Statystyka Inżynierska

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Statystyka Inżynierska"

Transkrypt

1 Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje zmennej, Rozkłady dyskretne Rozkłady cągłe, Rozkład normalny

2 Zmenna losowa Zmenna losowa, to taka zmenna, która w wynku dośwadczena przyjmuje wartość lczbową zależną od przypadku. Uwaga: powyższe ne stanow defncj, ale oddaje stotę welkośc jaką jest zmenna losowa. Zmennym losowym są np. : wzrost przypadkowo spotkanej na ulcy osoby, lczba osób zapadających każdego dna na grypę, lczba meteorytów spadających na klometr kwadratowy roczne, masa każdego spadającego na Zemę meteorytu, zmana cen neruchomośc w cągu roku, WYKŁAD 1.Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5. Charakterystyk zmennej 6. Funkcje zmennej 8. Rozkłady cągłe czas oczekwana na przystanku autobusowym, lczba zgonów w maju, wytrzymałość lny wspnaczkowej, notowana gełdowe, lość opadów jutro w Krakowe, dowolny wynk pomaru, czegokolwek. Poprawna defncja zmennej - dla zanteresowanych - znajduje sę w [1] na strone 48. Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

3 Zmenna losowa Dla oznaczena zmennych losowych stosujemy duże ltery, najczęścej z końca alfabetu. Wartośc przyjmowane przez zmenne oznaczamy małym lteram. Zaps: =x oznacza, zdarzene polegające na tym, że zmenna losowa przyjęła wartość x, w skróce mówmy, że zmenna losowa przyjmuje (czasem mówmy realzuje) wartość x. =x 3 : zmenna losowa przyjmuje wartość x 3 U=5.4 : zmenna losowa U przyjmuje wartość 5.4 Z<3 : zdarzene polegające na tym, że zmenna losowa Z przyjmuje wartość mnejszą nż 3 WYKŁAD 1.Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5. Charakterystyk zmennej 6. Funkcje zmennej 8. Rozkłady cągłe -<T<8 : zdarzene polegające na tym, że zmenna losowa T przyjmuje wartość z obustronne otwartego przedzału (-,8) Zaps P(=.3) oznacza prawdopodobeństwo zajśca zdarzena, w którym zmenna losowa przyjme wartość.3. 3 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

4 Zmenna losowa Zmenne losowe możemy podzelć na dyskretne cągłe. Zmenną losową nazywamy dyskretną, jeżel zbór wartośc, które może ona przyjmować jest skończony lub przelczalny. Zmenną losową nazywamy cągłą, jeżel może ona przyjmować dowolne wartośc z pewnego przedzału. W szczególnośc może to być przedzał neskończony. Uwaga: powyższe ne stanową defncj, są jedyne ntucyjnym określenam zaczerpnętym z ksążk []. WYKŁAD 1.Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5. Charakterystyk zmennej 6. Funkcje zmennej 8. Rozkłady cągłe Poprawne defncje zmennej cągłej dyskretnej znajduje sę w [1] na stronach Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

5 Funkcja rozkładu W przypadku zmennej dyskretnej, możemy zdefnować funkcję p, która każdemu zdarzenu =x przypsze prawdopodobeństwo p : p x P x p 0, N Poneważ prawdopodobeństwo sumy wszystkch możlwych zdarzeń mus być równe 1, węc w przypadku skończonej lczby zdarzeń mus zachodzć: a w przypadku przelczalnej lczby zdarzeń: n 1 p 1 WYKŁAD 1. Zmenna losowa.funkcja rozkładu 3. Funkcja gęstośc 5. Charakterystyk zmennej 6. Funkcje zmennej 8. Rozkłady cągłe 1 p 1 Taką funkcję p nazywamy funkcją rozkładu albo krócej funkcją. 5 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

6 Funkcja gęstośc Podobną rolę jak funkcja rozkładu w przypadku zmennej dyskretnej pełn funkcja gęstośc dla zmennej cągłej. Funkcja gęstośc f(x) mus spełnać klka warunków: jest neujemna, całka po całym przedzale, w którym jest określona mus sę równać 1 (bo tyle wynos prawdopodobeństwo tego, że zmenna losowa przyjme dowolną wartość z całego przedzału, na którym jest określona) WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3.Funkcja gęstośc 5. Charakterystyk zmennej 6. Funkcje zmennej 8. Rozkłady cągłe prawdopodobeństwo tego, że zmenna losowa przyjme dowolną wartość z przedzału od x 1 do x (x 1 <x ) wynos: P x x f xdx 1 x x 1 6 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

7 Dystrybuanta Dystrybuantą zmennej nazywamy taką funkcję F (x), że: F Proszę zwrócć uwagę, że funkcja ta jest określona dla wszystkch x należących do R nezależne od tego jake wartośc x może przyjmować zmenna losowa. x P x xr dyskretna cągła Fx p Fx f xdx x x x WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 4.Dystrybuanta 5. Charakterystyk zmennej 6. Funkcje zmennej 8. Rozkłady cągłe Zwróćmy równeż uwagę, że dystrybuanta jest funkcją cągłą (dokładnej lewostronne cągłą) nezależne od tego czy dotyczy zmennej cągłej czy dyskretnej. 7 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

8 Charakterystyk zmennej Zamast podawać pełne rozkłady lub funkcje gęstośc, czasem wygodnej jest podać klka lczb, które scharakteryzują nasz rozkład. Lczby take ogólne nazywamy charakterystykam zmennej. Wymyślono wele różnych charakterystyk. Na następnych slajdach zdefnowano klka najważnejszych najczęścej używanych. WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5.Charakterystyk zmennej 1. Momenty zwykłe (wartość oczekwana). Momenty centralne (warancja, odchylene standardowe) 3. Skośność kurtoza 4. Moda medana 5. Kwartyle kwantyle 6. Pudełko z wąsam 6. Funkcje zmennej 8. Rozkłady cągłe 8 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

9 Charakterystyk zmennej Momenty zwykłe Momenty zwykłe rzędu r oznaczamy symbolem α r wylczamy jako: dyskretna r x p r Szczególną rolę odgrywa perwszy moment zwykły, oznaczany często jako E (EZ dla zmennej Z, ET dla zmennej T): E dyskretna x p cągła cągła Moment ten to tzw. wartość oczekwana, czasam nazywana równeż wartoścą przecętną (lub nezbyt ścśle wartoścą średną). r E x r f x f x x dx dx WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5.Charakterystyk zmennej 1. Momenty zwykłe (wartość oczekwana). Momenty centralne (warancja, odchylene standardowe) 3. Zmenność, skośność kurtoza 4. Moda medana 5. Kwartyle kwantyle 6. Pudełko z wąsam 6. Funkcje zmennej 8. Rozkłady cągłe 9 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

10 Charakterystyk zmennej Momenty centralne Momenty centralne rzędu r oznaczamy symbolem µ r wylczamy jako: Szczególną rolę odgrywa drug moment centralny, oznaczany często jako D (D Z dla zmennej Z, D T dla zmennej T): Moment ten to tzw. warancja. Perwastek kwadratowy z warancj nazywamy odchylenem standardowym oznaczamy D lub σ. dyskretna dyskretna cągła r r x E p x E f x D r cągła x E D x E f x p D D 10 Dyskretne cągłe rozkłady jednowymarowe r dx dx WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5.Charakterystyk zmennej 1. Momenty zwykłe (wartość oczekwana). Momenty centralne (warancja, odchylene standardowe) 3. Zmenność, skośność kurtoza 4. Moda medana 5. Kwartyle kwantyle 6. Pudełko z wąsam 6. Funkcje zmennej 8. Rozkłady cągłe AGH, Tarasuk 013

11 Charakterystyk zmennej Momenty centralne Momenty centralne rzędu r oznaczamy symbolem µ r wylczamy jako: Szczególną rolę odgrywa drug moment centralny, oznaczany często jako D (D Z dla zmennej Z, D T dla zmennej T): Pomędzy wartoścą oczekwaną a warancją Moment ten to stneje tzw. warancja. bardzo użyteczny Perwastek zwązek: kwadratowy z warancj nazywamy odchylenem standardowym oznaczamy D lub σ. dyskretna dyskretna cągła r r x E p x E f x D r cągła x E D x E f x p D 11 Dyskretne cągłe rozkłady jednowymarowe r D =E( )-(E) D dx dx WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5.Charakterystyk zmennej 1. Momenty zwykłe (wartość oczekwana). Momenty centralne (warancja, odchylene standardowe) 3. Zmenność, skośność kurtoza 4. Moda medana 5. Kwartyle kwantyle 6. Pudełko z wąsam 6. Funkcje zmennej 8. Rozkłady cągłe AGH, Tarasuk 013

12 Charakterystyk zmennej Współczynnk zmennośc, skośność kurtoza Współczynnk zmennośc oznaczamy grecką lterą υ wylczamy nezależne od typu rozkładu jako: Skośność (albo współczynnk asymetr) oznaczamy symbolem γ nezależne od typu rozkładu wylczamy go jako: Kurtoza (nazywana równeż współczynnkem skupena) oznaczamy lterą K E 3 3 wylczamy równeż nezależne od typu rozkładu jako: 4 K 4 WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5.Charakterystyk zmennej 1. Momenty zwykłe (wartość oczekwana). Momenty centralne (warancja, odchylene standardowe) 3. Zmenność, skośność kurtoza 4. Moda medana 5. Kwartyle kwantyle 6. Pudełko z wąsam 6. Funkcje zmennej 8. Rozkłady cągłe 1 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

13 Charakterystyk zmennej Moda medana Moda to taka wartość zmennej dyskretna cągła x, która występuje z najwę- x, dla której funkcja gęstośc kszym prawdopodobeństwem, przy czym ne może to być perwsza an ostatna wartość x. ma absolutne maksmum. Medana to taka lczba x 0,5, że połowa wszystkch przyjmowanych przez zmenną losową wartośc leży ponżej jej wartośc, co w zapse matematycznym wyraża sę następująco: dyskretna cągła x x 0.5 p 0.5 x x 0.5 p Jak wdać, w przypadku zmennej dyskretnej może sę zdarzyć, że dowolna lczba z pewnego przedzału będze spełnać defncję medany. F 0.5 x f x 0.5 x dx 0.5 WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5.Charakterystyk zmennej 1. Momenty zwykłe (wartość oczekwana). Momenty centralne (warancja, odchylene standardowe) 3. Zmenność, skośność kurtoza 4. Moda medana 5. Kwartyle kwantyle 6. Pudełko z wąsam 6. Funkcje zmennej 8. Rozkłady cągłe 13 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

14 Charakterystyk zmennej Kwartyle kwantyle Kwantyl rzędu p to taka lczba x p, dla której spełnony jest warunek: x x p dyskretna p p x x Jak wdać medana jest po prostu kwantylem rzędu 0.5. Kwartyl dolny to kwantyl rzędu 0.5. Kwartyl środkowy to kwantyl rzędu 0.5 (czyl po prostu medana). Kwartyl górny to kwantyl rzędu p p F cągła x f x p x p dx p WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5.Charakterystyk zmennej 1. Momenty zwykłe (wartość oczekwana). Momenty centralne (warancja, odchylene standardowe) 3. Zmenność, skośność kurtoza 4. Moda medana 5. Kwartyle kwantyle 6. Pudełko z wąsam 6. Funkcje zmennej 8. Rozkłady cągłe 14 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

15 wartośc przyjmowane przez zmenną losową Charakterystyk zmennej Pudełko z wąsam maksmum górny kwartyl średna medana dolny kwartyl mnmum WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5.Charakterystyk zmennej 1. Momenty zwykłe (wartość oczekwana). Momenty centralne (warancja, odchylene standardowe) 3. Zmenność, skośność kurtoza 4. Moda medana 5. Kwartyle kwantyle 6. Pudełko z wąsam 6. Funkcje zmennej 8. Rozkłady cągłe 15 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

16 Funkcje zmennej Jeżel argumentem jakejś funkcj uczynmy zmenną losową to w wynku otrzymamy nową zmenną losową. Na przykład: Należy pamętać, że: Y 6 nowa zmenna losowa może meć nny zakres zmennośc (np. jeśl zmenało sę od 10 do 15, to Y będze sę zmenać od 600 do 1350) w ogólnym przypadku ne można podstawć do wzoru charakterystyk zmennej, aby otrzymać charakterystyk zmennej Y WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5. Charakterystyk zmennej 6.Funkcje zmennej 8. Rozkłady cągłe prawdłowym postępowanem jest wyznaczene rozkładu lub funkcj gęstośc zmennej Y dopero z nej, na podstawe defncj, wylczene charakterystyk zmennej Y 16 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

17 Rozkłady dyskretne Rozkład zero-jedynkowy E D x P 0 1-p 1 p p p 1 p WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5. Charakterystyk zmennej 6. Funkcje zmennej 7.Rozkłady dyskretne 1. Zero-jedynkowy. Równomerny 3. Dwumanowy 4. Possona 8. Rozkłady cągłe 17 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

18 Rozkłady dyskretne Rozkład równomerny E D x P x 1 1/n 1/n x n 1/n x n x 1 n 1 1 WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5. Charakterystyk zmennej 6. Funkcje zmennej 7.Rozkłady dyskretne 1. Zero-jedynkowy. Równomerny 3. Dwumanowy 4. Possona 8. Rozkłady cągłe 18 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

19 Rozkłady dyskretne Rozkład dwumanowy (Bernoullego) Zmenne losowe są wzajemne nezależne każda z nch może przyjmować jedną z dwóch wartośc. Wartość 1 nazywaną sukcesem z prawdopodobeństwem p oraz wartość 0 nazywaną porażką z prawdopodobeństwem q. Zmenna losowa dwumanowemu. będze podlegać rozkładow Powyższy wzór opsuje prawdopodobeństwo uzyskana k sukcesów w n próbach. n 1 k k p p n 1 k P S n n k E n D p n p q WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5. Charakterystyk zmennej 6. Funkcje zmennej 7.Rozkłady dyskretne 1. Zero-jedynkowy. Równomerny 3. Dwumanowy 4. Possona 8. Rozkłady cągłe n=5,p=0.3 n=10,p=0.3 n=30,p= Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

20 Rozkłady dyskretne Rozkład Possona Jeżel w dośwadczenu Bernoullego lczba prób będze bardzo duża, a prawdopodobeństwo p bardzo małe tak, że spełnone będze: n to wówczas lczba sukcesów k będze podlegać rozkładow Possona, a prawdopodobeństwo uzyskana k sukcesów można polczyć jako: P k p 0 lm P S n n p const k k e n k! E D WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5. Charakterystyk zmennej 6. Funkcje zmennej 7.Rozkłady dyskretne 1. Zero-jedynkowy. Równomerny 3. Dwumanowy 4. Possona 8. Rozkłady cągłe λ=3 λ=5 λ=15 Rozkład Possona jest rozkładem dyskretnym. Lnę cągłą dorysowano tylko w celu lepszej wzualzacj. 0 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

21 Rozkłady cągłe Rozkład jednostajny Mówmy, że zmenna losowa ma rozkład jednostajny na przedzale [a,b), jeżel prawdopodobeństwo otrzymana w pojedynczym dośwadczenu dowolnej wartośc x jest stałe take samo dla każdej wartośc x. Gęstość takego rozkładu wyraża sę wzorem: E D a b f b 1 a x c 0 x x a, b a, b WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5. Charakterystyk zmennej 6. Funkcje zmennej 8.Rozkłady cągłe 1. Jednostajny. Wykładnczy 1 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

22 Rozkłady cągłe Czas oczekwana na perwsze wystąpene zdarzena podlegającego rozkładow Possona z parametrem λ opsywany jest rozkładem wykładnczym, a gęstość rozkładu wykładnczego wyraża sę wzorem: 1 E D 1 f x 0 e x x 0 x 0 WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5. Charakterystyk zmennej 6. Funkcje zmennej 8.Rozkłady cągłe 1. Jednostajny. Wykładnczy Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

23 Rozkład normalny Zmenna losowa podlega rozkładow normalnemu jeżel jej gęstość wyraża sę wzorem: E a D b f x xa 1 b b e WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5. Charakterystyk zmennej 6. Funkcje zmennej 8. Rozkłady cągłe 9.Rozkład normalny E=15, D= E=15, D=4 3 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

24 Rozkład normalny W przypadku rozkładu normalnego około 68.% wszystkch wynków dośwadczena losowego gromadz sę w przedzale ±σ wokół wartość oczekwanej a (albo średnej ). P P P x a 68,% a 95,4% a % WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5. Charakterystyk zmennej 6. Funkcje zmennej 8. Rozkłady cągłe 9.Rozkład normalny 4 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

25 Rozkład normalny Mówmy, że rozkład zmennej jest znormalzowany, gdy E=0 a D=1. Rozkład normalny przybera wówczas postać: f x 1 1 x e Dowolny rozkład o wartośc oczekwanej E=a odchylenu standardowym D=b można znormalzować, tworząc nowy rozkład Y przy użycu funkcj: Rozkład normalny o wartośc oczekwanej a odchylenu standardowym b często oznacza sę symbolem N(a,b). Rozkład normalny, znormalzowany oznacza sę symbolem N(0,1). a Y b WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5. Charakterystyk zmennej 6. Funkcje zmennej 8. Rozkłady cągłe 9.Rozkład normalny 5 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

26 Twerdzena granczne TWIERDZENIE MOIVRE A LAPLACE A Jeżel dla dośwadczena Bernoullego 0<p<1 a<b to: lm P a n Co oznacza, że dla dużych wartośc n prawdopodobeństwo, że lczba sukcesów k będze sę znajdować w przedzale np a npq, np b można polczyć z rozkładu Gaussa. TWIERDZENIE LINDEBERGA LEVY EGO Jeżel są nezależnym zmennym podlegającym rozkładow o wartośc średnej µ warancj σ, wówczas w grancy n ch n suma podlega rozkładow normalnemu z wartoścą średną µ 1 warancją. n npq k np np lm P n b e 1 p n 1 6 Dyskretne cągłe rozkłady jednowymarowe na n 1 b a 1 x 1 dx e 1 x dx WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5. Charakterystyk zmennej 6. Funkcje zmennej 8. Rozkłady cągłe Dodatek Twerdzena Granczne AGH, Tarasuk 013

27 Twerdzena granczne Wnosk praktyczne z twerdzeń grancznych są take, że: jeśl w dośwadczenu Bernoullego lczba prób jest duża (w praktyce wystarczy klkanaśce/klkadzesąt) to zamast rozkładu Bernoullego można stosować rozkład normalny dla welu zmennych losowych, będących sumą dużej lczby nnych zmennych losowych równeż można stosować rozkład normalny WYKŁAD 1. Zmenna losowa. Funkcja rozkładu 3. Funkcja gęstośc 5. Charakterystyk zmennej 6. Funkcje zmennej 8. Rozkłady cągłe Lteratura, do której odnośnk pojawły sę w trakce wykładu: [1] Krysck, Bartos, Rachunek statystyka matematyczna w zadanach Dodatek Twerdzena Granczne [] Kornack, Melnczuk, Statystyka dla studentów kerunków techncznych przyrodnczych 7 Dyskretne cągłe rozkłady jednowymarowe AGH, Tarasuk 013

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa. repetytorium

Elementy rachunku prawdopodobieństwa. repetytorium Elementy rachunku prawdopodobeństwa repetytorum myślowy. - powtarzalny eksperyment fzyczny lub obserwacja czy śwatło jest zapalone czy zgaszone, określene lośc braków w bel tkanny, ustalene lośc wadlwych

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Maemayka ubezpeczeń mająkowych 7.05.00 r. Zadane. Pewne ryzyko generuje jedną szkodę z prawdopodobeńswem q, zaś zero szkód z prawdopodobeńswem ( q). Ubezpeczycel pokrywa nadwyżkę szkody ponad udzał własny

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E bedze zborem zdarzen elementarnych danego doswadczena. Funcje X(e) przyporzadowujaca azdemu zdarzenu elementarnemu e E jedna tylo jedna lczbe X(e)x nazywamy ZMIENNA

Bardziej szczegółowo

Statystyka. Magdalena Jakubek. kwiecień 2017

Statystyka. Magdalena Jakubek. kwiecień 2017 Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

ROZKŁADY ZMIENNYCH LOSOWYCH

ROZKŁADY ZMIENNYCH LOSOWYCH ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Rozwiązania (lub wskazówki do rozwiązań) większości zadań ze skryptu STATYSTYKA: MATERIAŁY POMOCNICZE DO ZAJĘĆ oraz EGZAMINÓW Z LAT

Rozwiązania (lub wskazówki do rozwiązań) większości zadań ze skryptu STATYSTYKA: MATERIAŁY POMOCNICZE DO ZAJĘĆ oraz EGZAMINÓW Z LAT Rozwązana (lub wskazówk do rozwązań) wększośc zadań ze skryptu STATYSTYKA: MATERIAŁY POMOCNICZE DO ZAJĘĆ oraz EGZAMINÓW Z LAT 01-014 ZMIENNA LOSOWA I JEJ ROZKŁAD Zadane 1/ str. 4 a/ zmenna może przyjmować

Bardziej szczegółowo

1 Przestrzenie statystyczne, statystyki

1 Przestrzenie statystyczne, statystyki M. Beśka, Statystyka matematyczna, wykład 1 1 1 Przestrzene statystyczne, statystyk 1.1 Rozkłady zmennych losowych Nech Ω, F, P ) będze ustaloną przestrzeną probablstyczną, a X : Ω IR zmenną losową na

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Analiza struktury zbiorowości statystycznej

Analiza struktury zbiorowości statystycznej Analza struktury zborowośc statystycznej.analza tendencj centralnej. Średne klasyczne Średna arytmetyczna jest parametrem abstrakcyjnym. Wyraża przecętny pozom badanej zmennej (cechy) w populacj generalnej:

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Nieparametryczne Testy Istotności

Nieparametryczne Testy Istotności Neparametryczne Testy Istotnośc Wzory Neparametryczne testy stotnośc schemat postępowana punkt po punkce Formułujemy hpotezę główną odnoszącą sę do: zgodnośc populacj generalnej z jakmś rozkładem, lub:

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

TEORIA PORTFELA MARKOWITZA

TEORIA PORTFELA MARKOWITZA TEORIA PORTFELA MARKOWITZA Izabela Balwerz 28 maj 2008 1 Wstęp Teora portfela została stworzona w 1952 roku przez amerykańskego ekonomstę Harry go Markowtza Opera sę ona na mnmalzacj ryzyka nwestycyjnego

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p. Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA

Bardziej szczegółowo

Prawdopodobieństwo geometryczne

Prawdopodobieństwo geometryczne Prawdopodobeństwo geometryczne Przykład: Przestrzeń zdarzeń elementarnych określona jest przez zestaw punktów (x, y) na płaszczyźne wypełna wnętrze kwadratu [0 x ; 0 y ]. Znajdź p-stwo, że dowolny punkt

Bardziej szczegółowo

p Z(G). (G : Z({x i })),

p Z(G). (G : Z({x i })), 3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Opsowa analza struktury zjawsk masowych Demografa statystyka PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

Komputerowe generatory liczb losowych

Komputerowe generatory liczb losowych . Perwszy generator Komputerowe generatory lczb losowych 2. Przykłady zastosowań 3. Jak generuje sę lczby losowe przy pomocy komputera. Perwszy generator lczb losowych L. H. C. Tppet - 927 Ksąż ążka -

Bardziej szczegółowo

Regresja liniowa i nieliniowa

Regresja liniowa i nieliniowa Metody prognozowana: Regresja lnowa nelnowa Dr nż. Sebastan Skoczypec Zmenna losowa Zmenna losowa X zmenna, która w wynku pewnego dośwadczena przyjmuje z pewnym prawdopodobeństwem wartość z określonego

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

ZAJĘCIA 3. Pozycyjne miary dyspersji, miary asymetrii, spłaszczenia i koncentracji

ZAJĘCIA 3. Pozycyjne miary dyspersji, miary asymetrii, spłaszczenia i koncentracji ZAJĘCIA Pozycyjne ary dyspersj, ary asyetr, spłaszczena koncentracj MIARY DYSPERSJI: POZYCYJNE, BEZWZGLĘDNE Rozstęp dwartkowy (ędzykwartylowy) Rozstęp dwartkowy określa rozpętośd tej częśc obszaru zennośc

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

Elementy Rachunek prawdopodobieństwa

Elementy Rachunek prawdopodobieństwa Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnienia

EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnienia EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnena dr Dorota Cołek Katedra Ekonometr Wydzał Zarządzana UG http://wzr.pl/dorota-colek/ dorota.colek@ug.edu.pl 1 Wpływ skalowana danych na MNK

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW

STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW Źródło Kompresja Kanał transmsj sek wdeo 60 Mbt 2 mn muzyk (44 00 próbek/sek, 6 btów/próbkę) 84 Mbt Dekompresja Odborca. Metody bezstratne 2. Metody stratne 2 Kodowane

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono

Bardziej szczegółowo

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010 Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest

Bardziej szczegółowo

Dobór zmiennych objaśniających

Dobór zmiennych objaśniających Dobór zmennych objaśnających Metoda grafowa: Należy tak rozpąć graf na werzchołkach opsujących poszczególne zmenne, aby występowały w nm wyłączne łuk symbolzujące stotne korelacje pomędzy zmennym opsującym.

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

STATYSTYKA: MATERIAŁY POMOCNICZE DO ZAJĘĆ

STATYSTYKA: MATERIAŁY POMOCNICZE DO ZAJĘĆ Dr hab. Adam Szulc, prof. SGH Instytut Statystyk Demograf STATYSTYKA: MATERIAŁY POMOCNICZE DO ZAJĘĆ Motto I: Prawe każdy jest statystykem ale newelu o tym we (nspratorzy: Moler Joseph Schumpeter) Motto

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.

Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji. Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji

Bardziej szczegółowo

x x 0.5. x Przykłady do zadania 4.1 :

x x 0.5. x Przykłady do zadania 4.1 : Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 4: Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa.

Bardziej szczegółowo

Minister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha 25 00-918 Warszawa Dnia 03 czerwca 2009 r.

Minister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha 25 00-918 Warszawa Dnia 03 czerwca 2009 r. Mnster Edukacj arodowej Pan Katarzyna HALL Mnsterstwo Edukacj arodowej al. J. Ch. Szucha 25 00-918 arszawa Dna 03 czerwca 2009 r. TEMAT: Propozycja zmany art. 30a ustawy Karta auczycela w forme lstu otwartego

Bardziej szczegółowo

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)

Bardziej szczegółowo

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej. /22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:

Bardziej szczegółowo

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz NAFTA-GAZ marzec 2011 ROK LXVII Tadeusz Kwlosz Instytut Nafty Gazu, Oddzał Krosno Zastosowane metody statystycznej do oszacowana zapasu strategcznego PMG, z uwzględnenem nepewnośc wyznaczena parametrów

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

Analiza korelacji i regresji

Analiza korelacji i regresji Analza korelacj regresj Zad. Pewen zakład produkcyjny zatrudna pracownków fzycznych. Ich wydajność pracy (Y w szt./h) oraz mesęczne wynagrodzene (X w tys. zł) przedstawa ponższa tabela: Pracownk y x A

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Proste modele ze złożonym zachowaniem czyli o chaosie

Proste modele ze złożonym zachowaniem czyli o chaosie Proste modele ze złożonym zachowanem czyl o chaose 29 kwetna 2014 Komputer jest narzędzem coraz częścej stosowanym przez naukowców do ukazywana skrzętne ukrywanych przez naturę tajemnc. Symulacja, obok

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo