PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

Wielkość: px
Rozpocząć pokaz od strony:

Download "PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE"

Transkrypt

1 PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów. W zwązku z tym występuje naturalne zanteresowane ze strony badaczy metodam analzy danych, które umożlwają loścową ocenę zwązków występujących pomędzy różnym aspektam badanych zjawsk procesów. Stosunkowo najczęścej do tego celu wykorzystywane są metody regresj lnowej prostej welorakej. W opracowanu przedstawono krótko deę metody regresj lnowej, sposób jej doboru oraz zagadnene nterpretacj oszacowanego modelu. W drugej częśc zaprezentowano przykłady analz przeprowadzonych z użycem narzędz dostępnych w środowsku programu STATISTICA. Wprowadzene Jednym z najczęstszych powodów stosowana metod statystycznej analzy danych jest poszukwane przyczyn mających wpływ na nteresujące badacza zjawska. Przykładowo dla ekonomsty może być nteresujące stwerdzene, jake czynnk kształtują sprzedaż wybranych produktów lub usług. Lekarz jest zanteresowany poszukwanem czynnków wpływających na stan klnczny pacjentów, u których zdagnozowano pewną jednostkę chorobową. W badanach pedagogcznych celem może być poszukwane czynnków, które wpływają na wynk egzamnu. Z kole socjologa może nteresować, jake czynnk są odpowedzalne za poparce kandydatów w wyborach. Praktyczne w każdej dzedzne badań emprycznych można bez trudu podać dalsze przykłady zagadneń stawanych w podobny sposób. Zazwyczaj mamy do czynena z sytuacją, w której nteresujące nas aspekty badanych zjawsk zależą od całego szeregu czynnków, traktowanych jako potencjalne przyczyny (wybór takch potencjalnych przyczyn jest oczywśce łatwejszy w tych dzedznach badań, w których stneje dobrze ugruntowana teora). Bardzo często trudno jest stwerdzć, w jak sposób określone przyczyny kształtują wybrane przez badacza lub analtyka skutk. Kolejnym problemem jest fakt, ż brane pod uwagę czynnk ne są od sebe nezależne, lecz są nawzajem w różny sposób od sebe uzależnone. W zwązku z tym badacz śwadome wybera podejśce polegające na uproszczenu badanych powązań. Copyrght StatSoft Polska

2 Opsywaną sytuację można przedstawć ogólne za pomocą zapsu: Skutek Przyczyna(y) Bardzej formalny sposób podejśca do rozważanego problemu prowadz do sformułowana jednokerunkowej zależnośc w postac funkcj: S f (P) Najprostszą postacą takego równana jest funkcja lnowa, w przypadku której przyjmujemy, że S jest proporcjonalne do P. Przyjęce lnowej postac zależnośc pozwala w łatwy sposób przedstawć grafczne rozważany problem. Ponżej na dwuwymarowym wykrese rozrzutu zaprezentowano przykładowy obraz zależnośc mędzy welkoścam S P. Każdy punkt wykresu oznacza pojedynczy obekt (obserwację, pomar). Rys. 1. Wykres lustrujący powązane pomędzy welkoścam S P. Położene punktów na wykrese wskazuje na występowane wyraźnej prawdłowośc (tendencj). Jednocześne wdać, że prawdłowość ta ne może być opsana wyłączne za pomocą zwykłej funkcj lnowej. Model regresj lnowej prostej Jedno z możlwych rozwązań wskazanego powyżej problemu polega na wprowadzenu do determnstycznego równana S = f (P) zmennej losowej założenu, że rzeczywsta zależność S od P ma charakter stochastyczny [6]. Zmenna losowa to tzw. składnk losowy, którego zadanem jest odzwercedlene w modelu neprzewdywanego elementu losowośc (zwązanego np. z ludzkm zachowanam), wpływu welu pomnętych 32 Copyrght StatSoft Polska 2011

3 w modelu zmennych oraz błędów pomaru welkośc S. W ten sposób otrzymujemy równane (model), które możemy w ogólnej postac zapsać jako: Y f ( X, ) Jest to model regresj lnowej prostej. W modelu tym Y oznacza zmenną zależną 1 lub objaśnaną, X to zmenna nezależna lub objaśnająca. W klasycznej analze regresj wprowadza sę klka założeń [6]. Najważnejsze z nch to: model zakłada stablność relacj f mędzy badanym zjawskam, model jest lnowy względem parametrów Y 0 1 X, gdze 0 1 to tzw. parametry strukturalne modelu, 2 składnk losowy jest zmenną losową o rozkładze normalnym N (0, ). Założene stablnośc relacj jest bardzo naturalne. Uchylene tego założena prowadz do model o parametrach zmennych w czase lub model przełącznkowych. Lnowa postać badanej funkcj umożlwa wykorzystane stosunkowo prostych metod estymacj. Założene normalnośc rozkładu składnka losowego pozwala przeprowadzć wnoskowane statystyczne, poneważ odpowedne statystyk mają wówczas pożądane rozkłady (np. t-studenta, F). Innym słowy można powedzeć, że ze względu na złożoność badanych zjawsk pojawają sę trudnośc w odwzorowanu rzeczywstych mechanzmów odpowedzalnych za ch przebeg. Potrzebne jest zatem uproszczene. Uproszczone odwzorowane rzeczywstych współzależnośc pomędzy badanym zjawskam wymaga od badacza umejętnego wydobyca stoty mechanzmu generującego dane przekształcene go do postac umożlwającej zastosowane podejśca statystycznego. Sprowadza sę to do przyjęca określonej matematycznej formuły, ujmującej powązana pomędzy zmennym oraz założeń o losowych procesach, wpływających na wynk pojedynczych pomarów [3]. Warto jeszcze raz zwrócć uwagę na to, że przy próbe loścowego opsu powązań potrzebne jest rozróżnene dwóch typów zależnośc: determnstycznej (funkcyjnej), która każdej wartośc zmennej x przyporządkowuje jedną tylko jedną wartość zmennej y, oraz statystycznej (probablstycznej), która ne przyporządkowuje jednoznaczne wartośc y danym wartoścom x, ale może być precyzyjne opsana za pomocą metod probablstycznych [4]. Jak doberana jest lna regresj? Borąc pod uwagę rozmeszczenu punktów na wykrese pokazane na rys. 1, można zaproponować wele różnych sposobów doboru prostej, która opsywałaby obserwowaną prawdłowość. Najprostsza z tych metod mogłaby polegać na posłużenu sę zwykłą lnjką 1 W ksążce Maddal [4] na str 96 zameszczono zestawene nnych nazw używanych dla zmennych Y X. Copyrght StatSoft Polska

4 dopasowanu prostej na oko w tak sposób, aby poszczególne obserwacje leżały blsko nej. Oczywśce potrzebne jest bardzej formalne kryterum, ale sama dea dopasowana jest właścwe bardzo podobna. Lna regresj będąca grafcznym odpowednkem modelu regresj jest tak doberana, aby welkość będąca sumą kwadratów odległośc wszystkch punktów emprycznych od odpowednch punktów na ln regresj była jak najmnejsza (rys. 2). Rys. 2. Wykres lustrujący kryterum doboru ln regresj. Opsane kryterum jest określane nazwą: metoda najmnejszych kwadratów (MNK). Kryterum to można formalne zapsać jako: n 1 ( y yˆ ) 2 mn Praktycznym efektem zastosowana tego kryterum jest możlwość oszacowana parametrów strukturalnych modelu regresj ( 0 1 ), które charakteryzują sę pożądanym własnoścam. Od czego zacząć nterpretację? Po oszacowanu parametrów strukturalnych otrzymuje sę ch oceny w próbe w zwązku z tym model regresj możemy zapsać w postac: yˆ b b x, 0 1 gdze ŷ oznacza wartość przewdywaną zmennej zależnej, a b0 b 1 to oceny parametrów strukturalnych modelu. 34 Copyrght StatSoft Polska 2011

5 Welkość b 0 oznacza współrzędną y-ową punktu przecęca dopasowanej ln regresj z osą OY, natomast b 1 jest współczynnkem nachylena ln regresj do os OX. Pokazano to na ponższym rysunku. Rys. 3. Interpretacja ocen parametrów strukturalnych modelu regresj lnowej. Przy wnoskowanu statystycznym o parametrach strukturalnych modelu sprawdza sę, czy parametry te stotne różną sę od zera. W tym celu korzysta sę z rozkładu statystyk t-studenta. W praktyce wększe znaczene ma ocena stotnośc parametru 1, którego ocena z próby mów o tym, jakego przecętnego przyrostu wartośc zmennej zależnej możemy sę spodzewać, przy założenu przyrostu wartośc zmennej nezależnej o 1 jednostkę. Jak sprawdzć, czy model dobrze pasuje do danych? Do oceny dopasowana modelu do danych emprycznych stosowanych jest wele różnych statystyk dagnostycznych. Jedną z najczęścej stosowanych jest współczynnk determnacj, oznaczany przez R 2. Oblcza sę go ze wzoru: R n 2 1 n 1 2 ( yˆ y) 2 ( y y) gdze ŷ oznacza wartość przewdywaną zmennej zależnej, a y średną wartość zmennej zależnej y. Copyrght StatSoft Polska

6 Lcznk powyższego ułamka określa zmenność welkośc ŷ, a manownk merzy zmenność obserwowanych wartośc y. Współczynnk R 2 jest węc marą stopna, w jakm model wyjaśna kształtowane sę zmennej y. Przyjmuje on wartośc z przedzału [0; 1]. Im jego wartość jest blższa 1, tym dopasowane modelu do danych jest lepsze. Inna mara zgodnośc modelu z danym emprycznym opera sę na warancj składnka losowego. Punktem wyjśca są w tym przypadku tzw. reszty modelu. Reszta, która odpowada -tej obserwacj, wyraża sę wzorem: e y yˆ, gdze =1, 2,..., n Ocena warancj składnka losowego, tzw. warancja resztowa, jest oblczana według wzoru: S 2 e n 2 e 1 n k 1 gdze: n oznacza lczbę obserwacj, a k lczbę zmennych objaśnających w modelu. Perwastek z warancj resztowej, czyl odchylene standardowe reszt S e (zwany także błędem standardowym estymacj), jest powszechne stosowaną marą zgodnośc modelu z danym emprycznym. Welkość ta wskazuje na przecętną różncę mędzy zaobserwowanym wartoścam zmennej objaśnanej wartoścam teoretycznym. Jest to welkość manowana (mano tej welkośc jest take samo jak zmennej objaśnanej). Na jej podstawe można równeż oblczyć marę nemanowaną, a manowce tzw. współczynnk zmennośc losowej, który określa wzór: Se W y Współczynnk ten nformuje o tym, jaką część średnej wartośc zmennej objaśnanej stanow błąd standardowy estymacj, jest zazwyczaj wyrażany w procentach. A co z założenam? Poprawność wynków analzy regresj zależy od tego, w jakm stopnu są spełnone jej najważnejsze założena. Wyczerpujący ops oraz dyskusję założeń klasycznej analzy regresj, konsekwencje ch nespełnena oraz omówene zalecanych sposobów postępowana można znaleźć w podręcznku Welfego [6]. W nnejszym opracowanu zwrócmy uwagę na założena dotyczące składnka losowego ( ). Najważnejsze z nch dotyczy normalnośc rozkładu. Jak to zostało już wspomnane wcześnej, spełnene tego założena pozwala przeprowadzć wnoskowane statystyczne, poneważ odpowedne statystyk mają wówczas pożądane rozkłady (np. t-studenta, F). W częśc zawerającej ops przykładów analzy regresj zostane przedstawony sposób sprawdzana normalnośc rozkładu składnka losowego. 36 Copyrght StatSoft Polska 2011

7 Przykład analzy regresj lnowej prostej w STATISTICA Dla zlustrowana kolejnych etapów budowy modelu regresj lnowej prostej w środowsku programu STATISTICA wykorzystano wynk oceny 25 marek paperosów różnych producentów, przeprowadzanej coroczne przez Federalną Komsję Handlu w USA [5]. Ocene podlegały m.n. take nformacje, jak lość tlenku węgla zawartego w dyme paperosowym oraz zawartość nkotyny substancj smolstych. Znana jest powszechne szkodlwość tych substancj dla zdrowa palaczy. Ponadto wynk badań wskazują na to, że zwększene zawartośc nkotyny substancj smolstych wąże sę ze zwększenem lośc tlenku węgla w dyme paperosowym. Dane te posłużyły do wstępnej oceny powązań występujących pomędzy branym pod uwagę zmennym oraz budowy modelu regresj lnowej prostej. Ilość tlenku węgla w dyme paperosowym została potraktowana jako zmenna zależna (objaśnana), natomast zawartość nkotyny substancj smolstych jako potencjalne zmenne nezależne (objaśnające). Przy okazj został pokazany wpływ jednej netypowej obserwacj oraz zjawsko współlnowośc zmennych nezależnych. Przy wstępnej ocene charakteru sły badanych powązań warto posłużyć sę dwuwymarowym wykresam rozrzutu. Zgodne z powszechne przyjmowaną konwencją na wykrese takm na os OY umeszczane są wartośc zmennej zależnej, a na os OX wartośc zmennej nezależnej. Wykresy zostały przedstawone ponżej. Rys. 4. Powązane zawartośc tlenku węgla z zawartoścą nkotyny substancj smolstych. Położene punktów na wykresach wskazuje na występowane wyraźnego powązana zawartośc nkotyny substancj smolstych z zawartoścą tlenku węgla w dyme paperosowym. Ponadto charakter powązana wskazuje na możlwość dopasowana do danych funkcj lnowej. Jednocześne na obu wykresach łatwo zauważyć jedną obserwację netypową (odstającą, skrajną, ang. outler) wyraźne odbegającą od pozostałych (powrócmy do tej sprawy w dalszej częśc opracowana). W kolejnym kroku analzy zostaną zbudowane dwa odrębne modele dla każdej ze zmennych nezależnych. Copyrght StatSoft Polska

8 W trakce budowy modelu regresj program STATISTICA udostępna równeż analtyczne narzędza oceny badanych powązań. Zameszczona ponżej tabela zawera współczynnk korelacj pomędzy branym pod uwagę zmennym. Rys. 5. Korelacje pomędzy zmennym. Otrzymane wartośc współczynnków korelacj lnowej Pearsona potwerdzają występowane slnych dodatnch korelacj pomędzy zawartoścą tlenku węgla a zawartoścą nkotyny (r = 0,926) substancj smolstych (r = 0,957). Na tej podstawe możemy stwerdzć, że obydwe analzowane zmenne nezależne mogą być brane pod uwagę jako potencjalne predyktory przy modelowanu badanych powązań. Wynk w tabel wskazują ponadto na występowane współlnowośc zmennych nezależnych. Na ogół jest ono spowodowane tym, że zmenne charakteryzujące badane zjawska są ze sobą mocno powązane lub też jest to zwązane ze specyfką zboru danych, wykorzystywanego do estymacj parametrów modelu regresj. Welfe [2009] rozróżna dwa rodzaje współlnowośc: dokładną przyblżoną. Jednym z prostych sposobów postępowana z takm zmennym jest usunęce jednej ze skorelowanych zmennych. Omówene różnych podejść stosowanych w przypadku stwerdzena slnej współlnowośc można znaleźć u Welfego [2009] Maddal [2006]. W opsywanym przykładze zbudowano porównano dwa odrębne modele dla każdej ze zmennych nezależnych. Rys. 6. Wynk analzy regresj. Wynk analzy pozwalają stwerdzć, że model regresj uwzględnający zmenną nezależną Nkotyna [mg] pozwala wyjaśnć ponad 85% warancj zmennej Tlenek węgla [mg]. Przecętna różnca pomędzy rzeczywstym wartoścam zmennej zależnej wartoścam przewdywanym przez model wynosła 1,83 mg (stanow to 14,6% średnej dla zmennej zależnej). Wysoka wartość statystyk F (138,27) odpowadający jej pozom prawdopodobeństwa p (p<0,001) potwerdzają statystyczną stotność modelu lnowego. Wartość statystyk t, wykorzystywana do oceny stotnośc współczynnka regresj ( 1 ), oraz 38 Copyrght StatSoft Polska 2011

9 odpowadający jej pozom prawdopodobeństwa p potwerdzają, że parametr ten stotne różn sę od zera. Interpretując oszacowaną wartość oceny tego parametru (12,4), możemy stwerdzć, że zwększene zawartośc nkotyny o 1 mg powoduje zwększene zawartośc tlenku węgla w dyme paperosowym o 12,4 mg. Z kole wyraz wolny w modelu ( 0 ) nestotne różn sę od zera (oznacza to, że lna regresj przechodz bardzo blsko środka układu współrzędnych). Drug z otrzymanych model, uwzględnający zmenną nezależną Subst smolste [mg], wyjaśna ponad 91% warancj zmennej Tlenek węgla [mg]. Tym razem przecętna różnca pomędzy rzeczywstym wartoścam zmennej zależnej wartoścam przewdywanym była neco nższa wynosła 1,4 mg (stanow to 11,2% średnej dla zmennej zależnej). Wysoka wartość statystyk F (253,37) odpowadający jej pozom prawdopodobeństwa p (p<0,001) równeż potwerdzają statystyczną stotność modelu lnowego. Wartośc statystyk t, wykorzystywane do oceny stotnośc współczynnka regresj wyrazu wolnego, oraz odpowadające m pozomy prawdopodobeństwa p potwerdzają, że parametry te stotne różną sę od zera. Ponadto otrzymana wartość oceny współczynnka regresj (0,8) pozwala na stwerdzene, że zwększene zawartośc substancj smolstych o 1 mg powoduje zwększene zawartośc tlenku węgla w dyme paperosowym o 0,8 mg. Ponżej zameszczono równeż wykresy lustrujące zbudowane modele. Rys. 7. Wykresy rozrzutu z dopasowanym lnam regresj. Obydwa wykresy potwerdzają bardzo dobre dopasowane ln regresj (oznaczonych lną cągłą) do rzeczywstych danych. Ponadto na wykresach zostały równeż przedstawone krzywe (oznaczone lną przerywaną), wyznaczające 95% przedzały ufnośc dla wartośc oczekwanych modelowanej zmennej zależnej. W trakce wstępnej analzy danych zauważono wystąpene jednej obserwacj netypowej. Zazwyczaj obserwacje take mają wpływ na wynk analzy. Ponżej dla porównana zameszczono tabele z wynkam analzy regresj przeprowadzonej po wykluczenu netypowej obserwacj. Copyrght StatSoft Polska

10 Rys. 8. Wynk analzy regresj po usunęcu jednej netypowej obserwacj. Otrzymane modele wyjaśnają dodatkowo ponad 1% warancj modelowanej zmennej zależnej. Dość znacznym zmanom uległy natomast oceny wyrazów wolnych współczynnków regresj. Ponadto wyraźne spadły wartośc błędów standardowych estymacj, co oznacza, że modele mają lepsze własnośc prognostyczne. Należy jednak wyraźne podkreślć, że usunęce każdej obserwacj netypowej mus zawsze być odpowedno uzasadnone względam merytorycznym [1]. W ostatnej częśc przykładu sprawdzmy spełnene założena dotyczącego normalnośc rozkładu składnka losowego. W tym celu utworzono wykres normalnośc reszt oraz przeprowadzono test Shapro-Wlka (rys. 9). Wynk dotyczą modelu uwzględnającego zmenną nezależną Nkotyna. Rys. 9. Wykres normalnośc reszt wynk testu Shapro-Wlka. Położene punktów na wykrese oraz wynk testu analtycznego wskazują na brak podstaw do kwestonowana normalnośc rozkładu składnka losowego. 40 Copyrght StatSoft Polska 2011

11 Przykład analzy regresj lnowej welorakej W drugm z prezentowanych przykładów do lustracj budowy modelu regresj welorakej zostane wykorzystany zbór danych zawerający wynk pomarów procentowej zawartośc tkank tłuszczowej (uzyskane z zastosowanem technk ważena pod wodą) oraz pomary wybranych cech somatycznych (główne wymary obwodów określonych częśc cała) zebrane dla 252 dorosłych mężczyzn [2]. Znaczene zawartośc tkank tłuszczowej w składze cała wynka z faktu, ż zbyt wysoka lość tkank tłuszczowej może być przyczyną problemów zdrowotnych zwązanych z układem krążena, cukrzycą typu II, znaczne podnos pozom cholesterolu (w konsekwencj prowadz do mażdżycy) nnych poważnych schorzeń. Natomast jeżel pozom tkank tłuszczowej utrzymywany jest w norme, to człowek pozostaje w dobrym zdrowu, ma lepsze samopoczuce, czuje sę lekk szczuplejszy. Ze względu na trudnośc z bezpośrednm pomarem lośc tkank tłuszczowej opracowano wele pośrednch metod oceny stanu otłuszczena. Wszystke te metody wykorzystują różnego rodzaju pomary cech budowy cała lub tworzone na ch podstawe wskaźnk. Merytorycznym celem opsywanego przykładu jest budowa modelu służącego do szacowana procentowej zawartośc tkank tłuszczowej, wykorzystującego pomary cech budowy cała otrzymywane z wykorzystanem prostych narzędz pomarowych: wag taśmy mernczej. Przy budowe modelu regresj pomar zawartośc tkank tłuszczowej przeprowadzony technką ważena pod wodą zostane potraktowany jako zmenna zależna (objaśnana), a wek, pomary wag wzrostu oraz obwody jako potencjalne zmenne nezależne (objaśnające). W przypadku budowana modelu regresj welorakej pojawa sę problem sposobu doboru lczby zmennych objaśnających (nezależnych), które mają zostać uwzględnone w modelu. Lczba zmennych objaśnających wynka ze znajomośc badanej problematyk. Badacz ne pownen tłumaczyć sę, że powodem neuwzględnena określonej zmennej objaśnającej była neznajomość jej wpływu na zmenną objaśnaną (zależną) lub neodpowedna welkość próby czy też newłaścwy pomar wartośc tej zmennej. Ważną rzeczą jest skuteczność, a model regresyjny bez zmennych, które powodują systematyczne zmany zmennej zależnej Y, jest neprawdzwy, a ponadto prowadz do obcążonych estymatorów parametrów modelu. Istotność nektórych zmennych ustala sę metodam statystycznym, jednak ne można tym zastąpć analzy merytorycznej. Statystyczna analza zboru zmennych objaśnających dotyczy zmnejszana lczby tych zmennych. Model uwzględnający zbyteczne zmenne charakteryzuje sę gorszym własnoścam numerycznym jakość estymatorów jest zwykle gorsza z powodu wększych błędów występowana ntensywnejszych wzajemnych zależnośc wśród zmennych objaśnających. Wśród metod doboru zmennych do modelu wyróżnamy: standardową, krokowe, wprowadzana lub usuwana zmennych oraz wszystkch możlwych regresj. W nnejszym opracowanu przedstawono wynk budowana modelu metodą regresj krokowej wstecznej oraz wszystkch możlwych regresj. W perwszej z tych metod w perwszym etape budowany jest model zawerający wszystke dostępne zmenne nezależne. Następne Copyrght StatSoft Polska

12 w kolejnych etapach usuwane są kolejne najmnej stotne zmenne nezależne, aż do uzyskana modelu uwzględnającego tylko zmenne nezależne stotne. Na samym początku warto przyjrzeć sę korelacjom wszystkch zmennych nezależnych z modelowaną zmenną zależną. Rys. 10. Współczynnk korelacj zmennej zależnej ze zmennym nezależnym oraz w obrębe zmennych nezależnych. Jak wdać, stosunkowo najmocnejsze powązane z otłuszczenem cała wykazuje obwód brzucha (r=0,825), BMI (r=0,748) oraz obwód klatk persowej (r=0,701). Jednocześne wdać wyraźne, że nektóre ze zmennych nezależnych są równeż mocno powązane ze sobą (np. współczynnk korelacj pomędzy obwodem boder wagą wynos 0,929). W zwązku z tym zmenne te będą sę nawzajem elmnować w kolejnych etapach budowy modelu. Ponżej przedstawono końcowe wynk ostatecznego modelu, do którego weszły zmenne: Wek, Obwód brzucha oraz Obwód nadgarstka. Rys. 11. Współczynnk korelacj zmennej zależnej ze zmennym nezależnym oraz w obrębe zmennych nezależnych. Na podstawe otrzymanych wynków stwerdzamy, że zbudowany model pozwala wyjaśnć około 73% zmennośc modelowanej zmennej zależnej. Wartość statystyk F odpowadający jej pozom prawdopodobeństwa testowego p potwerdzają stotny statystyczne zwązek lnowy. Ponadto wartośc statystyk t wskazują, że wyraz wolny współczynnk regresj stotne różną sę od zera. Interpretując oszacowaną wartość ocen poszczególnych parametrów, możemy stwerdzć, że z każdym rokem otłuszczene cała rośne przecętne o 0,07% (przy nezmenonych wartoścach pozostałych zmennych nezależnych, zasada ceters parbus [1, 4, 6]). Z kole 42 Copyrght StatSoft Polska 2011

13 zwększene obwodu brzucha o jedną jednostkę powoduje zwększene otłuszczena cała o 0,72% (równeż przy ustalonych wartoścach pozostałych zmennych). Dość zaskakująco wypada nterpretacja oceny współczynnka regresj przy zmennej Obwód nadgarstka. Zwększene jej wartośc o jedną jednostkę powoduje zmnejszene otłuszczena cała o 2,2% (równeż przy ustalonych wartoścach pozostałych zmennych). Przy wykorzystanu modelu do szacowana rzeczywstego otłuszczena cała na podstawe weku prostych cech budowy cała (obwód brzucha obwód nadgarstka) przecętny błąd wynos 4 %. Pewne ogranczene podejśca wykorzystującego poszukwane metodą regresj krokowej polega na przyjęcu, że stneje jeden najlepszy podzbór zmennych nezależnych poszukwanu metody jego dentyfkacj. Często zachodz sytuacja, gdy ne ma jednego najlepszego podzboru. W zwązku z tym nektórzy statystycy sugerują, że można następne spróbować dopasować modele metodą wszystkch możlwych regresj, zawerające podobną lczbę zmennych nezależnych jak w przypadku rozwązana metodą regresj krokowej, aby zbadać, czy przypadkem nektóre nne podzbory zmennych ne są lepsze. Rozumowane to sugeruje, że po znalezenu rozwązana metodą krokową, pownen zostać zbadany najlepszy ze wszystkch możlwych podzborów o tej samej lczbe efektów, w celu sprawdzena, czy rozwązane uzyskane metodą krokową jest rzeczywśce najlepsze. Ponżej przedstawono zborcze wynk budowy model o lczbe zmennych nezależnych od 1 do 6. Dla każdej lczby zmennych nezależnych przedstawono wynk trzech najlepszych model, przy przyjęcu jako kryterum wartośc współczynnka determnacj R 2. Zameszczona ponżej tabela zawera nformację o wartośc współczynnka determnacj dla danego modelu, lczbe uwzględnonych zmennych nezależnych oraz standaryzowane współczynnk regresj dla zmennych, które weszły do modelu. Rys. 12. Zborcze podsumowane wynków analzy regresj metodą wszystkch możlwych regresj. Zawarte w tabel wynk pozwalają na porównane różnych model o różnej lczbe uwzględnanych zmennych nezależnych. W ten sposób badacz może na przykład Copyrght StatSoft Polska

14 w stosunkowo łatwy sposób uwzględnć koszty uzyskana danych o poszczególnych zmennych nezależnych. Jak wdać, model zbudowany poprzedno przy pomocy metody krokowej wstecznej znalazł sę w tym zestawenu pod pozycją 12. Podsumowane W rzeczywstych badanach często podejmowane jest zagadnene oceny loścowych zwązków mędzy różnym aspektam zjawsk. Celem takch analz jest zazwyczaj chęć lepszego ch poznana (potwerdzene lub obalene formułowanych w teor hpotez), możlwość przewdywana rozwoju badanych zjawsk lub procesów, czy wreszce wykorzystane znajomośc loścowych zależnośc do symulacj [1]. Dla zrealzowana tak postawonych celów nezbędne jest odwołane sę do teor badanego zjawska, dostęp do wyróżnonych w opse zjawska danych, znajomość metody umożlwającej odwzorowane hpotez teoretycznych za pomocą zgromadzonych danych statystycznych oraz wedza potrzebna do tego, aby stwerdzć, w jakm stopnu to odwzorowane sę udało. Lteratura 1. Ekonometra badana operacyjne. Podręcznk dla studów lcencjackch, pod red. naukową M. Gruszczyńskego, T. Kuszewskego M. Podgórskej (2009), PWN. 2. Johnson R. W. (1996), Fttng Percentage of Body Fat to Smple Body Measurements, Journal of Statstcs Educaton v. 4, n. 1 (www.amstat.org/publcatons/jse/v4n1/datasets.johnson.html). 3. Krzanowsk W. J. (1998), An Introducton to Statstcal Modellng, Arnold. 4. Maddala G. S. (2006), Ekonometra, PWN. 5. McIntyre L. (1994), Usng Cgarette Data for An Introducton to Multple Regresson, Journal of Statstcs Educaton v. 2, n. 1 (www.amstat.org/publcatons/jse/v2n1/datasets.mcntyre.html). 6. Welfe A. (2009), Ekonometra. Metody ch zastosowane, PWE. 44 Copyrght StatSoft Polska 2011

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Metody predykcji analiza regresji

Metody predykcji analiza regresji Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..

Bardziej szczegółowo

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36, T. 1 Barbara Batóg *, Jacek Batóg ** Unwersytet Szczecńsk ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki Metody Planowana Eksperymentów Rozdzał 1. Strona 1 z 14 METODY PLANOWANIA EKSPERYMENTÓW dr hab. nż. Marusz B. Bogack Marusz.Bogack@put.poznan.pl www.fct.put.poznan.pl/cv23.htm Marusz B. Bogack 1 Metody

Bardziej szczegółowo

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20 Darusz Letkowsk Unwersytet Łódzk BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG0 Wprowadzene Teora wyboru efektywnego portfela nwestycyjnego zaproponowana przez H. Markowtza oraz jej rozwnęca

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO WSKAŹNIK OCENY SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO Dagmara KARBOWNICZEK 1, Kazmerz LEJDA, Ruch cała człoweka w samochodze podczas wypadku drogowego zależy od sztywnośc nadwoza

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Alcja Wolny-Domnak Unwersytet Ekonomczny w Katowcach MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Wprowadzene

Bardziej szczegółowo

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO 3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.

Bardziej szczegółowo

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji.

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji. Zakład Systemów Zaslana (Z-5) Opracowane nr 323/Z5 z pracy statutowej pt. Opracowane metody predykcj czasu życa bater na obekce oceny jej aktualnego stanu na podstawe analzy beżących parametrów jej eksploatacj.

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU

ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU Studa Ekonomczne ZESZYTY NAUKOWE WYDZIAŁOWE UNIWERSYTETU EKONOMICZNEGO W KATOWICACH ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU

Bardziej szczegółowo

WYBRANE METODY TWORZENIA STRATEGII ZRÓWNOWAŻONEGO TRANSPORTU MIEJSKIEGO SELECTED METHODS FOR DEVELOPING SUSTAINABLE URBAN TRANS- PORT STRATEGIES

WYBRANE METODY TWORZENIA STRATEGII ZRÓWNOWAŻONEGO TRANSPORTU MIEJSKIEGO SELECTED METHODS FOR DEVELOPING SUSTAINABLE URBAN TRANS- PORT STRATEGIES Zbgnew SKROBACKI WYBRANE METODY TWORZENIA STRATEGII ZRÓWNOWAŻONEGO TRANSPORTU MIEJSKIEGO SELECTED METHODS FOR DEVELOPING SUSTAINABLE URBAN TRANS- PORT STRATEGIES W artykule przedstawone systemowe podejśce

Bardziej szczegółowo

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model Jadwga LAL-JADZIAK Unwersytet Zelonogórsk Instytut etrolog Elektrycznej Elżbeta KAWECKA Unwersytet Zelonogórsk Instytut Informatyk Elektronk Ocena dokładnośc estymacj funkcj korelacyjnych z użycem modelu

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

OKREŚLENIE CZASU MIESZANIA WIELOSKŁADNIKOWEGO UKŁADU ZIARNISTEGO PODCZAS MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW

OKREŚLENIE CZASU MIESZANIA WIELOSKŁADNIKOWEGO UKŁADU ZIARNISTEGO PODCZAS MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW Inżynera Rolncza 8(96)/2007 OKREŚLENIE CZASU MIESZANIA WIELOSKŁADNIKOWEGO UKŁADU ZIARNISTEGO PODCZAS MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW Jolanta Królczyk, Marek Tukendorf Katedra Technk Rolnczej Leśnej,

Bardziej szczegółowo

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych NAFTA-GAZ styczeń 2011 ROK LXVII Anna Rembesa-Śmszek Instytut Nafty Gazu, Kraków Andrzej Wyczesany Poltechnka Krakowska, Kraków Zastosowane symulatora ChemCad do modelowana złożonych układów reakcyjnych

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Sera: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 1905 Adranna MASTALERZ-KODZIS Unwersytet Ekonomczny w Katowcach OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

Kierownik Katedry i Kliniki: prof. dr hab. Bernard Panaszek, prof. zw. UMW. Recenzja

Kierownik Katedry i Kliniki: prof. dr hab. Bernard Panaszek, prof. zw. UMW. Recenzja KATEDRA KLINIKA CHORÓB WEWNĘTRZNYCHYCH GERIATRII ALERGOLOGU Unwersytet Medyczny m. Pastów Śląskch we Wrocławu 50-367 Wrocław, ul. Cure-Skłodowskej 66 Tel. 71/7842521 Fax 71/7842529 E-mal: bernard.panaszek@umed.wroc.pl

Bardziej szczegółowo

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH Poltechnka Gdańska Wydzał Inżyner Lądowej Środowska Katedra ydrotechnk mgr nż. Wojcech Artchowcz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁAC OTWARTYC PRACA DOKTORSKA Promotor: prof. dr

Bardziej szczegółowo

MINISTER EDUKACJI NARODOWEJ

MINISTER EDUKACJI NARODOWEJ 4 MINISTER EDUKACJI NARODOWEJ DWST WPZN 423189/BSZI13 Warszawa, 2013 -Q-4 Pan Marek Mchalak Rzecznk Praw Dzecka Szanowny Pane, w odpowedz na Pana wystąpene z dna 28 czerwca 2013 r. (znak: ZEW/500127-1/2013/MP),

Bardziej szczegółowo

Zmodyfikowana technika programowania dynamicznego

Zmodyfikowana technika programowania dynamicznego Zmodyfkowana technka programowana dynamcznego Lech Madeysk 1, Zygmunt Mazur 2 Poltechnka Wrocławska, Wydzał Informatyk Zarządzana, Wydzałowy Zakład Informatyk Wybrzeże Wyspańskego 27, 50-370 Wrocław Streszczene.

Bardziej szczegółowo

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Grzegorz PRZEKOTA ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Zarys treśc: W pracy podjęto problem dentyfkacj cykl gełdowych.

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.

Bardziej szczegółowo

Analiza ryzyka jako instrument zarządzania środowiskiem

Analiza ryzyka jako instrument zarządzania środowiskiem WARSZTATY 2003 z cyklu Zagrożena naturalne w górnctwe Mat. Symp. str. 461 466 Elżbeta PILECKA, Małgorzata SZCZEPAŃSKA Instytut Gospodark Surowcam Mneralnym Energą PAN, Kraków Analza ryzyka jako nstrument

Bardziej szczegółowo

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ Jan JANKOWSKI *), Maran BOGDANIUK *),**) SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ W referace przedstawono równana ruchu statku w warunkach falowana morza oraz

Bardziej szczegółowo

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Problematyka walidacji metod badań w przemyśle naftowym na przykładzie benzyn silnikowych

Problematyka walidacji metod badań w przemyśle naftowym na przykładzie benzyn silnikowych NAFTA-GAZ luty 013 ROK LXIX Zygmunt Burnus Instytut Nafty Gazu, Kraków Problematyka waldacj metod badań w przemyśle naftowym na przykładze benzyn slnkowych Wprowadzene Waldacja metody badawczej to szereg

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Wpływ płynności obrotu na kształtowanie się stopy zwrotu z akcji notowanych na Giełdzie Papierów Wartościowych w Warszawie

Wpływ płynności obrotu na kształtowanie się stopy zwrotu z akcji notowanych na Giełdzie Papierów Wartościowych w Warszawie Agata Gnadkowska * Wpływ płynnośc obrotu na kształtowane sę stopy zwrotu z akcj notowanych na Gełdze Paperów Wartoścowych w Warszawe Wstęp Płynność aktywów na rynku kaptałowym rozumana jest przez nwestorów

Bardziej szczegółowo

WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH

WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH SCRIPTA COMENIANA LESNENSIA PWSZ m. J. A. Komeńskego w Leszne R o k 0 0 8, n r 6 TOMASZ ŚWIST* WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH

Bardziej szczegółowo

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Mara Konopka Katedra Ekonomk Organzacj Przedsęborstw Szkoła Główna Gospodarstwa Wejskego w Warszawe Analza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Wstęp Polska prywatyzacja

Bardziej szczegółowo

Ryzyko inwestycji. Ryzyko jest to niebezpieczeństwo niezrealizowania celu, założonego przy podejmowaniu określonej decyzji. 3.

Ryzyko inwestycji. Ryzyko jest to niebezpieczeństwo niezrealizowania celu, założonego przy podejmowaniu określonej decyzji. 3. PZEDMIIOT : EFEKTYWNOŚĆ SYSTEMÓW IINFOMTYCZNYCH 3. 3. Istota, defncje rodzaje ryzyka Elementem towarzyszącym każdej decyzj, w tym decyzj nwestycyjnej, jest ryzyko. Wynka to z faktu, że decyzje operają

Bardziej szczegółowo

Szacowanie wartości rynkowej piłkarskich kart zawodniczych przy wykorzystaniu modeli ekonometrycznych

Szacowanie wartości rynkowej piłkarskich kart zawodniczych przy wykorzystaniu modeli ekonometrycznych ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO nr 803 Fnanse, Rynk Fnansowe, Ubezpeczena nr 66 (2014) s. 663 673 Szacowane wartośc rynkowej płkarskch kart zawodnczych przy wykorzystanu model ekonometrycznych

Bardziej szczegółowo

Szymon Chojnacki MODELOWANIE KONIUNKTURY GOSPODARCZEJ Z WYKORZYSTANIEM DANYCH TEKSTOWYCH

Szymon Chojnacki MODELOWANIE KONIUNKTURY GOSPODARCZEJ Z WYKORZYSTANIEM DANYCH TEKSTOWYCH MODELOWANIE KONIUNKTURY GOSPODARCZEJ Z WYKORZYSTANIEM DANYCH TEKSTOWYCH Szymon Chojnack Zakład Wspomagana Analzy Decyzj, Szkoła Główna Handlowa, Warszawa 1 WPROWADZENIE Gospodarka krajów rozwnętych podlega

Bardziej szczegółowo

ANALIZA PRZESTRZENNA PROCESU STARZENIA SIĘ POLSKIEGO SPOŁECZEŃSTWA

ANALIZA PRZESTRZENNA PROCESU STARZENIA SIĘ POLSKIEGO SPOŁECZEŃSTWA TUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Katarzyna Zeug-Żebro * Unwersytet Ekonomczny w Katowcach ANALIZA PRZETRZENNA PROCEU TARZENIA IĘ POLKIEGO POŁECZEŃTWA TREZCZENIE Perwsze prawo

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Zastosowanie hierarchicznej estymacji bayesowskiej w szacowaniu wartości dochodów ludności dla powiatów

Zastosowanie hierarchicznej estymacji bayesowskiej w szacowaniu wartości dochodów ludności dla powiatów Zastosowane herarchcznej estymacj bayesowskej w szacowanu wartośc dochodów ludnośc dla powatów Jan Kuback Ośrodek Statystyk Matematycznej, Urząd Statystyczny w Łodz Herarchczna estymacja bayesowska - wprowadzene

Bardziej szczegółowo

BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM SRM

BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM SRM Zeszyty Problemowe Maszyny Elektryczne Nr 88/2010 13 Potr Bogusz Marusz Korkosz Jan Prokop POLITECHNIKA RZESZOWSKA Wydzał Elektrotechnk Informatyk BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM

Bardziej szczegółowo

TRENDS IN THE DEVELOPMENT OF ORGANIC FARMING IN THE WORLD IN THE YEARS 1999-2012

TRENDS IN THE DEVELOPMENT OF ORGANIC FARMING IN THE WORLD IN THE YEARS 1999-2012 Mara GOLINOWSKA, Mchał KRUSZYŃSKI, Justyna JANOWSKA-BIERNAT Unwersytet Przyrodnczy we Wrocławu, Instytut Nauk Ekonomcznych Społecznych Pl. Grunwaldzk 24A, 50-367 Wrocław e-mal: mara.golnowska@up.wroc.pl

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA. im. Jarosława Dąbrowskiego ROZPRAWA DOKTORSKA RAFAŁ SZYMANOWSKI

WOJSKOWA AKADEMIA TECHNICZNA. im. Jarosława Dąbrowskiego ROZPRAWA DOKTORSKA RAFAŁ SZYMANOWSKI WOJSKOWA AKADEMIA TECHICZA m. Jarosława Dąbrowskego ROZPRAWA DOKTORSKA RAFAŁ SZYMAOWSKI PRECYZYJE LICZIKI CZASU CMOS FPGA Z DWUSTOPIOWĄ ITERPOLACJĄ Promotor prof. dr hab. nż. Józef KALISZ WARSZAWA 003

Bardziej szczegółowo

kosztów ogrzewania lokali w budynku wielolokalowym.

kosztów ogrzewania lokali w budynku wielolokalowym. OGRZEWNICTWO Cepłownctwo, Ogrzewnctwo, Wentylacja 42/9 (2011) 346 350 www.ceplowent.pl Optymalna metoda wyznaczana współczynnków wyrównawczych do ndywdualnego rozlczana kosztów ogrzewana w budynku welolokalowym

Bardziej szczegółowo

Wyznaczanie długości fali światła metodą pierścieni Newtona

Wyznaczanie długości fali światła metodą pierścieni Newtona 013 Katedra Fzyk SGGW Ćwczene 368 Nazwsko... Data... Nr na lśce... Imę... Wydzał... Dzeń tyg.... Ćwczene 368: Godzna.... Wyznaczane długośc fal śwatła metodą perścen Newtona Cechowane podzałk okularu pomarowego

Bardziej szczegółowo

NORMALiZACJA ZMIENNYCH W SKALI PRZEDZIAŁOWEJ I ILORAZOWEJ W REFERENCYJNYM SYSTEMIE GRANICZNYM

NORMALiZACJA ZMIENNYCH W SKALI PRZEDZIAŁOWEJ I ILORAZOWEJ W REFERENCYJNYM SYSTEMIE GRANICZNYM PRZEGLĄD STATYSTYCZNY R. XLIV - ZESZ\'T 1-1997 DANUTA STRAHL, MAREK WALESIAK NORMALZACJA ZMIENNYCH W SKALI PRZEDZIAŁOWEJ I ILORAZOWEJ W REFERENCYJNYM SYSTEMIE GRANICZNYM l. WPROWADZENIE Przy stosowanu

Bardziej szczegółowo

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej:

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej: dr Bartłomej Rokck Ćwczena z Makroekonom I Model ISLM Podstawowe założena modelu: penądz odgrywa ważną rolę przy determnowanu pozomu dochodu zatrudnena nwestycje ne mają charakteru autonomcznego, a ch

Bardziej szczegółowo

KRÓTKIE WPROWADZENIE DO WIZUALIZACJI I ANALIZY FUNKCJONALNEJ DANYCH EKONOMICZNYCH

KRÓTKIE WPROWADZENIE DO WIZUALIZACJI I ANALIZY FUNKCJONALNEJ DANYCH EKONOMICZNYCH KRÓTKIE WPROWADZENIE DO WIZUALIZACJI I ANALIZY FUNKCJONALNEJ DANYCH EKONOMICZNYCH Danel Kosorowsk Katedra Statystyk, UEK w Krakowe Posedzene Rady Wydzału Zarządzana Kraków, 23.05.2013 PLAN REFERATU 1.

Bardziej szczegółowo

ANALIZA DOKŁADNOŚCI WYBRANYCH TECHNIK CAŁKOWO-BRZEGOWYCH W KONTEKŚCIE MODELOWANIA ZAGADNIEŃ EMC NISKIEJ CZĘSTOTLIWOŚCI *)

ANALIZA DOKŁADNOŚCI WYBRANYCH TECHNIK CAŁKOWO-BRZEGOWYCH W KONTEKŚCIE MODELOWANIA ZAGADNIEŃ EMC NISKIEJ CZĘSTOTLIWOŚCI *) Wojcech KRAJEWSKI ANALIZA DOKŁADNOŚCI WYBRANYCH TECHNIK CAŁKOWO-BRZEGOWYCH W KONTEKŚCIE MODELOWANIA ZAGADNIEŃ EMC NISKIEJ CZĘSTOTLIWOŚCI *) STRESZCZENIE W artykule przeprowadzono analzę dokładnośc metod:

Bardziej szczegółowo

ANALIZA WYBRANYCH METOD OCENY SYSTEMÓW BONUS-MALUS

ANALIZA WYBRANYCH METOD OCENY SYSTEMÓW BONUS-MALUS Anna Jędrzychowska Unwersytet Ekonomczny we Wrocławu Wydzał Zarządzana, Informatyk Fnansów Katedra Ubezpeczeń anna.jedrzychowska@ue.wroc.pl Ewa Poprawska Unwersytet Ekonomczny we Wrocławu Wydzał Zarządzana,

Bardziej szczegółowo

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego.

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego. Laboratorum z Podstaw Konstrukcj Maszyn - 1 - Ćw. 1. Wyznaczane wartośc średnego statycznego współczynnka tarca sprawnośc mechanzmu śrubowego. 1. Podstawowe wadomośc pojęca. Połączene śrubowe jest to połączene

Bardziej szczegółowo

Analiza rezerw na niewypłacone odszkodowania i świadczenia z tytułu ubezpieczeń pozostałych osobowych i majątkowych w oparciu o trójkąty szkód

Analiza rezerw na niewypłacone odszkodowania i świadczenia z tytułu ubezpieczeń pozostałych osobowych i majątkowych w oparciu o trójkąty szkód URZĄD KOMSJ NADZORU UBEZPEZEŃ FUNDUSZY EMERYTALNYH Analza rezerw na newypłacone odszkodowana śwadczena z tytułu ubezpeczeń pozostałych osobowych maątkowych w oparcu o trókąty szkód Departament Systemów

Bardziej szczegółowo

Michal Strzeszewski Piotr Wereszczynski. poradnik. Norma PN-EN 12831. Nowa metoda. obliczania projektowego. obciazenia cieplnego

Michal Strzeszewski Piotr Wereszczynski. poradnik. Norma PN-EN 12831. Nowa metoda. obliczania projektowego. obciazenia cieplnego Mchal Strzeszewsk Potr Wereszczynsk Norma PN-EN 12831 Nowa metoda oblczana projektowego. obcazena ceplnego poradnk Mchał Strzeszewsk Potr Wereszczyńsk Norma PN EN 12831 Nowa metoda oblczana projektowego

Bardziej szczegółowo

3.1. ODZIAŁYWANIE DŹWIĘKÓW NA CZŁOWIEKA I OTOCZENIE

3.1. ODZIAŁYWANIE DŹWIĘKÓW NA CZŁOWIEKA I OTOCZENIE 3. KRYTERIA OCENY HAŁASU I DRGAŃ Hałas to każdy dźwęk nepożądany, przeszkadzający, nezależne od jego natury, kontekstu znaczena. Podobne rzecz sę ma z drganam. Oba te zjawska oddzałują nekorzystne na człoweka

Bardziej szczegółowo

OPTYMALIZACJA PROCESU PRZESIEWANIA W PRZESIEWACZACH WIELOPOKŁADOWYCH

OPTYMALIZACJA PROCESU PRZESIEWANIA W PRZESIEWACZACH WIELOPOKŁADOWYCH Prace Naukowe Instytutu Górnctwa Nr 136 Poltechnk Wrocławskej Nr 136 Studa Materały Nr 43 2013 Jerzy MALEWSKI* Marta BASZCZYŃSKA** przesewane, jakość produktów, optymalzacja OPTYMALIZACJA PROCESU PRZESIEWANIA

Bardziej szczegółowo

Wykład IX Optymalizacja i minimalizacja funkcji

Wykład IX Optymalizacja i minimalizacja funkcji Wykład IX Optymalzacja mnmalzacja funkcj Postawene zadana podstawowe dee jego rozwązana Proste metody mnmalzacj Metody teracj z wykorzystanem perwszej pochodnej Metody teracj z wykorzystanem drugej pochodnej

Bardziej szczegółowo

WYKORZYSTANIE SHIFT SHARE ANALYSIS W OPISIE ZMIAN STRUKTURY HONOROWYCH DAWCÓW KRWI W POLSCE

WYKORZYSTANIE SHIFT SHARE ANALYSIS W OPISIE ZMIAN STRUKTURY HONOROWYCH DAWCÓW KRWI W POLSCE Grażyna Trzpot Anna Ojrzyńska Jacek Szołtysek Sebastan Twaróg Unwersytet Ekonomczny w Katowcach WYKORZYSTANIE SHIFT SHARE ANALYSIS W OPISIE ZMIAN STRUKTURY HONOROWYCH DAWCÓW KRWI W POLSCE Wprowadzene Zapewnene

Bardziej szczegółowo

MODELE COPULA M-GARCH O ROZKŁADACH NIEZMIENNICZYCH NA TRANSFORMACJE ORTOGONALNE

MODELE COPULA M-GARCH O ROZKŁADACH NIEZMIENNICZYCH NA TRANSFORMACJE ORTOGONALNE Mateusz Ppeń Unwersytet Ekonomczny w Krakowe MODELE COPULA M-GARCH O ROZKŁADACH NIEZMIENNICZYCH NA TRANSFORMACJE ORTOGONALNE Wprowadzene W analzach emprycznych przeprowadzonych z wykorzystanem welorównanowych

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

PRZESTRZENNE ZRÓŻNICOWANIE WYBRANYCH WSKAŹNIKÓW POZIOMU ŻYCIA MIESZKAŃCÓW MIAST ŚREDNIEJ WIELKOŚCI A SYSTEM LOGISTYCZNY MIASTA 1

PRZESTRZENNE ZRÓŻNICOWANIE WYBRANYCH WSKAŹNIKÓW POZIOMU ŻYCIA MIESZKAŃCÓW MIAST ŚREDNIEJ WIELKOŚCI A SYSTEM LOGISTYCZNY MIASTA 1 METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XI/2, 2010, str. 102 111 PRZESTRZENNE ZRÓŻNICOWANIE WYBRANYCH WSKAŹNIKÓW POZIOMU ŻYCIA MIESZKAŃCÓW MIAST ŚREDNIEJ WIELKOŚCI A SYSTEM LOGISTYCZNY MIASTA 1

Bardziej szczegółowo

Materiały z II Konferencji Naukowo-Technicznej "Diagnostyka w sieciach elektroenergetycznych zakładów przemysłowych", Płock, 2001, str.3-10.

Materiały z II Konferencji Naukowo-Technicznej Diagnostyka w sieciach elektroenergetycznych zakładów przemysłowych, Płock, 2001, str.3-10. Materały z II Konferencj Naukowo-Techncznej "Dagnostyka w secach elektroenergetycznych zakładów przemysłoch", Płock, 001, str.3-10. Andrzej OLENCKI Poltechnka Zelonogórska, 65-46 Zelona Góra, ul. Podgórna

Bardziej szczegółowo

Określanie zapasu wody pod stępką w porcie Ystad na podstawie badań symulacyjnych

Określanie zapasu wody pod stępką w porcie Ystad na podstawie badań symulacyjnych Scentfc Journals Martme Unversty of Szczecn Zeszyty Naukowe Akadema Morska w Szczecne 2008, 13(85) pp. 22 28 2008, 13(85) s. 22 28 Określane zapasu wody pod stępką w porce Ystad na podstawe badań symulacyjnych

Bardziej szczegółowo

PRZYKŁADY BUDOWY MODELI REGRESYJNYCH I KLASYFIKACYJNYCH. Wprowadzenie do problematyki modelowania statystycznego

PRZYKŁADY BUDOWY MODELI REGRESYJNYCH I KLASYFIKACYJNYCH. Wprowadzenie do problematyki modelowania statystycznego PRZYKŁADY BUDOWY MODELI REGRESYJNYCH I KLASYFIKACYJNYCH Janusz Wątroba, StatSoft Polska Sp. z o.o. Tematyka artykułu obejmuje wprowadzenie do problematyki modelowania statystycznego i jego roli w badaniu

Bardziej szczegółowo

ZAŁĄCZNIK NR 1C KARTA USŁUGI Utrzymanie Systemu Kopii Zapasowych (USKZ)

ZAŁĄCZNIK NR 1C KARTA USŁUGI Utrzymanie Systemu Kopii Zapasowych (USKZ) Załącznk nr 1C do Umowy nr.. z dna.2014 r. ZAŁĄCZNIK NR 1C KARTA USŁUGI Utrzymane Systemu Kop Zapasowych (USKZ) 1 INFORMACJE DOTYCZĄCE USŁUGI 1.1 CEL USŁUGI: W ramach Usług Usługodawca zobowązany jest

Bardziej szczegółowo

ESTYMACJA MIARY MARTYNGAŁOWEJ NA PODSTAWIE CEN OPCJI Z GIEŁDY PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE

ESTYMACJA MIARY MARTYNGAŁOWEJ NA PODSTAWIE CEN OPCJI Z GIEŁDY PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XV/4, 04, str. 37 5 ESTYMACJA MIARY MARTYNGAŁOWEJ NA PODSTAWIE CEN OPCJI Z GIEŁDY PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE Paweł Klber Katedra Ekonom Matematycznej,

Bardziej szczegółowo

METODY WIELOWYMIAROWEJ ANALIZY PORÓWNAWCZEJ W OCENIE ZDOLNOŚCI KREDYTOWEJ GMIN W POLSCE. Streszczenie

METODY WIELOWYMIAROWEJ ANALIZY PORÓWNAWCZEJ W OCENIE ZDOLNOŚCI KREDYTOWEJ GMIN W POLSCE. Streszczenie Marcn Wśnewsk Unwersytet Ekonomczny w Poznanu Katedra Teor Penądza Poltyk Penężnej METODY WIELOWYMIAROWEJ ANALIZY PORÓWNAWCZEJ W OCENIE ZDOLNOŚCI KREDYTOWEJ GMIN W POLSCE Streszczene Jednostk samorządu

Bardziej szczegółowo

WYBÓR PORTFELA PAPIERÓW WARTOŚCIOWYCH ZA POMOCĄ METODY AHP

WYBÓR PORTFELA PAPIERÓW WARTOŚCIOWYCH ZA POMOCĄ METODY AHP Ewa Pośpech Unwersytet Ekonomczny w Katowcach Wydzał Zarządzana Katedra Matematyk posp@ue.katowce.pl WYBÓR PORTFELA PAPIERÓW WARTOŚCIOWYCH ZA POMOCĄ METODY AHP Streszczene: W artykule rozważano zagadnene

Bardziej szczegółowo

Modelowanie komputerowe fraktalnych basenów przyciągania.

Modelowanie komputerowe fraktalnych basenów przyciągania. Modelowane komputerowe fraktalnych basenów przycągana. Rafał Henryk Kartaszyńsk Unwersytet Mar Cure-Skłodowskej Pl. M. Cure-Skłodowskej 1, 0-031 Lubln, Polska Streszczene. W artykule tym zajmujemy sę prostym

Bardziej szczegółowo

Ćwiczenie 8. BADANIE MODELOWE SIECI WODOCIĄGOWEJ 1. Cel i zakres ćwiczenia

Ćwiczenie 8. BADANIE MODELOWE SIECI WODOCIĄGOWEJ 1. Cel i zakres ćwiczenia Ćwczene 8 BADANIE MODELOWE SIECI WODOCIĄGOWEJ 1. Cel zakres ćwczena Celem ćwczena jest zapoznane studentów z dzałanem modelu pompown zaslanej przez ną sec wodocągowej. Podczas ćwczena przeprowadzane jest

Bardziej szczegółowo

Wpływ wartości likwidacyjnej aktywów firmy na oprocentowanie kredytu bankowego wyniki badań polskich spółek giełdowych

Wpływ wartości likwidacyjnej aktywów firmy na oprocentowanie kredytu bankowego wyniki badań polskich spółek giełdowych Bank Kredyt 44 (2), 2013, 207 236 www.bankkredyt.nbp.pl www.bankandcred.nbp.pl Wpływ wartośc lkwdacyjnej aktywów frmy na oprocentowane kredytu bankowego wynk badań polskch spółek gełdowych Andrzej Palńsk*

Bardziej szczegółowo

ZASTOSOWANIE METODY DEA W KLASYFIKACJI FUNDUSZY INWESTYCYJNYCH

ZASTOSOWANIE METODY DEA W KLASYFIKACJI FUNDUSZY INWESTYCYJNYCH PRZEGLĄD STATYSTYCZNY R. LVI ZESZYT 3-4 2009 ANNA ZAMOJSKA ZASTOSOWANIE METODY DEA W KLASYFIKACJI FUNDUSZY INWESTYCYJNYCH 1. WSTĘP Analza ocena wynków osąganyc przez fundusze nwestycyjne jest jednym z

Bardziej szczegółowo

PREFERENCJE KONSUMPCYJNE A STRUKTURA WYDATKÓW GOSPODARSTW DOMOWYCH W POLSCE

PREFERENCJE KONSUMPCYJNE A STRUKTURA WYDATKÓW GOSPODARSTW DOMOWYCH W POLSCE Zeszyty Naukowe Wydzału Informatycznych Technk Zarządzana Wyższej Szkoły Informatyk Stosowanej Zarządzana Współczesne Problemy Zarządzana Nr /2008 PREFERENCJE KONSUMPCYJNE A STRUKTURA WYDATKÓW GOSPODARSTW

Bardziej szczegółowo

A O n RZECZPOSPOLITA POLSKA. Gospodarki Narodowej. Warszawa, dnia2/stycznia 2014

A O n RZECZPOSPOLITA POLSKA. Gospodarki Narodowej. Warszawa, dnia2/stycznia 2014 Warszawa, dna2/styczna 2014 r, RZECZPOSPOLITA POLSKA MINISTERSTWO ADMINISTRACJI I CYFRYZACJI PODSEKRETARZ STANU Małgorzata Olsze wska BM-WP 005.6. 20 14 Pan Marek Zółkowsk Przewodnczący Komsj Gospodark

Bardziej szczegółowo

ROZDZIAŁ 3 INTERPRETACJA PARADOKSU ALLAISA ZA POMOCĄ MODELU KONFIGURALNIE WAŻONEJ UŻYTECZNOŚCI

ROZDZIAŁ 3 INTERPRETACJA PARADOKSU ALLAISA ZA POMOCĄ MODELU KONFIGURALNIE WAŻONEJ UŻYTECZNOŚCI Elżbeta Babula Anna Blajer-Gołębewska ROZDZIAŁ 3 INTERPRETACJA PARADOKSU ALLAISA ZA POMOCĄ MODELU KONFIGURALNIE WAŻONEJ UŻYTECZNOŚCI Wprowadzene Jednym z podstawowych założeń ekonom jest postulat racjonalnośc

Bardziej szczegółowo

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej...

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej... 1 Metody optymalzacj welokryteralnej.... 1 1.1 Ogólna charakterystyka problemu.... 1 1.2 Tradycyjne metody optymalzacj welokryteralnej.... 3 1.2.1 Metoda ważonych kryterów.... 3 1.2.2 Metoda optymalzacj

Bardziej szczegółowo

Komputerowe wspomaganie procesów decyzyjnych w sklepach wielkopowierzchniowych z wykorzystaniem optymalizacji wielokryterialnej i metod przybliżonych

Komputerowe wspomaganie procesów decyzyjnych w sklepach wielkopowierzchniowych z wykorzystaniem optymalizacji wielokryterialnej i metod przybliżonych Instytut Badań Systemowych Polskej Akadem Nauk Janusz Mrofords Komputerowe wspomagane procesów decyzyjnych w sklepach welkopowerzchnowych z wykorzystanem optymalzacj welokryteralnej metod przyblżonych

Bardziej szczegółowo

Analiza niestacjonarności systemów WIM 1

Analiza niestacjonarności systemów WIM 1 Poary Autoatyka Kontrola nr 10bs/06 Potr BUROS, AGH AKADEMIA GÓRICZO-HUTICZA, KATEDRA METROLOGII ELEKTROIKI {burnos@agh.edu.pl} Analza nestacjonarnośc systeów WIM 1 Ten utwór jest dostępny na lcencj Creatve

Bardziej szczegółowo

Michał Strzeszewski Piotr Wereszczyński. Norma PN EN 12831. Nowa metoda. obliczania projektowego obciążenia cieplnego. Poradnik

Michał Strzeszewski Piotr Wereszczyński. Norma PN EN 12831. Nowa metoda. obliczania projektowego obciążenia cieplnego. Poradnik Mchał Strzeszewsk Potr Wereszczyńsk Norma PN EN 12831 Nowa metoda oblczana projektowego obcążena ceplnego Poradnk Mchał Strzeszewsk Potr Wereszczyńsk Norma PN EN 12831 Nowa metoda oblczana projektowego

Bardziej szczegółowo

ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH

ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH Adranna Mastalerz-Kodzs Ewa Pośpech Unwersytet Ekonomczny w Katowcach ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH Wprowadzene Zagadnene wyznaczana optymalnych

Bardziej szczegółowo

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak Ćwczena z Makroekonom II Model IS-LM- Model IS-LM- jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak gospodarka taka zachowuje sę w krótkm okrese, w efekce dzałań podejmowanych w ramach

Bardziej szczegółowo

Piesi jako ofiary śmiertelnych wypadków analiza kryminalistyczna

Piesi jako ofiary śmiertelnych wypadków analiza kryminalistyczna Pes jako ofary śmertelnych wypadków analza krymnalstyczna Potr Kodryck, Monka Kodrycka Pozom bezpeczeństwa ruchu drogowego klasyfkuje Polskę na jednym z ostatnch mejsc wśród krajów europejskch. Wskaźnk

Bardziej szczegółowo

THE STATISTICAL MODEL OF ROAD TRAFFIC MONITORING

THE STATISTICAL MODEL OF ROAD TRAFFIC MONITORING ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 200909 Sera: TRANSPORT z. 65 Nr kol. 1807 Teresa PAMUŁA, Aleksander KRÓL STATYSTYCZNY MODEL MONITOROWANIA RUCHU DROGOWEGO Streszczene. W artykule przedstawono koncepcję

Bardziej szczegółowo

Udoskonalona metoda obliczania mocy traconej w tranzystorach wzmacniacza klasy AB

Udoskonalona metoda obliczania mocy traconej w tranzystorach wzmacniacza klasy AB Julusz MDZELEWSK Wydzał Eletron Techn nformacyjnych, nstytut Radoeletron, oltechna Warszawsa do:0.599/48.05.09.36 dosonalona metoda oblczana mocy traconej w tranzystorach wzmacnacza lasy AB Streszczene.

Bardziej szczegółowo

WPŁYW POSTACI FUNKCJI JAKOŚCI ORAZ WAG KRYTERIÓW CZĄSTKOWYCH NA WYNIKI OPTYMALIZACJI ZDERZENIA METODĄ GENETYCZNĄ

WPŁYW POSTACI FUNKCJI JAKOŚCI ORAZ WAG KRYTERIÓW CZĄSTKOWYCH NA WYNIKI OPTYMALIZACJI ZDERZENIA METODĄ GENETYCZNĄ PIOTR KRZEMIEŃ *, ANDRZEJ GAJEK ** WPŁYW POSTACI FUNKCJI JAKOŚCI ORAZ WAG KRYTERIÓW CZĄSTKOWYCH NA WYNIKI OPTYMALIZACJI ZDERZENIA METODĄ GENETYCZNĄ THE INFLUENCE OF THE SHAPE OF THE QUALITY FUNCTION AND

Bardziej szczegółowo

Dotyczy: opinii PKPP lewiatan do projektow dwoch rozporzqdzen z 27 marca 2012 (pismo P-PAA/137/622/2012)

Dotyczy: opinii PKPP lewiatan do projektow dwoch rozporzqdzen z 27 marca 2012 (pismo P-PAA/137/622/2012) 30/04! 2012 PON 13: 30! t FAX 22 55 99 910 PKPP Lewatan _..~._. _., _. _ :. _._..... _.. ~._..:.l._.... _. '. _-'-'-'"." -.-.---.. ----.---.-.~.....----------.. LEWATAN Pol~ka KonfederacJa Pracodawcow

Bardziej szczegółowo