Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych"

Transkrypt

1 Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra semestr letn 2006/07

2 Podstawowe fakty Równane Ax = b, x, b R N, A R N N (1) ma jednoznaczne rozwazane gdy det A 0. W praktyce numerycznej ngdy ne rozwazuje sę układu (1) metoda wyznacznkowa, bo jest ona nesłychane kosztowna. Koszt numeryczny metod dokładnych (znaczne) mnej dla macerzy rzadkch. O(N 3 ) dla macerzy pełnych, Należy unkać jawnego oblczana odwrotnośc A 1, tym bardzej, że jest to koneczność egzotyczna. Dlatego zawsze zaps typu x = A 1 b rozumeć będzemy w ten sposób, że x spełna równane (1). 1. Układy równań lnowych 2

3 Metody dokładne Elmnacja Gaussa, koneczne z wyborem elementu podstawowego ( pvotngem ), częścowym lub pełnym. Rozkład LU: A = LU, gdze L jest trójkatna dolna, U trójkatna górna, koneczne z częścowym wyborem elementu podstawowego (algorytm Crouta) zalecana metoda dla newelkch macerzy dobrze uwarunkowanych, bez jakchś szczególnych symetr. Koszt numeryczny rozkładu LU wynos O(N 3 ). Jeśl mamy rozkład LU A = LU, równane (1) rozwazujemy jako Uy = b (2a) Lx = y (2b) Równane (2a) rozwazujemy zaczynajac od ostatnego wersza dac do góry (backsubsttuton), równane (2b) rozwazujemy zaczynajac od perwszego wersza dac w dół (forward substtuton) w ten sposób za każdym razem rozwazujemy równane z jedna newadoma. 1. Układy równań lnowych 3

4 Rozkład Cholesky ego Jeżel macerz A jest symetryczna dodatno określona, zamast rozkładu LU można ( należy) używać rozkładu Cholesky ego: A = LL T, gdze L jest trójkatna dolna. Koszt rozkładu Cholesky ego jest mnej węcej o połowę mnejszy od kosztu rozkładu LU. Wersja Gaxpy: for j = 1 : n f j > 1 A(j : n, j) = A(j : n, j) A(j : n, 1 : j 1)A(j, 1 : j 1) T end end A(j : n, j) = A(j : n, j)/ A(j, j) 1. Układy równań lnowych 4

5 Wersja Outer product: for k = 1 : n end A(k, k) A(k, k) = A(k + 1 : n, k) = A(k + 1 : n, k)/a(k, k) for j = k + 1 : n A(j : n, j) = A(j : n, j) A(j : n, k)a(j, k) end Uwag: Przy rozkładze można nadpsywać macerz Ne da sę robć pvotngu Jeśl A pasmowa, także L jest pasmowa, o takej samej szerokośc pasma Jeśl wewnatrz pasma występuja dzury w A, w L moga one być wypełnone. 1. Układy równań lnowych 5

6 Norma macerzy Nech oznacza normę w przestrzen R N : Defncja: Nech A R N N będze operatorem lnowym nad przestrzena R N. Welkość A = sup x =0 Ax x (3a) nazywam norma macerzy A ndukowana przez normę wektorów. 1. Układy równań lnowych 6

7 Po prawej strone powyższego wyrażena występuje norma wektorów; to tłumaczy zastosowane przymotnka ndukowana. Obserwacja. Wdać, ż A = sup Ax. x =1 (3b) Twerdzene 1. Norma ndukowana jest norma w przestrzen operatorów lnowych nad R N. 1. Układy równań lnowych 7

8 Współczynnk uwarunkowana Rozważmy równane (1). Z własnośc normy (3) wdać, że Ax A x. (4a) Z drugej strony, na mocy (1), jeśl det A 0, x = A 1 b A 1 b, (4b) a zatem Ax A A 1 b. (4c) Wdać, że jeżel welkość A A 1 jest duża, małe zmany b moga numeryczne (w arytmetyce ze skończona dokładnośca) spowodować duże zmeny rozwazana. 1. Układy równań lnowych 8

9 Defncja. Nech A R N N det A 0. Welkość κ = A 1 A (5) nazywam współczynnkem uwarunkowana macerzy A. Jeżel det A = 0, przyjmuję κ =. Twerdzene 2. Nech A R N N będze macerza symetryczna, A = A T, nech lczby {λ } N =1 będ a jej wartoścam własnym. Jeżel det A 0, współczynnk uwarunkowana tej macerzy spełna κ = max λ mn λ. (6) 1. Układy równań lnowych 9

10 Dowód. W celu udowodnena tego twerdzena oblczmy normę macerzy A. Poneważ jest to macerz symetryczna rzeczywsta, jej wartośc własne sa rzeczywste, natomast jej unormowane wektory własne tworza bazę w R N. Oznaczmy przez y jej -ty wektor własny, Ay = λ y. Każdy wektor x R N, x = 1, można przedstawć jako kombnację lnowa x = N =1 α y, (7) przy czym warunek unormowana prowadz do następujace węzu na współczynnk tej kombnacj: N =1 α 2 = 1. (8) 1. Układy równań lnowych 10

11 Oblczmy teraz Ax 2 = N A =1 N =1 = max α y 2 = α λ y 2 = λ 2 N =1 N =1 N =1 α 2 = (max α Ay 2 α 2 λ2 N =1 = N =1 α 2 max α λ y λ 2 2 λ ) 2 (9) 1. Układy równań lnowych 11

12 Wdzmy zatem, ż x R N, x 2 = 1, zachodz Ax max λ, a zatem na mocy defncj (3) A = max λ. Poneważ det A 0, macerz A 1 stneje, jest symetryczna rzeczywsta, a jej wartoścam własnym sa lczby {1/λ } N =1. Zupełne analogczne dowodzmy, ( ) ż A 1 = max (1/ λ ) = 1/ mn λ, skad natychmast wynka teza (6). 1. Układy równań lnowych 12

13 Sngular Value Decomposton Twerdzene 3. Dla każdej macerzy A R M N, M N, stneje rozkład A = U [dag(w )] V T, (10) gdze U R M N jest macerza kolumnowo ortogonalna, V R N N jest macerza ortogonalna oraz w R, = 1,..., N. Rozkład ten nazywamy rozkładem względem wartośc osoblwych (Sngular Value Decomposton, SVD). Jeżel M = N, macerz U jest macerza ortogonalna. 1. Układy równań lnowych 13

14 Jadro zasęg operatora Nech A R M N. Jadrem operatora A nazywam Ker A = {x R N : Ax = 0}. (11) Zasęgem operatora A nazywam Range A = {y R M : x R N : Ax = y}. (12) Jadro zasęg operatora sa przestrzenam lnowym. Jeśl M = N <, dm (Ker A) + dm (Range A) = N. 1. Układy równań lnowych 14

15 Sens SVD Sens SVD najlepej wdać w przypadku, w którym co najmnej jedna z wartośc w = 0. Dla ustalena uwag przyjmjmy w 1 = 0, w 1 0. Po perwsze, co to jest z = [z 1, z 2,..., z n ] T = V T x? Poneważ V jest macerza ortogonalna, z jest rozkładem wektora x w baze kolumn macerzy V. Korzystajac z (10), dostajemy 0 Ax = U [dag(w )] V T x = U [dag(0, w 2,..., w N )] z = U w 2 z 2.. (13) w N z N Wynkem ostatnego mnożena będze pewen wektor z przestrzen R M. Poneważ perwszym elementem wektora [0, w 2 z 2,..., w N z N ] T jest zero, wynk ten ne zależy od perwszej kolumny macerzy U. Wdzmy zatem, że kolumny macerzy U, odpowadajace nezerowym współczynnkom w, stanowa bazę w zasęgu operatora A. Co by zaś sę stało, gdyby x był równoległy do wektora stanowacego perwsza kolumnę V? Wówczas z = 0, a wobec tego Ax = 0. Ostateczne węc wdzmy, że kolumny macerzy V, odpowadajace zerowym współczynnkom w, stanowa bazę w jadrze operatora A. 1. Układy równań lnowych 15

16 SVD odwrotność macerzy Nech A R N N. Zauważmy, że det A = N =1 w, a zatem det A = 0 wtedy tylko wtedy, gdy co najmnej jeden w = 0. Nech det A 0. Wówczas równane Ax = b ma rozwazane postac x = A 1 b = V [ dag(w 1 ) ] U T b. (14) Nech teraz det A = 0. Równane Ax = b także ma rozwazane, o le tylko b Range A. Rozwazane to dane jest wzorem gdze x = Ã 1 b = V [ dag( w 1 ) ] U T b. (15a) w 1 = { w 1 gdy w 0, 0 gdy w = 0. (15b) 1. Układy równań lnowych 16

17 SVD współczynnk uwarunkowana Twerdzene 4. Jeżel macerz A R N N posada rozkład (10) oraz det A 0, jej współczynnk uwarunkowana spełna κ = max w mn w. (16) Jeśl macerz jest źle uwarunkowana, ale formalne odwracalna, numeryczne rozwazane równana Ax = b może być zdomnowane przez wzmocnony bład zaokraglena. Aby tego unknać, często zamast (bezużytecznego!) rozwazana dokładnego (14), używa sę przyblżonego ( użytecznego!) rozwazana w postac (15) z następujac a modyfkacja w 1 = gdze τ jest pewna zadana tolerancja. { w 1 gdy w > τ, 0 gdy w τ, (17) 1. Układy równań lnowych 17

Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2007/08 Podstawowe fakty Równane Ax = b, x, b R N, A R N N (1) ma jednoznaczne

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

p Z(G). (G : Z({x i })),

p Z(G). (G : Z({x i })), 3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W

Bardziej szczegółowo

Programowanie Równoległe i Rozproszone

Programowanie Równoległe i Rozproszone Programowane Równoległe Rozproszone Wykład Programowane Równoległe Rozproszone Lucjan Stapp Wydzał Matematyk Nauk Informacyjnych Poltechnka Warszawska (l.stapp@mn.pw.edu.pl) /38 PRR Wykład Chcemy rozwązać

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia, Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Arytmetyka finansowa Wykład z dnia 30.04.2013

Arytmetyka finansowa Wykład z dnia 30.04.2013 Arytmetyka fnansowa Wykła z na 30042013 Wesław Krakowak W tym rozzale bęzemy baać wartość aktualną rent pewnych, W szczególnośc, wartość obecną renty, a równeż wartość końcową Do wartośc końcowej renty

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Zadanie na wykonanie Projektu Zespołowego

Zadanie na wykonanie Projektu Zespołowego Zadane na wykonane Projektu Zespołowego Celem projektu jest uzyskane następującego szeregu umejętnośc praktycznych: umejętnośc opracowana równoległych wersj algorytmów (na przykładze algorytmów algebry

Bardziej szczegółowo

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej. /22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych.

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych. Neural networks Lecture Notes n Pattern Recognton by W.Dzwnel Krótka hstora McCulloch Ptts (1943) - perwszy matematyczny ops dzalana neuronu przetwarzana przez nego danych. Proste neurony, które mogly

Bardziej szczegółowo

Wyznaczanie długości fali światła metodą pierścieni Newtona

Wyznaczanie długości fali światła metodą pierścieni Newtona 013 Katedra Fzyk SGGW Ćwczene 368 Nazwsko... Data... Nr na lśce... Imę... Wydzał... Dzeń tyg.... Ćwczene 368: Godzna.... Wyznaczane długośc fal śwatła metodą perścen Newtona Cechowane podzałk okularu pomarowego

Bardziej szczegółowo

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A = 04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja macierzy. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja macierzy. P. F. Góra Wstęp do metod numerycznych Faktoryzacja macierzy P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Uwagi o eliminacji Gaussa Przypuśćmy, że mamy rozwiazać kilka układów równań z ta sama lewa strona,

Bardziej szczegółowo

AERODYNAMICS I WYKŁAD 6 AERODYNAMIKA SKRZYDŁA O SKOŃCZONEJ ROZPIĘTOŚCI PODSTAWY TEORII LINII NOŚNEJ

AERODYNAMICS I WYKŁAD 6 AERODYNAMIKA SKRZYDŁA O SKOŃCZONEJ ROZPIĘTOŚCI PODSTAWY TEORII LINII NOŚNEJ WYKŁAD 6 AERODYNAMIKA SKRZYDŁA O SKOŃCZONEJ ROZPIĘTOŚCI PODSTAWY TEORII INII NOŚNEJ Prawo Bota-Savarta Pole prędkośc ndukowanej przez lnę (nć) wrową o cyrkulacj może być wyznaczone przy użycu formuły Bota-Savarta

Bardziej szczegółowo

Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne. P. F. Góra

Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne. P. F. Góra Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Zagadnienie własne Definicja: Niech A C N N. Liczbę λ C nazywam wartościa własna macierzy

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

0.1 Renty. 0.2 Wkłady oszczędnościowe Wkłady proste

0.1 Renty. 0.2 Wkłady oszczędnościowe Wkłady proste 0 Renty W kolejnych rozdzałach zajmemy sę cągam płatnośc dokonywanych w równych odstępach czasu, zwanym rentam annuty Rentę annuty defnujemy jako cąg płatnośc dokonywanych w równych odstępach czasu Przykładam

Bardziej szczegółowo

Wykład 15 Elektrostatyka

Wykład 15 Elektrostatyka Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE całki pojedyncze

CAŁKOWANIE NUMERYCZNE całki pojedyncze CAŁKOWANIE NUMERYCZNE całk pojedyncze Kwadratury nterpolacyjne Kwadratury nterpolacyjne Rozpatrujemy funkcję f() cągłą ogranczoną w przedzale domknętym [a, b]. Przedzał [a, b] dzelmy na skończoną lczbę

Bardziej szczegółowo

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH Poltechnka Gdańska Wydzał Inżyner Lądowej Środowska Katedra ydrotechnk mgr nż. Wojcech Artchowcz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁAC OTWARTYC PRACA DOKTORSKA Promotor: prof. dr

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

V. TERMODYNAMIKA KLASYCZNA

V. TERMODYNAMIKA KLASYCZNA 46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..

Bardziej szczegółowo

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

Wykłady Jacka Osiewalskiego. z Ekonometrii. CZĘŚĆ PIERWSZA: Modele Regresji. zebrane ku pouczeniu i przestrodze

Wykłady Jacka Osiewalskiego. z Ekonometrii. CZĘŚĆ PIERWSZA: Modele Regresji. zebrane ku pouczeniu i przestrodze Wykłady Jacka Osewalskego z Ekonometr zebrane ku pouczenu przestrodze UWAGA!! (lstopad 003) to jest wersja neautoryzowana, spsana przeze mne dawno temu od tego czasu ne przejrzana; ma status wersj roboczej,

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Przez n-wymiarowy wektor kolumnowy (rzeczywisty), będziemy rozumieć układ n liczb rzeczywistych x 1, x 2,..., x n ustawionych w kolumnę:

Przez n-wymiarowy wektor kolumnowy (rzeczywisty), będziemy rozumieć układ n liczb rzeczywistych x 1, x 2,..., x n ustawionych w kolumnę: 1.1 Wektory, przestrzeń wektorowa. Przez n-wymarowy wektor kolumnowy (rzeczywsty), będzemy rozumeć układ n lczb rzeczywstych x 1, x 2,..., x n ustawonych w kolumnę: x1 x2 x = M x n Lczby x nazywamy składowym

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Prawdopodobieństwo geometryczne

Prawdopodobieństwo geometryczne Prawdopodobeństwo geometryczne Przykład: Przestrzeń zdarzeń elementarnych określona jest przez zestaw punktów (x, y) na płaszczyźne wypełna wnętrze kwadratu [0 x ; 0 y ]. Znajdź p-stwo, że dowolny punkt

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Minister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha 25 00-918 Warszawa Dnia 03 czerwca 2009 r.

Minister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha 25 00-918 Warszawa Dnia 03 czerwca 2009 r. Mnster Edukacj arodowej Pan Katarzyna HALL Mnsterstwo Edukacj arodowej al. J. Ch. Szucha 25 00-918 arszawa Dna 03 czerwca 2009 r. TEMAT: Propozycja zmany art. 30a ustawy Karta auczycela w forme lstu otwartego

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

α i = n i /n β i = V i /V α i = β i γ i = m i /m

α i = n i /n β i = V i /V α i = β i γ i = m i /m Ćwczene nr 2 Stechometra reakcj zgazowana A. Część perwsza: powtórzene koncentracje stężena 1. Stężene Stężene jest stosunkem lośc substancj rozpuszczonej do całkowtej lośc rozpuszczalnka. Sposoby wyrażena

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

7. Wykład VII: Warunki Kuhna-Tuckera

7. Wykład VII: Warunki Kuhna-Tuckera Wocech Grega, Metody Optymalzac 7 Wykład VII: Warunk Kuhna-Tuckera 7 Warunk koneczne stnena ekstremum Rozważane est zadane z ogranczenam nerównoścowym w postac: mn F( x ) x X X o F( x ), o { R x : h n

Bardziej szczegółowo

Temat 13. Rozszerzalność cieplna i przewodnictwo cieplne ciał stałych.

Temat 13. Rozszerzalność cieplna i przewodnictwo cieplne ciał stałych. Temat 13. Rozszerzalność ceplna przewodnctwo ceplne cał stałych. W temace 8 wykazalśmy przy wykorzystanu warunków brzegowych orna-karmana, że wyraz lnowy w rozwnęcu energ potencjalnej w szereg potęgowy

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena

Bardziej szczegółowo

1 Przestrzenie statystyczne, statystyki

1 Przestrzenie statystyczne, statystyki M. Beśka, Statystyka matematyczna, wykład 1 1 1 Przestrzene statystyczne, statystyk 1.1 Rozkłady zmennych losowych Nech Ω, F, P ) będze ustaloną przestrzeną probablstyczną, a X : Ω IR zmenną losową na

Bardziej szczegółowo

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej:

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej: dr Bartłomej Rokck Ćwczena z Makroekonom I Model ISLM Podstawowe założena modelu: penądz odgrywa ważną rolę przy determnowanu pozomu dochodu zatrudnena nwestycje ne mają charakteru autonomcznego, a ch

Bardziej szczegółowo

Równania rekurencyjne na dziedzinach

Równania rekurencyjne na dziedzinach Marek Materzok Równana rekurencyjne na dzedznach Pommo, ż poczynłem starana, aby praca ta była możlwe kompletna wolna od błędów, ne mogę zagwarantować, że ne wkradły sę do nej żadne neścsłośc czy pomyłk.

Bardziej szczegółowo

Matematyka obliczeniowa, II rok Matematyki (2015/2016) Metody numeryczne, III rok Informatyki, (2013/2014)

Matematyka obliczeniowa, II rok Matematyki (2015/2016) Metody numeryczne, III rok Informatyki, (2013/2014) Matematyka oblczenowa, II rok Matematyk (2015/2016) Metody numeryczne, III rok Informatyk, (2013/2014) 1. Rozwązywane równań nelnowych 2. Arytmetyka zmennopozycyjna 3. Błędy w oblczenach. Uwarunkowane

Bardziej szczegółowo

IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6

IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6 IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6 WYBRANE ZAGADNIENIA Z TEORII LICZB 1. Wybrane zagadnena z teor lczb Do onstruowana systemów ryptografcznych u Ŝ ywa sę czę sto wyrafnowanego aparatu matematycznego,

Bardziej szczegółowo

aij - wygrana gracza I bij - wygrana gracza II

aij - wygrana gracza I bij - wygrana gracza II M.Mszczsk KBO UŁ, Badana operacjne I (cz.) (wkład B 7) GRY KONFLIKTOWE GRY -OSOBOWE O SUMIE WYPŁT ZERO I. DEFINICJE TWIERDZENI Konflktowe gr dwuosobowe opsuje macerz wpłat ( a ) [ ] mxn j,b j gdze: aj

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH. PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ

NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH. PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ PODZIAŁ DOKŁADNE ELIMINACYJNE DEKOMPOZYCYJNE ELIMINACJI GAUSSA JORDANA GAUSSA-DOOLITTLE a GAUSSA-CROUTA CHOLESKY EGO

Bardziej szczegółowo

KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO JAKOŚĆ MIERZONA WARTOŚCIĄ WSPÓŁCZYNNIKA R 2 (K)

KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO JAKOŚĆ MIERZONA WARTOŚCIĄ WSPÓŁCZYNNIKA R 2 (K) STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Mchał Kolupa Poltechnka Radomska w Radomu Joanna Plebanak Szkoła Główna Handlowa w Warszawe KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO

Bardziej szczegółowo

Wykład IX Optymalizacja i minimalizacja funkcji

Wykład IX Optymalizacja i minimalizacja funkcji Wykład IX Optymalzacja mnmalzacja funkcj Postawene zadana podstawowe dee jego rozwązana Proste metody mnmalzacj Metody teracj z wykorzystanem perwszej pochodnej Metody teracj z wykorzystanem drugej pochodnej

Bardziej szczegółowo

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

Metody numeryczne. Janusz Szwabiński. nm_slides-7.tex Metody numeryczne Janusz Szwabiński 11/11/ :45 p.

Metody numeryczne. Janusz Szwabiński. nm_slides-7.tex Metody numeryczne Janusz Szwabiński 11/11/ :45 p. Metody numeryczne Układy równań liniowych, część I Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-7.tex Metody numeryczne Janusz Szwabiński //2002 2:45 p./83 Układy równań liniowych, część I. Pojęcia

Bardziej szczegółowo

Tomasz Grębski. Liczby zespolone

Tomasz Grębski. Liczby zespolone Tomas Grębsk Lcby espolone Kraśnk 00 Sps Treśc: Lcby espolone Tomas Grębsk- Wstęp. Podstawowe wadomośc o lcbe espolonej.. Interpretacja geometrycna lcby espolonej... Moduł lcby espolonej. Lcby sprężone..

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.

Bardziej szczegółowo

Nieparametryczne Testy Istotności

Nieparametryczne Testy Istotności Neparametryczne Testy Istotnośc Wzory Neparametryczne testy stotnośc schemat postępowana punkt po punkce Formułujemy hpotezę główną odnoszącą sę do: zgodnośc populacj generalnej z jakmś rozkładem, lub:

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

Diagnostyka układów kombinacyjnych

Diagnostyka układów kombinacyjnych Dagnostyka układów kombnacyjnych 1. Wprowadzene Dagnostyka obejmuje: stwerdzene stanu układu, systemu lub ogólne sec logcznej. Jest to tzw. kontrola stanu wykrywająca czy dzałane sec ne jest zakłócane

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

Sieci Neuronowe 1 Michał Bereta

Sieci Neuronowe 1 Michał Bereta Wprowadzene Zagadnena Sztucznej Intelgencj laboratorum Sec Neuronowe 1 Mchał Bereta Sztuczne sec neuronowe można postrzegać jako modele matematyczne, które swoje wzorce wywodzą z bolog obserwacj ludzkch

Bardziej szczegółowo

2. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI

2. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI Część. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI.. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI W metodze sł w celu przyjęca układu podstawowego należało odrzucć węzy nadlczbowe. O lczbe odrzuconych węzów decydował

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH

RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH Stansław KOWALIK e-mal: skowalk@wsb.edu.pl Wyższa Szkoła Bznesu Dąbrowa Górncza RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH Streszczene Praca dotyczy nekooperacynych sekwencynych ger dwuosobowych o sume

Bardziej szczegółowo

Zadanie 1. Udowodnij, że CAUS PRAM. Załóżmy przetwarzanie przyczynowo spójne. Dla każdego obrazu historii hv i zachodzi zatem:

Zadanie 1. Udowodnij, że CAUS PRAM. Załóżmy przetwarzanie przyczynowo spójne. Dla każdego obrazu historii hv i zachodzi zatem: Zadane 1 Udowodnj, że CAUS PRAM Załóżmy przetwarzane przyczynowo spójne. Dla każdego obrazu hstor hv zachodz zatem: O OW O OW x X p j o O o1 o2 o1 o2 o1 j o2 ( o1 = w( x) v o2 = r( x) v) o1 o2 ( o1 o o2)

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń. Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F

Bardziej szczegółowo