Ćwiczenie 10. Metody eksploracji danych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenie 10. Metody eksploracji danych"

Transkrypt

1 Ćwczene 10. Metody eksploracj danych Grupowane (Clusterng) 1. Zadane grupowana Grupowane (ang. clusterng) oznacza grupowane rekordów, obserwacj lub przypadków w klasy podobnych obektów. Grupa (ang. cluster) jest zborem rekordów, które są podobne do sebe nawzajem nepodobne do rekordów z nnych grup. Grupowane różn sę od klasyfkacj tym, że w przypadku grupowana ne ma zmennej celu. Zadane grupowana ne próbuje klasyfkować, szacować lub przewdywać wartośc zmennej celu. Zamast tego grupowane próbuje podzelć cały zbór danych w stosunkowo zgodne podgrupy lub grupy, przy czym podobeństwo rekordów wewnątrz grup jest maksymalzowane, a podobeństwo do rekordów z nnych grup jest mnmalzowane. 1. Algorytm k-średnch Załóżmy, że z góry znamy lczbę grup, które algorytm pownen utworzyć. Wtedy bardzej właścwa będze stratega podzału, poneważ jedyna decyzja, którą musmy podjąć, dotyczy sposobu podzału grupy. Taka metoda byłaby równeż bardzej efektywna nż aglomeracyjne grupowane, w którym należy ocenć wszystke możlwe połączena. Najlepsze znane podejśce, które jest oparte na tej de, to grupowane k-średnch, prosty wydajny algorytm, od welu lat używany przez statystyków. Idea polega na reprezentacj grupy przez centrod dla dokumentów, które należą do tej grupy (centrod grupy S jest 1 zdefnowany jako c d. Przynależność do grupy jest określana przez znalezene S d S najbardzej podobnego centrodu grupy dla każdego dokumentu. Algorytm wczytuje zbór dokumentów S oraz parametr k oznaczający lczbę pożądanych grup wykonuje ponższe krok: 1) Wyberz k dokumentów z S, które mają zostać użyte jako centrody grup. Zwykle są one wyberane losowo. 2) Przypsz dokumenty do grup zgodne z ch podobeństwem do centrodów (tj. dla każdego dokumentu znajdź najbardzej podobny centrod przypsz ten dokument do odpowednej grupy). 3) Dla każdej grupy oblcz ponowne centrody grup, używając śweżo oblczonej przynależnośc do grup. 4) Wróć do kroku 2 dopók proces ne zbega (tj. te same dokumenty są przypsane do tych samych grup w dwóch kolejnych teracjach lub centrody pozostają w tym samym punkce). Punktem kluczowym algorytmu jest krok 2. W tym kroku dokumenty są przesuwane pomędzy grupam, aby zmaksymalzować podobeństwo wewnątrz grupy. Funkcja kryteralna grupowana jest oparta na centrodach grup jest podobna do sumy kwadratów błędu w grupowanu opartym na odległośc, który używa średnej. Zamast tego tutaj używamy centrodów podobeństwa. Zatem funkcja to 1

2 gdze c jest centrodem grupy J k 1 d D sm( c, d ) j D sm ( c, d j ) jest odległoścą kosnusową pomędzy c które maksymalzuje tę funkcję jest nazywany grupowanem o raz d j. Grupowane, mnmalnej warancj (ang. mnmum varance clusterng) (aby unknąć pomyłk, warancja zależy od odległośc maksymalzacja podobeństwa odległośc). jest równoważna mnmalzacj 3. Grupowane oparte na prawdopodobeństwe - algorytm EM Algorytm EM (ang. Expectaton Maxmzaton) jest popularnym algorytmem używanym do grupowana w kontekśce model meszanych. Algorytm ten został początkowo zaproponowany przez Dempstera n. do oszacowana brakujących parametrów modelu probablstycznego. Zasadnczo jest to podejśce optymalzacyjne. Algorytm dla pewnego początkowego przyblżena parametrów grupy teracyjne wykonuje dwa krok: w perwszym kroku E (ang. estmaton) oblcza wartośc oczekwane dla prawdopodobeństw grup, a w drugm kroku M (maksymalzacja) oblcza parametry rozkładu ch warygodność dla danych. Te dwa krok są powtarzane dopóty, dopók parametry, które są szukane, ne znajdą sę w punkce stałym lub logarytm funkcj warygodnośc, który merzy jakość grupowana, ne osągne (lokalnego) maksmum. Lteratura: 1. P. Berkhn, Survey of Clusterng Data Mnng Techmques, A. Moore, k-means and Herarchcal Clusterng, Course Notes J. MacQueen, Some Methods for Classfcaton and Analyss of Multvarate Observatons, Proc. 5th Berkeley Symposum on Mathematcal Statstcs and Probablty, Vol. 1, pp , Unversty of Calforna Press, Berkeley, CA Ćwczene 1 Zastosowane systemu Weka 1. Otwórz Explorer w systeme Weka. 2. Otwórz plk z danym. W tym celu otwórz plk Open Fle -> data. W katalogu data wyberz plk bank_data.arff. 2

3 3. Następne nacśnj Explorer, a potem wyberz opcję Cluster, a następne Choose. Wówczas trzeba wybrać SmpleKMeans. 4. Następne nacśnj słowo SmpleKMeans w ramce Choose. Wówczas otworzy sę formatka, która pozwala wybrać parametry tego algorytmu grupowana. Przyjmj, że lczba grup będze wynosć 5. Jest to defaultowa wartość lczby grup. funkcję jądrową. (patrz rysunek) Potwerdź zmany klawszem OK. Wreszce nacśnj button Start. 3

4 5. Po wykonanu oblczeń uzyskuje sę wynk przedstawone na rys. ponżej). 6.Następne powtórz procedurę grupowana 10 grup. Przeprowadź oblczena, jak podano powyżej. 4

5 7. Przeprowadź wzualzację uzyskanych danych. W tym celu nacśnj Vsualze Cluster Assgnment dla wszystkch uzyskanych rezultatów. 5

6 Zastosowane systemu RapdMner Ćwczene 2 1. Uruchom narzędze RapdMner Utwórz przepływ polegający na wczytanu zboru danych bank_data.csv przesłanu ch do operatora Nomnal to Numercal (Data Transformaton -> Type Converson -> Nomnal to Numercal) przekazanu ch do operatora Clusterng (Modelng -> Clusterng and Segmentaton -> k-means). Utwórz drug przepływ tych danych do operatora Select Attrbutes w celu wybrana czterech perwszych atrybutów (wyberz jako typ fltra subset), a następne należy zbór danych przesłać do operatora Nomnal to Numercal ponowne operator Clusterng. Wskazać, że transformacj ma podlegać będą wybrane atrybuty (jako typ fltra wyberz multple, a także koneczne zaznacz pole wyboru nclude specal attrbutes). Tak przygotowane dane prześlj do operatora Clusterng. Obejrzyj uzyskany model. 3. Utwórz kolejny przepływ, w którym będze przeprowadzana wyłączne agregacja. W tym celu sporządź tak przepływ danych, w którym zamast Clusterng będze użyty operator Aggregaton. 6

7 4. Utwórz kolejny przepływ, w którym będze przeprowadzana agregacja w klastrach. W tym celu sporządź tak przepływ danych, w którym zamast Clusterng będze użyty operator Aglomeratve Clusterng. Uzyskane przepływy będą mały postać, jak ponżej. Sprawdź wynk. 5. Zwzualzuj uzyskane wynk. 7

8 Zadane 1 Wykonaj ćwczene 1 dla zboru danych people.arff. Sprawdź, która z użytych metod grupowana k-means jest lepsza. Czy dokładnejsze jest grupowane dla 5 grup, czy też grupowane dla 10 grup. Znajdź najlepszy podzał na grupy. Następne przeprowadź grupowane z użycem algorytmu EM porównaj uzyskane wynk z poprzednm. Który z algorytmów jest lepszy? Zadane 2 Wykonaj ćw. 2, tzn. korzystając z systemu RapdMner przeprowadź analzę drzewa decyzyjnego dla plków danych bank_data.csv. Porównaj uzyskane wynk. Zadane 3 1) Zberz pewną lczbę stron nternetowych poprzez przeszukwane katalogu stron poprzez wykorzystane robota nternetowego lub za pomocą wyszukwana w Internece. Użyj robota nternetowego o nazwe WebSPHINX (http://www.cs.cmu.edu/~rcm/websphnx/} lub znajdź go za pomocą wyszukwark w Internece. Robota użyj do znajdowana kategor tematycznych (jeżel są dostępne) lub podzel je (ręczne) na dwe lub węcej kategor. Utwórz plk danych WEKA, aby reprezentować zbór. Wykonaj następujące krok. a) Upewnj sę, że w każdej kategor jest od 20 do 50 stron. Wyberaj strony z wększą loścą tekstu małą loścą grafk. b) Po zapsanu każdej strony zameń ją na czysty tekst. Na przykład otwórz stronę nternetową w programe Internet Explorer użyj opcj ''Zapsz jako...'' z ''Zapsz jako typ: plk tekstowy (*.txt)''}. Upewnj sę, że rozmar każdego plku tekstowego jest wększy nż 1 kb mnejszy nż 10 kb. c) Utwórz pojedynczy plk w formace systemu WEKA ARFF (z atrybutam będącym łańcucham), który będze zawerał wszystke teksty wydobyte ze stron nternetowych (ops formatu ARFF znajduje sę na strone Zawartość każdego tekstu pownna znajdować sę w pojedynczej ln (usuń wszystke znak CR LF) mus znajdować sę w cudzysłowach (''_''). Dodaj tytuł strony na początku ln kategorę strony na jej końcu. Następne utwórz nagłówek plku w attrbute web_page_name attrbute web_page_content attrbute web_page_class strng 8

9 @data ''Internet Archve'', ''nternet archve web movng...'', nfo... Sekcja danych (lne po data} zawerają właścwe teksty stron nternetowych: jedna (długa) lna na stronę. Na strone nternetowej podręcznka Larose Eksploracja zasobów nternetowych (www.datamnngconsultant.com) jest dostępny plk danych WEKA utworzony jak opsano powyżej. Plk nazywa sę Top-100-webstes.arff zawera 100 perwszych stron zwróconych przez wyszukwarkę Google dla hasła web 18 kwetna 2006 roku. Klasa została przypsana (ręczne) jako ''prof'' dla stron nternetowych zaprojektowanych z myślą o profesjonalstach z dzedzny IT, a ''nfo'' to klasa stron, które zawerają różnego rodzaju nformacje lub bezpośredno serwsy nternetowe. 2) Załaduj zbór danych stworzony powyżej (lub Top-100-webstes.arff) do systemu WEKA, zameń na reprezentację: bnarną, częstośc termów TFTDF zachowaj każdą z nch w osobnym plku ARFF. Użyj fltru StrngTo-World-Vector wykonaj krok wyjaśnone w ćwczenach 3 4 z rozdzału 1. Na strone nternetowej ksążk www. datamnngconsultant. com dostępne są plk po konwersj plku Top-100-webstes.arff w reprezentacjach: bnarnej, częstośc termów TFIDF nazwane odpowedno Top-100- webstes-bnary.arff, Top-100-webstes-count.arff Top-100-webstes-TFIDF.arff. 3) Załaduj bnarny zbór danych przeanalzuj atrybuty, sprawdzając ch grafczne przedstawena w trybe wstępnego przetworzena systemu WEKA. a) Jak jest najczęścej obserwowany wzór w okne grafcznego przedstawena atrybutów? Co mów nam wzorzec z wysokm słupkem 0 nskm słupkem 1 o rozkładze danych? A co mów nam odwrotny wzór? b) Co kolor klas mów nam o wadze atrybutów w grupowanu? A co o rozkładze częstośc? c) Jak byłby najlepszy wzór dla dobrze wyważonego grupowana? d) Porównaj następujące atrybuty (dla zboru danych Top-100-webstes-bnary.arff): nput, accountng, nternet, web, support, software desgn. Przeanalzuj ch wykresy słupkowe pod kątem poprzednch pytań. 4) Przeanalzuj grafczne przedstawene atrybutów w reprezentacjach: częstośc termów TFIDF (używając odpowednch zborów danych stworzonych w ćwczenu poprzednm. Jak sę zmen reprezentacja? Dlaczego? Które atrybuty będą lepsze do grupowana, z grubszym czy ceńszym słupkam? 9

10 5) Wykonaj eksperyment z grupowanem dla Top-100-webstes-bnary.arff za pomocą algorytmu k-średnch dla dwóch grup (numclusters = 2). Pomń atrybut klasy. a) Użyj dwóch różnych losowych zaren (tj. różnych początkowych centrodów grup) zobacz jak zmeną sę wynk. Wyjaśnj, dlaczego algorytm jest tak wrażlwy na zmany początkowych ustaweń. b) Znajdź najbardzej wyważone grupowane zachowaj przypsane do klas, w nowym plku. Nacśnj prawym przycskem myszy na okno wynków wyberz Vsualze cluster assgnments} (pokaż przypsana do grup). Następne użyj guzka Save (zapsz) w okne Clusterer vsualze; nowy atrybut został dodany (jako ostatn) z wartoścam odpowadającym przynależnośc do grupy dla każdego rekordu. c) Załaduj plk z wynkam grupowana pokaż orygnalne przypsane do klas, używając nowego atrybutu grupy jako koloru. Przeanalzuj wynk (to wyjaśna, w jak sposób system WEKA wykonuje ocenę klasa-grupa omówoną w rozdzale 4). 6) Wykonaj eksperyment z poprzednego ćwczena, ale z reprezentacjam: częstośc termów (Top-100-webstes-counts.arff) TFIDF (Top-100-webstes-TFIDF.arff). Porównaj wynk. 7) Usuń wszystke atrybuty oprócz następujących: webste_ttle, developers, support, partners, developer, solutons, html, software, gov, natonal, desgn oraz webste_class. Równeż zgnoruj atrybut class. Uruchom algorytmy k-średnch EM dla dwóch grup, używając trzech zborów danych: bnarnego, częstośc termów TFIDF. a) Dla algorytmu k-średnch, zbadaj efekt zmany zarna. Porównaj zachowane dla algorytmu z tym dla całego zboru danych. Wyjaśnj różncę. b) Porównaj algorytmy k-średnch EM dla drzewastych zborów danych. Przeanalzuj rozkład klas względem grup (zobacz ćwczene 5b c). Który algorytm dzała lepej dla którego zboru danych? Wyjaśnj dlaczego. Zauważ, że w systeme WEKA mplementacja algorytmu k-średnch stosuje odległość eukldesową (ne odległość kosnusową), a algorytm EM zakłada, że rozkład jest normalny. c) Dla algorytmu EM, zbadaj ocenę logarytmu warygodnośc przedstawoną przez system WEKA porównaj ją z oceną opartą na dokładnośc otrzymaną dla grafcznego przedstawena przypsana do grup (rozkład klas względem grup). d) Dla algorytmu EM, zbadaj w jak sposób logarytm warygodnośc zmena sę dla kolejnych teracj. Zbadaj maksymalną lczbę teracj równą = l, 2, 3, obserwuj wartośc 10

11 logarytmu warygodnośc. Stwórz wykres logarytmu warygodnośc w zależnośc od teracj Zrób eksperyment z różną lczbą atrybutów (powedzmy l, 2, 3, 5, 10) zmenaj losowo zarna. Skomentuj wynk. 8) Usuń wszystke atrybuty poza webste_ttle, webste_class 10 nnych dowolnych atrybutów, różnych od tych, które zostały użyte w ćwczenu 7. Zgnoruj atrybut class uruchom algorytmy k-średnch EM dla dwóch grup, używając trzech reprezentacj: bnarnej, częstośc termów TFIDF. a) Wykonaj eksperyment, przeprowadź analzę odpowedz na pytana opsane w ćwczenu poprzednm (7). b) Porównaj wynk z tym otrzymanym w ćwczenu 7 wyjaśnj różnce (zbadaj grafczne przedstawena różnych zborów użytych atrybutów). 9) Używając zboru danych TFIDF, wyberz jeden z atrybutów użytych w ćwczenu 7 jeden z atrybutów użytych w ćwczenu 8 oraz stwórz model normalnych meszann dla każdego. a) Zastosuj fltr RemoveWthValues, aby otrzymać zbór rekordów z każdej klasy następne użyj średnej oraz odchylena standardowego pokazanego przez system WEKA. b) Dla każdego atrybutu stwórz wykres funkcj gęstośc prawdopodobeństwa wewnątrz każdej klasy. Można to zrobć na przykład za pomocą programu Mcrosoft Excel. c) Badając krzywe gęstośc, określ, który atrybut jest bardzej stotny dla zadana klasyfkacj. 11

D Archiwum Prac Dyplomowych - Instrukcja dla studentów

D Archiwum Prac Dyplomowych - Instrukcja dla studentów Kraków 01.10.2015 D Archwum Prac Dyplomowych - Instrukcja dla studentów Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu Rolnczego m. H. Kołłątaja

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model Jadwga LAL-JADZIAK Unwersytet Zelonogórsk Instytut etrolog Elektrycznej Elżbeta KAWECKA Unwersytet Zelonogórsk Instytut Informatyk Elektronk Ocena dokładnośc estymacj funkcj korelacyjnych z użycem modelu

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Zmodyfikowana technika programowania dynamicznego

Zmodyfikowana technika programowania dynamicznego Zmodyfkowana technka programowana dynamcznego Lech Madeysk 1, Zygmunt Mazur 2 Poltechnka Wrocławska, Wydzał Informatyk Zarządzana, Wydzałowy Zakład Informatyk Wybrzeże Wyspańskego 27, 50-370 Wrocław Streszczene.

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

Statyczna alokacja kanałów (FCA)

Statyczna alokacja kanałów (FCA) Przydzał kanałów 1 Zarys wykładu Wprowadzene Alokacja statyczna a alokacja dynamczna Statyczne metody alokacj kanałów Dynamczne metody alokacj kanałów Inne metody alokacj kanałów Alokacja w strukturach

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.

Bardziej szczegółowo

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Alcja Wolny-Domnak Unwersytet Ekonomczny w Katowcach MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Wprowadzene

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

Ćwiczenie 12. Metody eksploracji danych

Ćwiczenie 12. Metody eksploracji danych Ćwiczenie 12. Metody eksploracji danych Modelowanie regresji (Regression modeling) 1. Zadanie regresji Modelowanie regresji jest metodą szacowania wartości ciągłej zmiennej celu. Do najczęściej stosowanych

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

Bonus! Odpowiedzi do zadań na FTP. Pewnie wkrocz w świat baz danych z programem Access 2010!

Bonus! Odpowiedzi do zadań na FTP. Pewnie wkrocz w świat baz danych z programem Access 2010! Pewne wkrocz w śwat baz danych z programem Access 2010! Poznaj zasady rządzące systemam baz danych Naucz sę nstalować program Access korzystać z jego możlwośc Dowedz sę, jak defnować modyfkować strukturę

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych NAFTA-GAZ styczeń 2011 ROK LXVII Anna Rembesa-Śmszek Instytut Nafty Gazu, Kraków Andrzej Wyczesany Poltechnka Krakowska, Kraków Zastosowane symulatora ChemCad do modelowana złożonych układów reakcyjnych

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

TECH 3341 POMIARY GŁOŚNOŚCI: POMIAR W TRYBIE EBU UZUPEŁNIAJĄCY NORMALIZACJĘ GŁOŚNOŚCI ZGODNIE Z EBU R 128 INFORMACJE DODATKOWE DLA ZALECENIA R 128

TECH 3341 POMIARY GŁOŚNOŚCI: POMIAR W TRYBIE EBU UZUPEŁNIAJĄCY NORMALIZACJĘ GŁOŚNOŚCI ZGODNIE Z EBU R 128 INFORMACJE DODATKOWE DLA ZALECENIA R 128 TECH 3341 POMIARY GŁOŚNOŚCI: POMIAR W TRYBIE EBU UZUPEŁNIAJĄCY NORMALIZACJĘ GŁOŚNOŚCI ZGODNIE Z EBU R 128 INFORMACJE DODATKOWE DLA ZALECENIA R 128 THIS INFORMAL TRANSLATION OF TECH 3341 INTO POLISH HAS

Bardziej szczegółowo

Regulamin promocji zimowa piętnastka

Regulamin promocji zimowa piętnastka zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Tworzenie stron WWW. Kurs. Wydanie III

Tworzenie stron WWW. Kurs. Wydanie III Idź do Sps treśc Przykładowy rozdzał Katalog ksążek Katalog onlne Zamów drukowany katalog Twój koszyk Dodaj do koszyka Cennk nformacje Zamów nformacje o nowoścach Zamów cennk Czytelna Fragmenty ksążek

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

Pewnie wkrocz w świat baz danych z programem Access 2010! Bonus! Odpowiedzi do zadań na FTP

Pewnie wkrocz w świat baz danych z programem Access 2010! Bonus! Odpowiedzi do zadań na FTP Pewne wkrocz w śwat baz danych z programem Access 2010! Poznaj zasady rządzące systemam baz danych Naucz sę nstalować program Access korzystać z jego możlwośc Dowedz sę, jak defnować modyfkować strukturę

Bardziej szczegółowo

4.1. Komputer i grafika komputerowa

4.1. Komputer i grafika komputerowa 4. 4.1. Komputer grafka komputerowa Ucz 2 3 4 5 6 komputera; zestawu komputerowego; w podstawowym zakrese; zastosowana komputera, acy defnuje komputer jako zestaw omawa zastosowane komputera nauk gospodark;

Bardziej szczegółowo

Andrzej Borowiecki. Open Office. Calc arkusz kalkulacyjny. Przykłady zadań dla geodetów

Andrzej Borowiecki. Open Office. Calc arkusz kalkulacyjny. Przykłady zadań dla geodetów Andrzej Boroweck Open Offce Calc arkusz kalkulacyjny Przykłady zadań dla geodetów Kraków 2004 . Podstawowe nformacje. Wstęp OpenOffce.0 jest funkcjonalne równowaŝny paketow StarOffce 6.0, obejmując najwaŝnejsze

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

ZESTAW ZADAŃ Z INFORMATYKI

ZESTAW ZADAŃ Z INFORMATYKI (Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Sera: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 1905 Adranna MASTALERZ-KODZIS Unwersytet Ekonomczny w Katowcach OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Elektroniczna Platforma Nadzoru. Repozytorium Dokumentów. Podręcznik użytkownika

Elektroniczna Platforma Nadzoru. Repozytorium Dokumentów. Podręcznik użytkownika Elektronczna Platforma Nadzoru Repozytorum Dokumentów Podręcznk użytkownka SPIS TREŚCI Sps treśc 1 Legenda 3 2 Archwum Plków 4 2.1 Zabezpeczene Archwum Plków............................. 5 2.2 Struktura

Bardziej szczegółowo

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO 3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.

Bardziej szczegółowo

Instrukcja instalacji systemu. Moduzone Z11 Moduzone Z20 B Moduzone Z30

Instrukcja instalacji systemu. Moduzone Z11 Moduzone Z20 B Moduzone Z30 Instrukcja nstalacj systemu Moduzone Z11 Moduzone Z20 B Moduzone Z30 SPIS TREŚCI INTRUKCJA 1 Instrukcja... 2 1.1 Uwag dotyczące dokumentacj...2 1.2 Dołączone dokumenty...2 1.3 Objaśnene symbol...2 1.4

Bardziej szczegółowo

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej:

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej: dr Bartłomej Rokck Ćwczena z Makroekonom I Model ISLM Podstawowe założena modelu: penądz odgrywa ważną rolę przy determnowanu pozomu dochodu zatrudnena nwestycje ne mają charakteru autonomcznego, a ch

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

TOWARZYSTWO GOSPODARCZE POLSKIE ELEKTROWNIW

TOWARZYSTWO GOSPODARCZE POLSKIE ELEKTROWNIW TOWARZYSTWO GOSPODARCZE POLSKIE ELEKTROWNIW Odpowedź na uwag Komsj Europejskej do wnosku o przydzał bezpłatnych uprawneń do emsj gazów ceplarnanych na lata 2013-2020 na modernzację wytwarzana energ elektrycznej

Bardziej szczegółowo

Zobacz jak sam możesz stworzyć skuteczny e-mailing krok po kroku

Zobacz jak sam możesz stworzyć skuteczny e-mailing krok po kroku Stwórz skuteczny e-malng krok po kroku Zobacz jak sam możesz stworzyć skuteczny e-malng krok po kroku JAK ZAROBIĆ NA E-MAIL MARKETINGU I WZMOCNIĆ RELACJE Z ODBIORCAMI? E-MAILING W BRANŻY EDUKACYJNEJ Branża

Bardziej szczegółowo

Problem plecakowy (KNAPSACK PROBLEM).

Problem plecakowy (KNAPSACK PROBLEM). Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA. im. Jarosława Dąbrowskiego ROZPRAWA DOKTORSKA RAFAŁ SZYMANOWSKI

WOJSKOWA AKADEMIA TECHNICZNA. im. Jarosława Dąbrowskiego ROZPRAWA DOKTORSKA RAFAŁ SZYMANOWSKI WOJSKOWA AKADEMIA TECHICZA m. Jarosława Dąbrowskego ROZPRAWA DOKTORSKA RAFAŁ SZYMAOWSKI PRECYZYJE LICZIKI CZASU CMOS FPGA Z DWUSTOPIOWĄ ITERPOLACJĄ Promotor prof. dr hab. nż. Józef KALISZ WARSZAWA 003

Bardziej szczegółowo

Przewodnik użytkownika

Przewodnik użytkownika Przewodnk użytkownka Aplkacja Mertum Bank Moblny Przejdź do mertum 2 moblny.mertumbank.pl Aktualzacja: grudzeń 2013 Szanowny Klence, Dzękujemy za zanteresowane naszą aplkacją. Aplkacja moblna Mertum Banku

Bardziej szczegółowo

OKREŚLENIE CZASU MIESZANIA WIELOSKŁADNIKOWEGO UKŁADU ZIARNISTEGO PODCZAS MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW

OKREŚLENIE CZASU MIESZANIA WIELOSKŁADNIKOWEGO UKŁADU ZIARNISTEGO PODCZAS MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW Inżynera Rolncza 8(96)/2007 OKREŚLENIE CZASU MIESZANIA WIELOSKŁADNIKOWEGO UKŁADU ZIARNISTEGO PODCZAS MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW Jolanta Królczyk, Marek Tukendorf Katedra Technk Rolnczej Leśnej,

Bardziej szczegółowo

Ć w i c z e n i e 3 : W i z u a l i z a c j a d a n y c h - w y k r e s y S t r o n a 1

Ć w i c z e n i e 3 : W i z u a l i z a c j a d a n y c h - w y k r e s y S t r o n a 1 Ć w i c z e n i e 3 : W i z u a l i z a c j a d a n y c h - w y k r e s y S t r o n a 1 Zadanie 1. Tworzenie wykresów zmiennych jakościowych wyrażonych w skali nominalnej i porządkowej. Utworzyć wykres

Bardziej szczegółowo

Szymon Chojnacki MODELOWANIE KONIUNKTURY GOSPODARCZEJ Z WYKORZYSTANIEM DANYCH TEKSTOWYCH

Szymon Chojnacki MODELOWANIE KONIUNKTURY GOSPODARCZEJ Z WYKORZYSTANIEM DANYCH TEKSTOWYCH MODELOWANIE KONIUNKTURY GOSPODARCZEJ Z WYKORZYSTANIEM DANYCH TEKSTOWYCH Szymon Chojnack Zakład Wspomagana Analzy Decyzj, Szkoła Główna Handlowa, Warszawa 1 WPROWADZENIE Gospodarka krajów rozwnętych podlega

Bardziej szczegółowo

CLUSTERING. Metody grupowania danych

CLUSTERING. Metody grupowania danych CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means

Bardziej szczegółowo

PRZETWARZANIE AGENTOWE

PRZETWARZANIE AGENTOWE POLITECHNIKA ŚLĄSKA INSTYTUT INFORMATYKI LABORATORIUM HURTOWNI DANYCH PRZETWARZANIE AGENTOWE TEORIA Marcn Gorawsk Sławomr Bańkowsk Glwce 2005 Laboratorum HDSED - Przetwarzane Agentowe 2 SPIS TREŚCI 1 Wstęp

Bardziej szczegółowo

Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2

Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2 T A R C Z A Z E G A R O W A ASTYGMATYZM 1.Pojęca ogólne a) astygmatyzm prosty (najbardzej zgodny z pozomem) - najbardzej płask połudnk tzn. o najmnejszej mocy jest pozomy b) astygmatyzm odwrotny (najbardzej

Bardziej szczegółowo

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Mara Konopka Katedra Ekonomk Organzacj Przedsęborstw Szkoła Główna Gospodarstwa Wejskego w Warszawe Analza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Wstęp Polska prywatyzacja

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

Zadanie na wykonanie Projektu Zespołowego

Zadanie na wykonanie Projektu Zespołowego Zadane na wykonane Projektu Zespołowego Celem projektu jest uzyskane następującego szeregu umejętnośc praktycznych: umejętnośc opracowana równoległych wersj algorytmów (na przykładze algorytmów algebry

Bardziej szczegółowo

Wykład IX Optymalizacja i minimalizacja funkcji

Wykład IX Optymalizacja i minimalizacja funkcji Wykład IX Optymalzacja mnmalzacja funkcj Postawene zadana podstawowe dee jego rozwązana Proste metody mnmalzacj Metody teracj z wykorzystanem perwszej pochodnej Metody teracj z wykorzystanem drugej pochodnej

Bardziej szczegółowo

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ Jan JANKOWSKI *), Maran BOGDANIUK *),**) SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ W referace przedstawono równana ruchu statku w warunkach falowana morza oraz

Bardziej szczegółowo

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji.

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji. Zakład Systemów Zaslana (Z-5) Opracowane nr 323/Z5 z pracy statutowej pt. Opracowane metody predykcj czasu życa bater na obekce oceny jej aktualnego stanu na podstawe analzy beżących parametrów jej eksploatacj.

Bardziej szczegółowo

Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak

Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak Ocena jakoścowo-cenowych strateg konkurowana w polskm handlu produktam rolno-spożywczym dr Iwona Szczepanak Ekonomczne, społeczne nstytucjonalne czynnk wzrostu w sektorze rolno-spożywczym w Europe Cechocnek,

Bardziej szczegółowo

ANALIZA WYBRANYCH METOD OCENY SYSTEMÓW BONUS-MALUS

ANALIZA WYBRANYCH METOD OCENY SYSTEMÓW BONUS-MALUS Anna Jędrzychowska Unwersytet Ekonomczny we Wrocławu Wydzał Zarządzana, Informatyk Fnansów Katedra Ubezpeczeń anna.jedrzychowska@ue.wroc.pl Ewa Poprawska Unwersytet Ekonomczny we Wrocławu Wydzał Zarządzana,

Bardziej szczegółowo

Metody predykcji analiza regresji

Metody predykcji analiza regresji Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..

Bardziej szczegółowo

KRÓTKIE WPROWADZENIE DO WIZUALIZACJI I ANALIZY FUNKCJONALNEJ DANYCH EKONOMICZNYCH

KRÓTKIE WPROWADZENIE DO WIZUALIZACJI I ANALIZY FUNKCJONALNEJ DANYCH EKONOMICZNYCH KRÓTKIE WPROWADZENIE DO WIZUALIZACJI I ANALIZY FUNKCJONALNEJ DANYCH EKONOMICZNYCH Danel Kosorowsk Katedra Statystyk, UEK w Krakowe Posedzene Rady Wydzału Zarządzana Kraków, 23.05.2013 PLAN REFERATU 1.

Bardziej szczegółowo

nauczyciel Media społecznościowe i praca w chmurze oraz przygotowanie na ich potrzeby materiałów graficznych i zdjęciowych Artur Kurkiewicz

nauczyciel Media społecznościowe i praca w chmurze oraz przygotowanie na ich potrzeby materiałów graficznych i zdjęciowych Artur Kurkiewicz 2 S Ł O W O - G R A F I K A - F I L M Meda społecznoścowe praca w chmurze oraz przygotowane na ch potrzeby materałów grafcznych zdjęcowych Artur Kurkewcz część druga - grafka WPROWADZENIE C Cyan M Magenta

Bardziej szczegółowo

WYBRANE METODY TWORZENIA STRATEGII ZRÓWNOWAŻONEGO TRANSPORTU MIEJSKIEGO SELECTED METHODS FOR DEVELOPING SUSTAINABLE URBAN TRANS- PORT STRATEGIES

WYBRANE METODY TWORZENIA STRATEGII ZRÓWNOWAŻONEGO TRANSPORTU MIEJSKIEGO SELECTED METHODS FOR DEVELOPING SUSTAINABLE URBAN TRANS- PORT STRATEGIES Zbgnew SKROBACKI WYBRANE METODY TWORZENIA STRATEGII ZRÓWNOWAŻONEGO TRANSPORTU MIEJSKIEGO SELECTED METHODS FOR DEVELOPING SUSTAINABLE URBAN TRANS- PORT STRATEGIES W artykule przedstawone systemowe podejśce

Bardziej szczegółowo

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej...

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej... 1 Metody optymalzacj welokryteralnej.... 1 1.1 Ogólna charakterystyka problemu.... 1 1.2 Tradycyjne metody optymalzacj welokryteralnej.... 3 1.2.1 Metoda ważonych kryterów.... 3 1.2.2 Metoda optymalzacj

Bardziej szczegółowo

SPIS TREŚCI 1. WSTĘP... 4

SPIS TREŚCI 1. WSTĘP... 4 SPIS TREŚCI. WSTĘP... 4.. WAśNOŚĆ PROBLEMATYKI BĘDĄCEJ PRZEDMIOTEM PRACY....4.. CELE PRACY....4.3. ZAKRES PRACY...4.4. WYKORZYSTANE ŹRÓDŁA....5. OBLICZENIA DYNAMICZNE KONSTRUKCJI BUDOWLANYCH... 6.. MACIERZOWE

Bardziej szczegółowo

RENTA RODZINNA. Po kim może być przyznana renta rodzinna?

RENTA RODZINNA. Po kim może być przyznana renta rodzinna? RENTA RODZINNA Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Warunk nabywana prawa do renty rodznnej oraz jej wysokość określa ustawa z dna 17 grudna 1998 r. o emeryturach rentach z Funduszu Ubezpeczeń

Bardziej szczegółowo

ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU

ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU Studa Ekonomczne ZESZYTY NAUKOWE WYDZIAŁOWE UNIWERSYTETU EKONOMICZNEGO W KATOWICACH ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU

Bardziej szczegółowo

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak Ćwczena z Makroekonom II Model IS-LM- Model IS-LM- jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak gospodarka taka zachowuje sę w krótkm okrese, w efekce dzałań podejmowanych w ramach

Bardziej szczegółowo

Dotyczy: opinii PKPP lewiatan do projektow dwoch rozporzqdzen z 27 marca 2012 (pismo P-PAA/137/622/2012)

Dotyczy: opinii PKPP lewiatan do projektow dwoch rozporzqdzen z 27 marca 2012 (pismo P-PAA/137/622/2012) 30/04! 2012 PON 13: 30! t FAX 22 55 99 910 PKPP Lewatan _..~._. _., _. _ :. _._..... _.. ~._..:.l._.... _. '. _-'-'-'"." -.-.---.. ----.---.-.~.....----------.. LEWATAN Pol~ka KonfederacJa Pracodawcow

Bardziej szczegółowo

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów.

Bardziej szczegółowo

Przewodnik użytkownika

Przewodnik użytkownika Przewodnk użytkownka Aplkacja Mertum Bank Moblny Przejdź do mertum 2 mertumbank.pl/moblny Aktualzacja: lpec 2015 Szanowny Klence, Dzękujemy za zanteresowane naszą aplkacją. Aplkacja moblna Mertum Banku

Bardziej szczegółowo

Klasyczne miary efektywności systemu bonus-malus

Klasyczne miary efektywności systemu bonus-malus Klasyczne mary efektywnośc systemu bonus-malus Anna Jędrzychowska Ewa Poprawska Klasyczne mary efektywnośc systemu bonus-malus Głównym celem wprowadzena systemu bonus-malus w ubezpeczenach komunkacyjnych

Bardziej szczegółowo

Rozdział 1 PRZYGOTOWANIA

Rozdział 1 PRZYGOTOWANIA Rozdzał 1 PRZYGOTOWANIA Układane programu obserwacyjnego Celem tego podręcznka jest doradzene, jak wykonywać obserwacje gwazd zmennych jak dostarczać je w celu włączena do Mędzynarodowej Bazy Danych AAVSO.

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

PORADNIK KANDYDATA. Wkrótce w nauka w szkole w jaki sposób je. zasadniczych szkole

PORADNIK KANDYDATA. Wkrótce w nauka w szkole w jaki sposób je. zasadniczych szkole Drog Gmnazjalsto, Wkrótce w nauka w szkole w jak sposób je jedno z z w pracodawców. zasadnczych szkole racjonalnego wyboru przestrz W prowadzona przy pomocy systemu elektroncznego. Rekrutacja wspomagana

Bardziej szczegółowo

OKRESOWA EMERYTURA KAPITAŁOWA ZE ŚRODKÓW ZGROMADZONYCH W OFE

OKRESOWA EMERYTURA KAPITAŁOWA ZE ŚRODKÓW ZGROMADZONYCH W OFE OKRESOWA EMERYTURA KAPITAŁOWA ZE ŚRODKÓW ZGROMADZONYCH W OFE Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Warunk nabywana prawa do okresowej emerytury kaptałowej ze środków zgromadzonych w otwartym

Bardziej szczegółowo

o Puchar Pytii - Wybory Prezydenckie 2015

o Puchar Pytii - Wybory Prezydenckie 2015 Centrum Ba. d ań I oścowych nad Po tyką Unhversytetu Jage o ń s k e go Protokół obrad Kaptuły Konkursu o Puchar Pyt - Wybory Prezydencke 2015 Na posedzenu w dnu 2 czerwca 2015 roku na Wydzae Matematyk

Bardziej szczegółowo

Zastosowanie algorytmów genetycznych do optymalizacji modelu SVM procesu stalowniczego

Zastosowanie algorytmów genetycznych do optymalizacji modelu SVM procesu stalowniczego POLITECHIKA ŚLĄSKA Wydzał Inżyner Materałowej Metalurg Zakład Informatyk w Procesach Technologcznych Katedra Elektrotechnolog Kerunek: Zarządzane Inżynera Produkcj Specjalzacja: Informatyka w Zarządzanu

Bardziej szczegółowo

Wpływ płynności obrotu na kształtowanie się stopy zwrotu z akcji notowanych na Giełdzie Papierów Wartościowych w Warszawie

Wpływ płynności obrotu na kształtowanie się stopy zwrotu z akcji notowanych na Giełdzie Papierów Wartościowych w Warszawie Agata Gnadkowska * Wpływ płynnośc obrotu na kształtowane sę stopy zwrotu z akcj notowanych na Gełdze Paperów Wartoścowych w Warszawe Wstęp Płynność aktywów na rynku kaptałowym rozumana jest przez nwestorów

Bardziej szczegółowo

Scenariusz zajęć do programu kształcenia Myślę- działam- idę w świat DZIEŃ I

Scenariusz zajęć do programu kształcenia Myślę- działam- idę w świat DZIEŃ I Scenarusz zajęć do programu kształcena Myślę- dzałam- dę w śwat Autor: Anna Dzadkewcz Klasa I Edukacja: polonstyczna, matematyczna, plastyczna, przyrodncza, muzyczna, wychowane fzyczne Cel/cele zajęć:

Bardziej szczegółowo

Ryszard Kutyłowski. Optymalizacja topologii kontinuum materialnego

Ryszard Kutyłowski. Optymalizacja topologii kontinuum materialnego Ryszard Kutyłowsk Optymalzacja topolog kontnuum materalnego Ofcyna Wydawncza Poltechnk Wrocławskej Wrocław 2004 Recenzje Leszek MIKULSKI Paweł ŚNIADY Opracowane redakcyjne korekta Mara IZBICKA Copyrght

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

MINISTER EDUKACJI NARODOWEJ

MINISTER EDUKACJI NARODOWEJ 4 MINISTER EDUKACJI NARODOWEJ DWST WPZN 423189/BSZI13 Warszawa, 2013 -Q-4 Pan Marek Mchalak Rzecznk Praw Dzecka Szanowny Pane, w odpowedz na Pana wystąpene z dna 28 czerwca 2013 r. (znak: ZEW/500127-1/2013/MP),

Bardziej szczegółowo

Dywersyfikacja portfela poprzez inwestycje alternatywne. Prowadzący: Jerzy Nikorowski, Superfund TFI.

Dywersyfikacja portfela poprzez inwestycje alternatywne. Prowadzący: Jerzy Nikorowski, Superfund TFI. Dywersyfkacja ortfela orzez nwestycje alternatywne. Prowadzący: Jerzy Nkorowsk, Suerfund TFI. Część I. 1) Czym jest dywersyfkacja Jest to technka zarządzana ryzykem nwestycyjnym, która zakłada osadane

Bardziej szczegółowo

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA

Bardziej szczegółowo

Krzysztof Borowski Zastosowanie metody wideł cenowych w analizie technicznej

Krzysztof Borowski Zastosowanie metody wideł cenowych w analizie technicznej Krzysztof Borowsk Zastosowane metody wdeł cenowych w analze technczne Wprowadzene Metoda wdeł cenowych została perwszy raz ogłoszona przez Alana Andrewsa 1 w roku 1960. Trzy lne wchodzące w skład metody

Bardziej szczegółowo

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO WSKAŹNIK OCENY SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO Dagmara KARBOWNICZEK 1, Kazmerz LEJDA, Ruch cała człoweka w samochodze podczas wypadku drogowego zależy od sztywnośc nadwoza

Bardziej szczegółowo

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego.

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego. Laboratorum z Podstaw Konstrukcj Maszyn - 1 - Ćw. 1. Wyznaczane wartośc średnego statycznego współczynnka tarca sprawnośc mechanzmu śrubowego. 1. Podstawowe wadomośc pojęca. Połączene śrubowe jest to połączene

Bardziej szczegółowo

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki Metody Planowana Eksperymentów Rozdzał 1. Strona 1 z 14 METODY PLANOWANIA EKSPERYMENTÓW dr hab. nż. Marusz B. Bogack Marusz.Bogack@put.poznan.pl www.fct.put.poznan.pl/cv23.htm Marusz B. Bogack 1 Metody

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych

Zakład Ubezpieczeń Społecznych Zakład Ubezpeczeń Społecznych EMERYTURY I RENTY Z ZUS USTALANE NA PODSTAWIE UMOWY O ZABEZPIECZENIU SPOŁECZNYM MIĘDZY POLSKĄ A UKRAINĄ Do kogo skerowana jest ta ulotka? Ulotka adresowana jest do osób, które:

Bardziej szczegółowo

ANALIZA PRZESTRZENNA PROCESU STARZENIA SIĘ POLSKIEGO SPOŁECZEŃSTWA

ANALIZA PRZESTRZENNA PROCESU STARZENIA SIĘ POLSKIEGO SPOŁECZEŃSTWA TUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Katarzyna Zeug-Żebro * Unwersytet Ekonomczny w Katowcach ANALIZA PRZETRZENNA PROCEU TARZENIA IĘ POLKIEGO POŁECZEŃTWA TREZCZENIE Perwsze prawo

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych

Zakład Ubezpieczeń Społecznych Zakład Ubezpeczeń Społecznych EMERYTURY I RENTY Z ZUS USTALANE NA PODSTAWIE UMOWY O ZABEZPIECZENIU SPOŁECZNYM MIĘDZY POLSKĄ A STANAMI ZJEDNOCZONYMI AMERYKI Do kogo skerowana jest ulotka? Nnejsza ulotka

Bardziej szczegółowo

MODELE COPULA M-GARCH O ROZKŁADACH NIEZMIENNICZYCH NA TRANSFORMACJE ORTOGONALNE

MODELE COPULA M-GARCH O ROZKŁADACH NIEZMIENNICZYCH NA TRANSFORMACJE ORTOGONALNE Mateusz Ppeń Unwersytet Ekonomczny w Krakowe MODELE COPULA M-GARCH O ROZKŁADACH NIEZMIENNICZYCH NA TRANSFORMACJE ORTOGONALNE Wprowadzene W analzach emprycznych przeprowadzonych z wykorzystanem welorównanowych

Bardziej szczegółowo

WSPOMAGANIE KOOPERACJI Z WYKORZYSTANIEM TEORII GIER I ANALIZY WIELOKRYTERIALNEJ

WSPOMAGANIE KOOPERACJI Z WYKORZYSTANIEM TEORII GIER I ANALIZY WIELOKRYTERIALNEJ Macej Wolny WPOMAGANIE KOOPERACJI Z WYKORZYTANIEM TEORII GIER I ANALIZY WIELOKRYTERIALNEJ Wprowadzene Kooperacja mędzy organzacjam ma stotne znaczene w życu gospodarczym. Podmoty gospodarcze lub ch poszczególne

Bardziej szczegółowo

USTAWA z dnia 20 lipca 2001 r. o kredycie konsumenckim

USTAWA z dnia 20 lipca 2001 r. o kredycie konsumenckim Kancelara Sejmu s. 1/18 USTAWA z dna 20 lpca 2001 r. o kredyce konsumenckm Opracowano na podstawe: Dz.U. z 2001 r. Nr 100, poz. 1081, z 2003 r. Nr 109, poz. 1030. Art. 1. Ustawa reguluje zasady tryb zawerana

Bardziej szczegółowo

ESTYMACJA MIARY MARTYNGAŁOWEJ NA PODSTAWIE CEN OPCJI Z GIEŁDY PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE

ESTYMACJA MIARY MARTYNGAŁOWEJ NA PODSTAWIE CEN OPCJI Z GIEŁDY PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XV/4, 04, str. 37 5 ESTYMACJA MIARY MARTYNGAŁOWEJ NA PODSTAWIE CEN OPCJI Z GIEŁDY PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE Paweł Klber Katedra Ekonom Matematycznej,

Bardziej szczegółowo

Wyznaczanie długości fali światła metodą pierścieni Newtona

Wyznaczanie długości fali światła metodą pierścieni Newtona 013 Katedra Fzyk SGGW Ćwczene 368 Nazwsko... Data... Nr na lśce... Imę... Wydzał... Dzeń tyg.... Ćwczene 368: Godzna.... Wyznaczane długośc fal śwatła metodą perścen Newtona Cechowane podzałk okularu pomarowego

Bardziej szczegółowo

ZESZYTY NAUKOWE NR x(xx) AKADEMII MORSKIEJ W SZCZECINIE. Metody wymiarowania obszaru manewrowego statku oparte na badaniach rzeczywistych

ZESZYTY NAUKOWE NR x(xx) AKADEMII MORSKIEJ W SZCZECINIE. Metody wymiarowania obszaru manewrowego statku oparte na badaniach rzeczywistych ISSN 009-069 ZESZYTY NUKOWE NR () KDEMII MORSKIEJ W SZCZECINIE IV MIĘDZYNRODOW KONFERENCJ NUKOWO-TECHNICZN E X P L O - S H I P 0 0 6 Paweł Zalewsk, Jakub Montewka Metody wymarowana obszaru manewrowego

Bardziej szczegółowo