Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Wielkość: px
Rozpocząć pokaz od strony:

Download "Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA"

Transkrypt

1 Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW

2 Plan referatu Testowane w analze mkromacerzy DNA Uogólnena błędów I rodzaju: FWER, k-fwer, FDP, FDR Klasyczne procedury testowana welu hpotez: cut-off, step-down, step-up Pewne wynk dla zależnych testowań Symulacje

3 Wynk eksperymentu mkromacerzowego Gen 1 Gen 2 Mkromacerz 1 Mkromacerz 2 Mkromacerz n Gen m

4 Testowane w analze mkromacerzy DNA Typowe zadane: porównujemy pozomy ekspresj genów z eksperymentu mkromacerzowego wykonanego w dwóch badanych grupach. Istotne problemy wnoskowana: mała lczebność grup (np. n 1 = n 2 = 8) duża lczba genów (porównań) np. m=3

5 Po wstępnej analze danych ch normalzacj stosujemy do porównań np. test t-studenta w przypadku nezależnych prób z dwóch populacj

6 Model statystyczny tego genu w II grupe - pozom ekspresj grupe tego genu w I - pozom ekspresj Y X : wobec : hpotez Testujemy ), ( ~ oraz ), ( ~ Nech,, 1,,,, 2, 1, = c k c k c k m m H m m H m m N Y m N X σ σ

7 Test t-studenta Statystyka testowa ma postać: t = S X 2 X, n 1 + Y S 2 Y, n 2

8 Inne używane testy Możemy równeż używać testów neparametrycznych dotyczących testowana różncy rozkładów zmennych losowych X oraz Y np. test Wlcoxona lub U-Manna-Wtneya (w przypadku wykryca nejednorodnośc warancj).

9 Istotne problemy testowana: Jeśl każdy test wykonamy przy ustalonym pozome stotnośc.5 to przecętne otrzymamy m 3 *.5 = genów o stotne różnych poz. ekspresj, nawet jeśl rzeczywśce żaden gen stotne ne różncuje badane grupy. = 15

10 Uogólnena błędu I rodzaju Dlatego rozpatrujemy take procedury testowana dla których umemy kontrolować mary błędu MB take jak: FWER, k-fwer, FDR, tzn. MB

11 Słaba mocna kontrola Słaba kontrola MB: gdy wszystke rozważane hpotezy zerowe są prawdzwe. Mocna kontrola MB: gdy rozważamy dowolną konfgurację prawdzwych hpotez zerowych wśród m testowanych hpotez zerowych, dokładnej rozważmy H, : θ Θ dla = 1,..., m MB θ dla każdego θ M = M { Θ :, H gdze, jest prawdzwa}

12 FWER FWER (Famly Wse Error Rate) to prawdopodobeństwo, że popełnmy przynajmnej jeden błąd I rodzaju testując m hpotez Nech V = # false dscoveres Wtedy FWER = P ( V θ 1)

13 Procedura Bonferronego Każdą hpotezę testujemy na pozome stotnośc / m aby otrzymać FWER Nestety taka procedura jest bardzo restrykcyjna (będze mała bardzo małą zdolność do wykryca genów stotne różncujących), bowem każdą hpotezę (tzw. proc. cut -off) testujemy na na pozome.5/3 = 1.67*1-5

14 Procedury step-down Nech 1... m Rozważmy uporządkowany cąg pozomów krytycznych (p-wartośc): p( 1) p(2)... p( m) Jeśl p ( 1) > 1, to ne odrzucamy żadnej hpotezy zerowej H, w przecwnym przyp., gdy (*) p( 1) 1,..., p( r to odrzucamy hpotezy H,(1),, H,(r) gdze r najwększa lczba spełnająca (*) ) r

15 Procedura Holma To procedura step-down z = /( m + Przy testowanu welu hpotez procedura Holma zapewna kontrolę FWER na pozome Dodatkowo procedura Holma ma wększą moc od procedury Bonferronego. 1)

16 k-fwer Lehmann Romano (25) zaproponowal uogólnoną procedurę Holma, tzn. procedurę step-down z k / m, k = k /( m + k ), > k. która kontroluję (mocno) k-fwer, tzn. k - FWER : = P ( V k). θ

17 Zwykle procedury kontrolujące k-fwer mają wększą moc nż procedury kontrolujące FWER.

18 False Dscovery Rate (FDR) Benjamn Hochberg (1995) wprowadzl oraz FDP FDR = V / R, =, E θ (FDP) R R > = gdze R = lczba odrzuconych hpotez zerowych

19 Procedura BH kontrol FDR { } p m Nech k = max : / ( ) Jeśl stneje take k, to odrzucć hpotezy H,(1),, H,(k). W przecwnym przypadku nc ne odrzucamy. Procedura BH jest przykładem tzw. procedur step-up z = / m

20 Procedury step-up Jeśl p ( m) m, to ne przyjmujemy żadnej hpotezy zerowej H, w przecwnym przyp., gdy (**) p( m) > m,..., p( r + 1) > r + 1 to przyjmujemy hpotezy H,(r+1),, H,(m) gdze r najmnejsza lczba spełnająca (**)

21 Twerdzene (Benjamn Hochberg (1995)) Dla nezależnych statystyk testowych procedura BH zapewna kontrolę FDR, tzn. FDR m / m gdze m oznacza lczbę prawdzwych hpotez zerowych wśród m testowanych.

22 Kontrola FDR dla zależnych testów Benjamn Yekutel (21) pokazal, że dla dodatno zależnych (regresyjne dod. zal.) statystyk testowych odpowadającym prawdzwym hpotezom zerowym procedura BH zapewna FDR m / m

23 Przykłady dod. zależnośc Wektor T m statystyk testowych ma rozkład N( µ, Σ ) rozważamy H, : µ = wobec H 1, : µ > dla M M j Σ = { : H,, j, gdze prawdzwe}

24 Przykłady dodatnej zależnośc c.d. wektor m wym. Y ma rozkład testujemy, µ wobec H welowymarowy t-studenta N( µ, Σ H : = 1, : µ T = Y / S )

25 Pewne wynk dla kontrol dla zależnych testów uzyskal Dudzńsk Furmańczyk (27) np. P ( R 1) > θ P θ ( q u T = t) u dla u (,1), = t =,1,..., m m, T = V R lub V V R są ujem. zal. 1,..., m, to procedura Holma kontroluje (mocno) FDR.

26 Kontrola FDR bez zał. o zależnośc Benjamn Yekutel (21) pokazal, że jeśl wstawmy w procedurze BH zamast wartość * = / = m 1 1, to równeż otrzymamy kontrolę FDR na pozome, ale o znaczne nższej mocy.

27 Ulepszena procedury BH kontrol FDR Estymacja wartośc m znaczne by poprawła kontrolę FDR wstawając zamast wartość * = m m

28 Dwustopnowa procedura BH Benjamn nn (21) zaproponowal dwustopnową procedurę BH, która kontroluje FDR dla nezależnych statystyk testowych: w perwszym kroku stosujemy zwykłą procedurę BH w wynku czego odrzucamy r 1 hpotez zerowych, w drugm kroku stosujemy zwykła procedurę BH z * m =. ( m r1)(1 + )

29 q-value (Storey (23)) Nech pfdr ( V / R > ) = E R θ Rozważmy rodznę zborów odrzuceń dla hpotez zerowych taką, że { Γ } < β Γ Γ β Załóżmy, że π = P H, = ), π 1 = P( H, = 1) = 1 ( π

30 Nech cągem (T,H, ) będze..d. Rozkład statystyk testowej T pod warunkem H, ma postać: T H, = ( 1 H, ) F + H, F1, gdze F jest rozkładem stat. test. pod warunkem prawdzwośc H, F 1 jest rozkładem stat. test. pod warunkem prawdzwośc hpotezy alternatywnej

31 Wtedy ) ( ) ( ) (,, π Γ = Γ = Γ = = T P H T P T H P pfdr ) ( nf ) ( nf ) ( - ) ( nf ) ( -, } : { } : {, } : { Γ = = Γ = = Γ = Γ Γ Γ Γ Γ Γ T H P pfdp t value q H T P t value p o t t o t

32 q-value służy do oceny stotnośc genów W naszym przypadku q - value( t) = Pθ ( H, = T t ) Reguła wyboru stotnych genów: wyberz te geny (jako stotne) dla których q-value <.5

33 Pakety w R do jednoczesnego testowana: multtest nfdr qvalue FDR-AME multcomp

34 Symulacje m=1, m =9 Hstogram of p Hstogram of p[null] Frequency Frequency p p[null] Hstogram of p[alt] Frequency p[alt]

35 m=1, m =9

36 Stat. rozk. norm, n 1 =n 2 =3, m=3, m =12

37 Stat. rozk. t-stud, n 1 =n 2 =3, m=3, m =12

38 Dane z mkromacerzy Golub (1999) Badano 351 genów w dwóch grupach pacjentów chorych na 2 typy bałaczk, n 1 =27, n 2 =11.

39 Lteratura Benjamn Y., Hochberg Y Controlng the false dscovery rate: a practcal and powerful approach to multple testng. J. Roy. Statst. Soc. Ser.B 57: Benjamn Y., Yekutel D. 21. The control of the false dscovery rate n multple testng under dependency. Ann. Statst.:29, Dudot S, Shaffer J.P., Boldrck J.C. 23 Multple hypothess testng n mcroarray experments. Statst. Scen. 18 (1): Dudzńsk M, Furmańczyk K. 27. Procedury jednoczesnego testowana welu hpotez ch zastosowana w analze mkromacerzy DNA, Matematyka Stosowana Lehman E.L., Romano J.P. 25. Generalzatons of the famlywse error rate. Ann. Statst. 33: Storey J. 23. The postve false dscovery rate: A Bayesan nterpretaton and the q-value. Ann. Statst. 31:

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

Procedury jednoczesnego testowania wielu hipotez i ich zastosowania w analizie mikromacierzy DNA

Procedury jednoczesnego testowania wielu hipotez i ich zastosowania w analizie mikromacierzy DNA MATEMATYKA STOSOWANA 8, 2007 Marcin Dudziński (Warszawa) Konrad Furmańczyk (Warszawa) Procedury jednoczesnego testowania wielu hipotez i ich zastosowania w analizie mikromacierzy DNA Streszczenie. W naszej

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Hipotezą statystyczną jest dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia

Bardziej szczegółowo

Badania eksperymentalne

Badania eksperymentalne Badania eksperymentalne Pomiar na skali porządkowej mgr Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Najpopularniejsze sposoby oceny wyników eksperymentu

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Testowanie zbioru hipotez na przykładzie danych o leczeniu pacjentów dotkniętych zawałem

Testowanie zbioru hipotez na przykładzie danych o leczeniu pacjentów dotkniętych zawałem Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Marcin Kosiński Nr albumu: 291505 Testowanie zbioru hipotez na przykładzie danych o leczeniu pacjentów dotkniętych zawałem Praca licencjacka

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)?

Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)? Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)? Gdy: badana cecha jest mierzalna (ewentualnie policzalna); dysponujemy dwoma próbami; chcemy porównać, czy wariancje w tych próbach

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Regulamin promocji zimowa piętnastka

Regulamin promocji zimowa piętnastka zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Dwuczynnikowa analiza wariancji (2-way

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Przykªadowe analizy. Grzegorz Kemski. 26 listopada 2008

Przykªadowe analizy. Grzegorz Kemski. 26 listopada 2008 26 listopada 2008 Plan wykªadu Prezentacja danych i metod statystycznych u»ytych w artykuªach: 'Why living-donor renal transplant yields better outcomes than cadaver renal transplant?' L. Guirado, E. Vela,

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Ćwiczenie 10. Metody eksploracji danych

Ćwiczenie 10. Metody eksploracji danych Ćwczene 10. Metody eksploracj danych Grupowane (Clusterng) 1. Zadane grupowana Grupowane (ang. clusterng) oznacza grupowane rekordów, obserwacj lub przypadków w klasy podobnych obektów. Grupa (ang. cluster)

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

OeconomiA copernicana 2013 Nr 3. Modele ekonometryczne w opisie wartości rezydualnej inwestycji

OeconomiA copernicana 2013 Nr 3. Modele ekonometryczne w opisie wartości rezydualnej inwestycji OeconomA coperncana 2013 Nr 3 ISSN 2083-1277, (Onlne) ISSN 2353-1827 http://www.oeconoma.coperncana.umk.pl/ Klber P., Stefańsk A. (2003), Modele ekonometryczne w opse wartośc rezydualnej nwestycj, Oeconoma

Bardziej szczegółowo

Uwaga! Test studenta dla pojedynczej próby, niekierunkowy. Wykład 9: Testy Studenta. Test Studenta dla jednej próby, kierunkowy

Uwaga! Test studenta dla pojedynczej próby, niekierunkowy. Wykład 9: Testy Studenta. Test Studenta dla jednej próby, kierunkowy Wykład 9: Testy Studenta Jest kilka typów testów Studenta. Mają podobną strukturę, ale służą do testowania różnych hipotez i różnią się nieco postacią statystyki testowej. Trzy podstawowe typy testów Studenta

Bardziej szczegółowo

MIARY ZALEŻNOŚCI ANALIZA STATYSTYCZNA NA PRZYKŁADZIE WYBRANYCH WALORÓW RYNKU METALI NIEŻELAZNYCH

MIARY ZALEŻNOŚCI ANALIZA STATYSTYCZNA NA PRZYKŁADZIE WYBRANYCH WALORÓW RYNKU METALI NIEŻELAZNYCH Domnk Krężołek Unwersytet Ekonomczny w Katowcach MIARY ZALEŻNOŚCI ANALIZA AYYCZNA NA PRZYKŁADZIE WYBRANYCH WALORÓW RYNKU MEALI NIEŻELAZNYCH Wprowadzene zereg czasowe obserwowane na rynkach kaptałowych

Bardziej szczegółowo

Proste modele ze złożonym zachowaniem czyli o chaosie

Proste modele ze złożonym zachowaniem czyli o chaosie Proste modele ze złożonym zachowanem czyl o chaose 29 kwetna 2014 Komputer jest narzędzem coraz częścej stosowanym przez naukowców do ukazywana skrzętne ukrywanych przez naturę tajemnc. Symulacja, obok

Bardziej szczegółowo

Wielokategorialne systemy uczące się i ich zastosowanie w bioinformatyce. Rafał Grodzicki

Wielokategorialne systemy uczące się i ich zastosowanie w bioinformatyce. Rafał Grodzicki Welokategoralne systemy uząe sę h zastosowane w bonformatye Rafał Grodzk Welokategoralny system uząy sę (multlabel learnng system) Zbór danyh weśowyh: d X = R Zbór klas (kategor): { 2 } =...Q Zbór uząy:

Bardziej szczegółowo

PRZESTRZENNE ZRÓŻNICOWANIE WYBRANYCH WSKAŹNIKÓW POZIOMU ŻYCIA MIESZKAŃCÓW MIAST ŚREDNIEJ WIELKOŚCI A SYSTEM LOGISTYCZNY MIASTA 1

PRZESTRZENNE ZRÓŻNICOWANIE WYBRANYCH WSKAŹNIKÓW POZIOMU ŻYCIA MIESZKAŃCÓW MIAST ŚREDNIEJ WIELKOŚCI A SYSTEM LOGISTYCZNY MIASTA 1 METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XI/2, 2010, str. 102 111 PRZESTRZENNE ZRÓŻNICOWANIE WYBRANYCH WSKAŹNIKÓW POZIOMU ŻYCIA MIESZKAŃCÓW MIAST ŚREDNIEJ WIELKOŚCI A SYSTEM LOGISTYCZNY MIASTA 1

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax

Bardziej szczegółowo

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Nazwa

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

Metoda Johansena objaśnienia i przykłady

Metoda Johansena objaśnienia i przykłady Metoda Johansena objaśnienia i przykłady Model wektorowej autoregresji rzędu p, VAR(p), ma postad gdzie oznacza wektor zmiennych endogenicznych modelu. Model VAR jest stabilny, jeżeli dla, tzn. wielomian

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH

O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH Mateusz Baryła Unwersytet Ekonomczny w Krakowe O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH Wprowadzene

Bardziej szczegółowo

Regulamin promocji upalne lato 2014 2.0

Regulamin promocji upalne lato 2014 2.0 upalne lato 2014 2.0 strona 1/5 Regulamn promocj upalne lato 2014 2.0 1. Organzatorem promocj upalne lato 2014 2.0, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Wykłady Jacka Osiewalskiego. z Ekonometrii. CZĘŚĆ PIERWSZA: Modele Regresji. zebrane ku pouczeniu i przestrodze

Wykłady Jacka Osiewalskiego. z Ekonometrii. CZĘŚĆ PIERWSZA: Modele Regresji. zebrane ku pouczeniu i przestrodze Wykłady Jacka Osewalskego z Ekonometr zebrane ku pouczenu przestrodze UWAGA!! (lstopad 003) to jest wersja neautoryzowana, spsana przeze mne dawno temu od tego czasu ne przejrzana; ma status wersj roboczej,

Bardziej szczegółowo

Wykład 10 Zrandomizowany plan blokowy

Wykład 10 Zrandomizowany plan blokowy Wykład 10 Zrandomizowany plan blokowy Staramy się kontrolować efekty zróżnicowania badanych jednostek eksperymentalnych poprzez zapewnienie ich ``jednorodności wewnątrz każdej grupy zabiegowej. Dzielimy

Bardziej szczegółowo

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA

Bardziej szczegółowo

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006 Weryfikacja modelu Paweł Cibis pcibis@o2.pl 6 kwietnia 2006 1 Badanie istotności parametrów strukturalnych modelu Testy Pakiet Analiza Danych Uwagi 2 Test dla małej próby Test dla dużej próby 3 Test Durbina-Watsona

Bardziej szczegółowo

Proces modelowania zjawiska handlu zagranicznego towarami

Proces modelowania zjawiska handlu zagranicznego towarami Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie

Bardziej szczegółowo

Zmodyfikowana technika programowania dynamicznego

Zmodyfikowana technika programowania dynamicznego Zmodyfkowana technka programowana dynamcznego Lech Madeysk 1, Zygmunt Mazur 2 Poltechnka Wrocławska, Wydzał Informatyk Zarządzana, Wydzałowy Zakład Informatyk Wybrzeże Wyspańskego 27, 50-370 Wrocław Streszczene.

Bardziej szczegółowo

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów.

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r Statystyka matematyczna Test χ 2 Wrocław, 18.03.2016r Zakres stosowalności Testowanie zgodności Testowanie niezależności Test McNemara Test ilorazu szans Copyright 2014, Joanna Szyda ZAKRES STOSOWALNOŚCI

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36, T. 1 Barbara Batóg *, Jacek Batóg ** Unwersytet Szczecńsk ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI

Bardziej szczegółowo

Próba wyjaśnienia regionalnego zróżnicowania międzypłciowej luki płacowej w Polsce

Próba wyjaśnienia regionalnego zróżnicowania międzypłciowej luki płacowej w Polsce Studa Regonalne Lokalne Nr 3(49)/2012 ISSN 1509 4995 Tymon Słoczyńsk* Próba wyjaśnena regonalnego zróżncowana mędzypłcowej luk płacowej w Polsce W artykule opsano regonalne zróżncowane mędzypłcowej luk

Bardziej szczegółowo

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Alcja Wolny-Domnak Unwersytet Ekonomczny w Katowcach MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Wprowadzene

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka TesttStudenta Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO JAKOŚĆ MIERZONA WARTOŚCIĄ WSPÓŁCZYNNIKA R 2 (K)

KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO JAKOŚĆ MIERZONA WARTOŚCIĄ WSPÓŁCZYNNIKA R 2 (K) STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Mchał Kolupa Poltechnka Radomska w Radomu Joanna Plebanak Szkoła Główna Handlowa w Warszawe KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO

Bardziej szczegółowo

Algorytm FA. Zastosowanie w zadanich optymalizacji z ograniczeniami dla ciągłych dziedzin poszukiwań

Algorytm FA. Zastosowanie w zadanich optymalizacji z ograniczeniami dla ciągłych dziedzin poszukiwań Algorytm FA Metaheurystyczna metoda poszukwań (Xn-She Yang, 2008), nsprowana przez: zachowana społeczne zjawsko bolumnescencj robaczków śwetojańskch (śwetlków) Zastosowane w zadanch optymalzacj z ogranczenam

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Test lewostronny dla hipotezy zerowej:

Test lewostronny dla hipotezy zerowej: Poznajemy testowanie hipotez statystycznych w środowisku R Zajęcia z dnia 11 maja 2011 roku Najpierw teoria TESTY ISTOTNOŚCI WARTOŚCI ŚREDNIEJ W POPULACJI GENERALNEJ gdy znana jest wariancja!!! Test prawostronny

Bardziej szczegółowo

Krzysztof Borowski Zastosowanie metody wideł cenowych w analizie technicznej

Krzysztof Borowski Zastosowanie metody wideł cenowych w analizie technicznej Krzysztof Borowsk Zastosowane metody wdeł cenowych w analze technczne Wprowadzene Metoda wdeł cenowych została perwszy raz ogłoszona przez Alana Andrewsa 1 w roku 1960. Trzy lne wchodzące w skład metody

Bardziej szczegółowo

Regulamin promocji fiber xmas 2015

Regulamin promocji fiber xmas 2015 fber xmas 2015 strona 1/5 Regulamn promocj fber xmas 2015 1. Organzatorem promocj fber xmas 2015, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna 2015

Bardziej szczegółowo

Wpływ płynności obrotu na kształtowanie się stopy zwrotu z akcji notowanych na Giełdzie Papierów Wartościowych w Warszawie

Wpływ płynności obrotu na kształtowanie się stopy zwrotu z akcji notowanych na Giełdzie Papierów Wartościowych w Warszawie Agata Gnadkowska * Wpływ płynnośc obrotu na kształtowane sę stopy zwrotu z akcj notowanych na Gełdze Paperów Wartoścowych w Warszawe Wstęp Płynność aktywów na rynku kaptałowym rozumana jest przez nwestorów

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

Metoda Monte-Carlo i inne zagadnienia 1

Metoda Monte-Carlo i inne zagadnienia 1 Metoda Mote-Carlo e zagadea Metoda Mote-Carlo Są przypadk kedy zamast wykoać jakś eksperymet chcelbyśmy symulować jego wyk używając komputera geeratora lczb (pseudolosowych. Wększość bblotek programów

Bardziej szczegółowo

Testowanie hipotez. 1 Testowanie hipotez na temat średniej

Testowanie hipotez. 1 Testowanie hipotez na temat średniej Testowanie hipotez Poziom p Poziom p jest to najmniejszy poziom istotności α, przy którym możemy odrzucić hipotezę zerową dysponując otrzymaną wartością statystyki testowej. 1 Testowanie hipotez na temat

Bardziej szczegółowo

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrcal Engneerng 015 Mkołaj KSIĄŻKIEWICZ* OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU

Bardziej szczegółowo

SYSTEM ZALICZEŃ ĆWICZEŃ

SYSTEM ZALICZEŃ ĆWICZEŃ AMI, zma 010/011 mgr Krzysztof Rykaczewsk System zalczeń Wydzał Matematyk Informatyk UMK SYSTEM ZALICZEŃ ĆWICZEŃ z Analzy Matematycznej I, 010/011 (na podst. L.G., K.L., J.M., K.R.) Nnejszy dokument dotyczy

Bardziej szczegółowo

Metody predykcji analiza regresji

Metody predykcji analiza regresji Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..

Bardziej szczegółowo

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz NAFTA-GAZ marzec 2011 ROK LXVII Tadeusz Kwlosz Instytut Nafty Gazu, Oddzał Krosno Zastosowane metody statystycznej do oszacowana zapasu strategcznego PMG, z uwzględnenem nepewnośc wyznaczena parametrów

Bardziej szczegółowo

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Plan wykładu 1. Metody wnioskowania statystycznego vs. metody opisu 2. Testowanie hipotez statystycznych

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

Analiza regresji modele ekonometryczne

Analiza regresji modele ekonometryczne Analza regresj modele ekonometryczne Klasyczny model regresj lnowej - przypadek jednej zmennej objaśnającej. Rozpatrzmy klasyczne zagadnene zależnośc pomędzy konsumpcją a dochodam. Uważa sę, że: - zależność

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej...

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej... 1 Metody optymalzacj welokryteralnej.... 1 1.1 Ogólna charakterystyka problemu.... 1 1.2 Tradycyjne metody optymalzacj welokryteralnej.... 3 1.2.1 Metoda ważonych kryterów.... 3 1.2.2 Metoda optymalzacj

Bardziej szczegółowo

dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę.

dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę. dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę. Statistics in academic papers, what to avoid and what to focus on. Uniwersytet Medyczny im. Piastów Śląskich

Bardziej szczegółowo

o Puchar Pytii - Wybory Prezydenckie 2015

o Puchar Pytii - Wybory Prezydenckie 2015 Centrum Ba. d ań I oścowych nad Po tyką Unhversytetu Jage o ń s k e go Protokół obrad Kaptuły Konkursu o Puchar Pyt - Wybory Prezydencke 2015 Na posedzenu w dnu 2 czerwca 2015 roku na Wydzae Matematyk

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

W tym rozdziale książka opisuje kilka podejść do poszukiwania kolokacji.

W tym rozdziale książka opisuje kilka podejść do poszukiwania kolokacji. 5 Collocations Związek frazeologiczny (kolokacja), to często używane zestawienie słów. Przykłady: strong tea, weapons of mass destruction, make up. Znaczenie całości wyrażenia, nie zawsze wynika ze znaczeń

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne Czyli jak bardzo jesteśmy pewni że parametr oceniony na podstawie próbki jest

Bardziej szczegółowo

Analiza korelacji i regresji

Analiza korelacji i regresji Analza korelacj regresj Zad. Pewen zakład produkcyjny zatrudna pracownków fzycznych. Ich wydajność pracy (Y w szt./h) oraz mesęczne wynagrodzene (X w tys. zł) przedstawa ponższa tabela: Pracownk y x A

Bardziej szczegółowo

MATERIAŁY I STUDIA. Zeszyt nr 286. Analiza dyskryminacyjna i regresja logistyczna w procesie oceny zdolności kredytowej przedsiębiorstw

MATERIAŁY I STUDIA. Zeszyt nr 286. Analiza dyskryminacyjna i regresja logistyczna w procesie oceny zdolności kredytowej przedsiębiorstw MATERIAŁY I STUDIA Zeszyt nr 86 Analza dyskrymnacyjna regresja logstyczna w procese oceny zdolnośc kredytowej przedsęborstw Robert Jagełło Warszawa, 0 r. Wstęp Robert Jagełło Narodowy Bank Polsk. Składam

Bardziej szczegółowo

Test U Manna-Whitneya : Test H Kruskala-Wallisa Test Wilcoxona

Test U Manna-Whitneya : Test H Kruskala-Wallisa Test Wilcoxona Nieparametryczne odpowiedniki testów T-Studenta stosujemy gdy zmienne mierzone są na skalach porządkowych (nie można liczyć średniej) lub kiedy mierzone są na skalach ilościowych, a nie są spełnione wymagania

Bardziej szczegółowo

ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA

ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA Na poprzednich zajęciach omawialiśmy testy dla weryfikacji hipotez, że dwie populacje o rozkładach normalnych mają jednakowe wartości średnie. Co jednak

Bardziej szczegółowo