Nr 136 Poltechnk Wrocławskej Nr 136 Studa Materały Nr 43 2013 Jerzy MALEWSKI* Marta BASZCZYŃSKA** przesewane, jakość produktów, optymalzacja OPTYMALIZACJA PROCESU PRZESIEWANIA

Bardziej szczegółowo

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH Poltechnka Gdańska Wydzał Inżyner Lądowej Środowska Katedra ydrotechnk mgr nż. Wojcech Artchowcz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁAC OTWARTYC PRACA DOKTORSKA Promotor: prof. dr

Bardziej szczegółowo

WYKORZYSTANIE SYMULACJI STOCHASTYCZNEJ DO BADANIA WRAŻLIWOŚCI SKŁADU OPTYMALNYCH PORTFELI AKCJI

WYKORZYSTANIE SYMULACJI STOCHASTYCZNEJ DO BADANIA WRAŻLIWOŚCI SKŁADU OPTYMALNYCH PORTFELI AKCJI ZESZYTY AUKOWE UIWERSYTETU SZCZECIŃSKIEGO R 768 FIASE, RYKI FIASOWE, UBEZPIECZEIA R 63 2013 IWOA KOARZEWSKA Unwersytet Łódzk WYKORZYSTAIE SYMULACJI STOCHASTYCZEJ DO BADAIA WRAŻLIWOŚCI SKŁADU OPTYMALYCH

Bardziej szczegółowo

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives

Bardziej szczegółowo

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO WSKAŹNIK OCENY SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO Dagmara KARBOWNICZEK 1, Kazmerz LEJDA, Ruch cała człoweka w samochodze podczas wypadku drogowego zależy od sztywnośc nadwoza

Bardziej szczegółowo

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej...

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej... Adam Waszkowsk * Adam Waszkowsk Zastosowane welowymarowej analzy porównawczej w doborze spó³ek do portfela nwestycyjnego Zastosowane welowymarowej analzy porównawczej... Wstêp Na warszawskej Ge³dze Paperów

Bardziej szczegółowo

Arytmetyka finansowa Wykład z dnia 30.04.2013

Arytmetyka finansowa Wykład z dnia 30.04.2013 Arytmetyka fnansowa Wykła z na 30042013 Wesław Krakowak W tym rozzale bęzemy baać wartość aktualną rent pewnych, W szczególnośc, wartość obecną renty, a równeż wartość końcową Do wartośc końcowej renty

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS OCENA EFEKTYWNOŚCI WYBRANYCH NIEPARAMETRYCZNYCH MODELI WYCENY OPCJI

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS OCENA EFEKTYWNOŚCI WYBRANYCH NIEPARAMETRYCZNYCH MODELI WYCENY OPCJI FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Fola Pomer. Unv. Technol. Stetn. 3, Oeconomca 3 (7), 8 9 Henryk Marjak OCENA EFEKTYWNOŚCI WYBRANYCH NIEPARAMETRYCZNYCH MODELI WYCENY OPCJI ASSESMENT

Bardziej szczegółowo

Dywersyfikacja portfela poprzez inwestycje alternatywne. Prowadzący: Jerzy Nikorowski, Superfund TFI.

Dywersyfikacja portfela poprzez inwestycje alternatywne. Prowadzący: Jerzy Nikorowski, Superfund TFI. Dywersyfkacja ortfela orzez nwestycje alternatywne. Prowadzący: Jerzy Nkorowsk, Suerfund TFI. Część I. 1) Czym jest dywersyfkacja Jest to technka zarządzana ryzykem nwestycyjnym, która zakłada osadane

Bardziej szczegółowo

Czy opcje walutowe mogą być toksyczne?

Czy opcje walutowe mogą być toksyczne? Katedra Matematyki Finansowej Wydział Matematyki Stosowanej AGH 11 maja 2012 Kurs walutowy Kurs walutowy cena danej waluty wyrażona w innej walucie np. 1 USD = 3,21 PLN; USD/PLN = 3,21 Rodzaje kursów walutowych:

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax

Bardziej szczegółowo

Regulamin promocji zimowa piętnastka

Regulamin promocji zimowa piętnastka zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna

Bardziej szczegółowo

Metody predykcji analiza regresji

Metody predykcji analiza regresji Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..

Bardziej szczegółowo

Analiza zmienności czasu przejazdu linii metra

Analiza zmienności czasu przejazdu linii metra BAUER Marek 1 Analza zmennośc czasu przejazdu ln metra WSTĘP W powszechnej opn metro jest najlepszym systemem transportu mejskego. UmoŜlwa szybke przemeszczena pasaŝerów, a jego uŝyteczność rośne w marę

Bardziej szczegółowo

ZASTOSOWANIE METODY DEA W KLASYFIKACJI FUNDUSZY INWESTYCYJNYCH

ZASTOSOWANIE METODY DEA W KLASYFIKACJI FUNDUSZY INWESTYCYJNYCH PRZEGLĄD STATYSTYCZNY R. LVI ZESZYT 3-4 2009 ANNA ZAMOJSKA ZASTOSOWANIE METODY DEA W KLASYFIKACJI FUNDUSZY INWESTYCYJNYCH 1. WSTĘP Analza ocena wynków osąganyc przez fundusze nwestycyjne jest jednym z

Bardziej szczegółowo

Regulamin promocji upalne lato 2014 2.0

Regulamin promocji upalne lato 2014 2.0 upalne lato 2014 2.0 strona 1/5 Regulamn promocj upalne lato 2014 2.0 1. Organzatorem promocj upalne lato 2014 2.0, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa

Bardziej szczegółowo

Analiza modyfikacji systemów bonus-malus w ubezpieczeniach komunikacyjnych AC na przykładzie wybranego zakładu ubezpieczeń

Analiza modyfikacji systemów bonus-malus w ubezpieczeniach komunikacyjnych AC na przykładzie wybranego zakładu ubezpieczeń Analza modyfkacj systemów bonus-malus Ewa Łazuka Klauda Stępkowska Analza modyfkacj systemów bonus-malus w ubezpeczenach komunkacyjnych AC na przykładze wybranego zakładu ubezpeczeń Tematyka przedstawonego

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

ANALIZA PRZESTRZENNA PROCESU STARZENIA SIĘ POLSKIEGO SPOŁECZEŃSTWA

ANALIZA PRZESTRZENNA PROCESU STARZENIA SIĘ POLSKIEGO SPOŁECZEŃSTWA TUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Katarzyna Zeug-Żebro * Unwersytet Ekonomczny w Katowcach ANALIZA PRZETRZENNA PROCEU TARZENIA IĘ POLKIEGO POŁECZEŃTWA TREZCZENIE Perwsze prawo

Bardziej szczegółowo

MINISTER EDUKACJI NARODOWEJ

MINISTER EDUKACJI NARODOWEJ 4 MINISTER EDUKACJI NARODOWEJ DWST WPZN 423189/BSZI13 Warszawa, 2013 -Q-4 Pan Marek Mchalak Rzecznk Praw Dzecka Szanowny Pane, w odpowedz na Pana wystąpene z dna 28 czerwca 2013 r. (znak: ZEW/500127-1/2013/MP),

Bardziej szczegółowo