O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH"

Transkrypt

1 Mateusz Baryła Unwersytet Ekonomczny w Krakowe O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH Wprowadzene W polskej ustawe o rachunkowośc znajduje sę zaps mówący, że ( ) celem badana sprawozdana fnansowego jest wyrażane przez begłego rewdenta psemnej opn wraz z raportem o tym, czy sprawozdane fnansowe jest prawdłowe oraz rzetelne jasno przedstawa sytuację majątkową fnansową, jak też wynk fnansowy badanej jednostkˮ (Ustawa o rachunkowośc z dna 9 wrześna 994 r., art. 65, ust. ). Należy wyraźne zaznaczyć, że przeprowadzane przez begłego rewdenta badane sprawozdana fnansowego dotyczy równeż wykrywana oszustw fnansowych. Wskazują na to zapsy zawarte zarówno w przepsach krajowych, jak mędzynarodowych. Zgodne z nm to właśne na begłym rewdence spoczywa obowązek wykrywana oszustw, jeżel tylko wywerają one stotny wpływ na nformacje prezentowane w sprawozdanach fnansowych. W procese wykrywana oszustw fnansowych pomocne okazują sę procedury oparte na prawe Benforda. Problematyka dotycząca dentyfkowana nadużyć fnansowych z wykorzystanem wspomnanego prawa została podjęta mędzy nnym w następujących pracach: Ngrn (994, 0); Durtsch, Hllson, Pacn (004); Savlle (006). W zasadze tak sam cel badana sprawozdana fnansowego został sformułowany w regulacjach mędzynarodowych (por. Mędzynarodowy Standard Rewzj Fnansowej (MSRF) nr 00, ust. 3). Zob.: Mędzynarodowy Standard Rewzj Fnansowej nr 40 zatytułowany Odpowedzalność begłego rewdenta podczas badana sprawozdań fnansowych dotycząca oszustwˮ, ust. 5, 3; Krajowy standard rewzj fnansowej nr, ust. 54. Treśc tych standardów można znaleźć na strone nternetowej Krajowej Izby Begłych Rewdentów:

2 Mateusz Baryła. Analzy oparte na badanu rozkładu cyfr Najogólnej rzecz ujmując, prawo Benforda dotyczy częstośc występowana cyfr na określonych pozycjach znaczących w lczbe. Można tutaj rozważać zarówno pojedyncze pozycje znaczące, jak brać pod uwagę wększą lość pozycj znaczących lczby jednocześne. Wynkający ze wspomnanego prawa rozkład cyfr na określonych pozycjach znaczących jest znany w lteraturze pod nazwą rozkładu Benforda. Prawdopodobeństwo tego, że na perwszej, drugej oraz uogólnając problem k-tej pozycj znaczącej lczby (co symbolczne będzemy oznaczać: D, D D k ) pojaw sę cyfra odpowedno, oraz k, oblczamy następująco: P( D k = k ) = P ( D = = + ) log0, () 9 P ( D = = + ) log0, h= 0h + () k K log0[ + ( h 0 + K + hk 0 + k ) ], (3) h = h = 0 h = 0 k gdze: {,,..., 9}, j {0,,..., 9}, j =, 3,..., k. Chcąc przykładowo oblczyć prawdopodobeństwo tego, że perwszą drugą znaczącą cyfrą lczby będą odpowedno cyfry oraz, należy to uczynć zgodne z następującym wzorem: P ( D = = + D ) log0. (4) Zastosowane prawa Benforda w wykrywanu oszustw sprowadza sę do dokonywana porównań częstośc występowana cyfr (oblczonych np. dla zboru danych ksęgowych) na określonych pozycjach znaczących z prawdopodobeństwam wynkającym z rozkładu Benforda. W tym zakrese Ngrn Mttermaer (997) zaproponowal sześć testów wykorzystujących analzę cyfr (ang. dgtal analyss tests), wśród których znalazły sę mędzy nnym następujące: test perwszych cyfr, test drugch cyfr, test dwóch perwszych cyfr oraz test dwóch ostatnch cyfr. W celu przeprowadzena dalszych rozważań poczyńmy klka uwag do przyjętych oznaczeń. Nech w ( oznacza zaobserwowaną w zborze lczącym n elementów częstość względną cyfry (lub cyfr) w teśce o numerze t, czyl

3 O pewnym modelu pozwalającym dentyfkować 3 w = n / n, gdze n ( reprezentuje lość wystąpeń cyfry (lub cyfr) w t-tym teśce. Nech p ( oznacza wynkające z rozkładu Benforda prawdopodobeństwo wystąpena cyfry (lub cyfr) w teśce o numerze t. Wówczas, posługując sę wprowadzonym oznaczenam, wymenone testy oparte na analze cyfr będze można scharakteryzować tak, jak to uczynono w tabel. Test t = t = t = 3 t = 4 Charakterystyka wybranych testów opartych na analze cyfr Charakterystyka testu Polega na porównanu częstośc względnych w z prawdopodobeństwam p dla perwszej cyfry znaczącej; =, przy czym =,,..., 9 Polega na porównanu częstośc względnych w z prawdopodobeństwam p dla drugej cyfry znaczącej; =, przy czym = 0,,..., 9 Polega na porównanu częstośc względnych w z prawdopodobeństwam p dla dwóch perwszych cyfr znaczących; =, przy czym = 0,,..., 99 Polega na porównanu częstośc względnych w z prawdopodobeństwam p dla dwóch ostatnch cyfr znaczących; = s- s, przy czym s- s = 00, 0,..., 99, natomast s oznacza ostatną cyfrę Źródło: Opracowane własne na podstawe: Ngrn, Mttermaer (997, s. 57); Slva, Carrera (0, s. 5). Tabela W przypadku każdego z przeprowadzanych testów pojawa sę koneczność dokonana oceny badanego zboru danych pod kątem jego zgodnośc z prawem Benforda. W tym zakrese proponuje sę wykorzystane różnych mar. Nektóre z nch zestawono w tabel. Wybrane mary służące do oceny zgodnośc danych z prawem Benforda Mara Równane Mara Równane M Tabela [ w p ] χ = n M 3 d( = [ w p ] p n( w p u = M MAD = w p M 4 p [ p ] n( n Uwaga: W przypadku mary M M 3 za wartość wyrażena n(, w zależnośc od wybranego testu t, podstawamy: n(t = ) = 9, n(t = ) = 0, n(t = 3) = 90, n(t = 4) = 00. Źródło: Opracowane własne. Pojawające sę w lteraturze metody oceny zgodnośc danych ze wspomnanym prawem można w zasadze podzelć na dwe grupy. Jedna z nch obejmuje te metody, które operają sę na teor weryfkacj hpotez statystycznych (np. mara M M 4 ), natomast drugą grupę stanową metody, które ne wykorzystują takego podejśca (np. mara M M 3 ). Podstawowy problem zwązany z drugą wymenoną

4 4 Mateusz Baryła z kole grupą mar dotyczy braku jakchkolwek wartośc grancznych, na podstawe których można by jednoznaczne stwerdzć, czy zbór danych podlega prawu Benforda, czy też ne. Jedyne w przypadku mary M można znaleźć w lteraturze pewne sugeste, które zestawono w forme tabel 3. Zaproponowane wartośc granczne dla mary M Tabela 3 Stopeń zgodnośc t = t = t = 3 Duża zgodność 0,000-0,004 0,000-0,008 0,0000-0,0006 Akceptowalna zgodność 0,004-0,008 0,008-0,0 0,0006-0,00 Skrajne akceptowalna zgodność 0,008-0,0 0,0-0,06 0,00-0,008 Brak zgodnośc > 0,0 > 0,06 > 0,008 Źródło: Opracowane własne na podstawe: Drake, Ngrn (000, s ). W dalszej częśc nnejszego artykułu zostane przedstawony model (w swojej najprostszej postac), zaproponowany w pracy Slva, Carrera (0), służący do dentyfkacj k najbardzej podejrzanych rekordów w zborze danych ksęgowych.. Konstrukcja modelu Przyjmjmy, że begły rewdent dysponuje zborem danych składającym sę z n zapsów ksęgowych. Chce on zdentyfkować w tym zborze zadaną z góry lczbę k zapsów, jaką należy poddać szczegółowemu badanu celem wykryca neprawdłowośc spowodowanych oszustwam. Aby przeprowadzć analzę zgodnośc danych z prawem Benforda, begły rewdent wybera test t oraz jedną z mar przedstawonych w tabel, oznaczoną symbolem M z odpowednm subskryptem. Begły chce zdentyfkować k najbardzej podejrzanych zapsów ksęgowych, tj. takch rekordów, które gdy zostaną usunęte z wyjścowego zboru danych spowodują najwększą poprawę wartośc wybranej mary M. W dalszej częśc, spośród mar zaprezentowanych w tabel, weźmemy pod uwagę jedyne te, które uwzględnają łączny rozkład cyfr na określonej pozycj w lczbach. W celu rozwązana postawonego problemu decyzyjnego, w zapse mar służących do oceny zgodnośc danych z prawem Benforda trzeba uwzględnć owe k lczb, które należy usunąć z perwotnego zboru danych. Mamy zatem: M ( t, = ( n k( p n k p, (5)

5 O pewnym modelu pozwalającym dentyfkować 5 n k( M ( t, = p, (6) n( n k n k( M 3 ( t, = ( ) ( ) p t, (7) n t n k gdze n ( oraz k ( oznaczają lość lczb mających cyfrę (cyfry) na określonej pozycj znaczącej odpowedno dla wyjścowego zboru danych (lczącego n elementów) zredukowanego zboru danych (tj. powstałego po usunęcu ze zboru wyjścowego k lczb). Pojawające sę w powyższych marach wyrażene [ n k( ]/( oznacza częstość względną występowana cyfry (cyfr) w wynku zastosowana wybranego testu t, oblczoną na podstawe zboru danych, z którego usunęto k lczb. Przejdźmy do zapsana optymalzacyjnego modelu programowana matematycznego dla omawanego problemu decyzyjnego. Jako funkcję kryterum (celu) przyjmemy jedną z uprzedno zdefnowanych mar, której wartość będzemy mnmalzować: przy następujących ogranczenach: M ( t, mn, k = k, k n, k 0 całkowte. Zauważmy, że spośród wyżej zapsanych warunków ogranczających, perwszy z nch dotyczy łącznej lczby rekordów, które mają zostać usunęte, czyl poddane przez audytora szczegółowemu badanu. Drug z zapsanych warunków odnos sę do lośc usunętych lczb zawerających cyfrę (cyfry) na określonej pozycj znaczącej; lość ta ne może być wększa nż lość takch lczb znajdujących sę w wyjścowym zborze. Z kole trzec zapsany warunek mów o tym, ż lość lczb, jake należy usunąć z cyfrą (cyfram) na danej pozycj znaczącej, mus sę wyrażać lczbą całkowtą neujemną. Zauważmy ponadto, że drug z zapsanych warunków okazuje sę być zbędny w sytuacj, gdy dla każdego jest spełnona nerówność k n (.

6 6 Mateusz Baryła 3. Przykład empryczny W celu zlustrowana omawanego problemu posłużmy sę następującym przykładem. Załóżmy, że begły rewdent dysponuje zborem danych ksęgowych lczącym n = 300 rekordów. Do jego analzy wybera przykładowo test t =, a węc decyduje sę na analzę opartą na rozkładze perwszej cyfry znaczącej. Przyjmjmy, że dla rozważanego zboru uzyskano rozkład perwszej cyfry znaczącej tak, jak przedstawa to tabela 4. Rozkład perwszej cyfry znaczącej dla analzowanego zboru danych Tabela 4 n () w () 0,354 0,6 0,8 0,094 0,073 0,054 0,049 0,05 0,034 Źródło: Opracowane własne. Załóżmy dodatkowo, że do oceny zgodnośc danych z prawem Benforda audytor wybera odchylene przecętne, czyl marę oznaczoną symbolem M. Dla rozpatrywanego przypadku otrzymujemy wartość wspomnanej mary wynoszącą 0,07, co wskazuje na brak zgodnośc danych z prawem Benforda. Przyjmjmy także, że begły rewdent chce zdentyfkować k = 30 zapsów, na które należy zwrócć szczególną uwagę, aby wykryć neprawdłowośc spowodowane oszustwam. Wówczas optymalzacyjny model matematyczny przyjme następującą postać: 3 k() 58 k() M ( t =, n k = 370) = 0, , k3() 30 k4() 33 k5() + 0,49 + 0, , k6() 58 k7() 68 k8() + 0, , , k9() + 0,0458 mn, 370 k ( ) = 30, =,,..., 9, k ( ) 0 całkowte, =,,...,9.

7 O pewnym modelu pozwalającym dentyfkować 7 * Rozwązując powyższy model, uzyskano następujące optymalne wartośc k (), które zestawono w tabel 5. Rozwązane optymalne rozważanego problemu decyzyjnego Tabela * k () Źródło: Opracowane własne. Analzując otrzymane wynk, należy stwerdzć, że w celu wykryca zadanej lczby najbardzej podejrzanych ksęgowań, begły rewdent pownen wybrać poddać szczegółowemu badanu 3 zapsy ksęgowe, które mają cyfrę na perwszej pozycj znaczącej, 4 zapsy z cyfrą 3 jako perwszą cyfrą znaczącą oraz 3 zapsy mające na perwszej pozycj znaczącej cyfrę 8. Na uwagę zasługuje fakt, że po usunęcu ze zboru owych 30 rekordów, wartość odchylena przecętnego wynos około 0,07, co wskazuje już na skrajne akceptowalną zgodność danych z prawem Benforda. Podsumowane Opsany w nnejszym artykule model programowana matematycznego może posłużyć jako użyteczne narzędze w trakce dentyfkowana najbardzej podejrzanych zapsów ksęgowych w procese wykrywana oszustw fnansowych przez begłych rewdentów. Należy jednak wyraźne zaznaczyć, że zaprezentowany model posada co najmnej dwa zasadncze ogranczena. Podczas konstrukcj modelu przyjęto, że audytor wybera jedną z analz opartych na rozkładze Benforda. W rzeczywstośc może on być zanteresowany jednoczesnym przeprowadzenem wększej lczby tego typu analz. Prezentując model założono także, ż do oceny zgodnośc danych z prawem Benforda jest wykorzystywana mara uwzględnająca łączny rozkład cyfr na określonej pozycj w lczbach. Rozbudowując ten problem, można wząć pod uwagę możlwość wykorzystana welu mar jednocześne, także tych, które w swojej konstrukcj ne operają sę na łącznym rozkładze cyfr. Ne ulega wątplwośc, że chęć uwzględnena przedstawonych uwag przyczyn sę do wzrostu złożonośc omówonego modelu.

8 8 Mateusz Baryła Lteratura Drake P.D., Ngrn M.J. (000): Computer Asssted Analytcal Procedures Usng Benford s Law. Journal of Accountng Educatonˮ, No. 8. Durtsch C., Hllson W., Pacn C. (004): The Effectve Use of Benford s Law to Assst n Detectng Fraud n Accountng Data. Journal of Forensc Accountngˮ, Vol. V. (dostęp: ). Krajowy standard rewzj fnansowej nr. Krajowa Rada Begłych Rewdentów. Mędzynarodowy Standard Rewzj Fnansowej (MSRF) 00: Ogólne cele nezależnego begłego rewdenta oraz przeprowadzane badana zgodne z Mędzynarodowym Standardam Rewzj Fnansowej. Mędzynarodowa Federacja Ksęgowych. Mędzynarodowy Standard Rewzj Fnansowej (MSRF) 40: Odpowedzalność begłego rewdenta podczas badana sprawozdań fnansowych dotycząca oszustw. Mędzynarodowa Federacja Ksęgowych. Ngrn M.J. (994): Usng Dgtal Frequences to Detect Fraud. The Whte Paperˮ, Aprl/May. Ngrn M.J. (0): Benfordʼs Law: Applcatons for Forensc Accountng, Audtng, and Fraud Detecton. Wley, New Jersey. Ngrn M.J., Mttermaer L.J. (997): The Use of Benford s Law as an Ad n Analytcal Procedures. Audtng: A Journal of Practce & Theoryˮ, Vol. 6, No.. Savlle A. (006): Usng Benfordʼs Law to Detect Data Error and Fraud: An Examnaton of Companes Lsted on the Johannesburg Stock Exchange. South Afrcan Journal of Economc and Management Scencesˮ, Vol. 9, No. 3. Slva C.G., Carrera P.M.R. (0): Selectng Audt Targets Usng Benfordʼs Law. Insttute of Systems Engneerng and Computers, INESC, Combra. Ustawa o rachunkowośc z dna 9 wrześna 994 r. Dz.U. 994, nr, poz. 59 z późn. zm. ABOUT A MODEL IDENTIFYING THE K MOST SUSPICIOUS RECORDS IN AN ACCOUNTING DATA SET IN THE PROCESS OF FINANCIAL FRAUD DETECTION Summary Fnancal frauds lead to the dsturbance of a normal development of stock markets. When they appear, the funds are not properly allocated, whch has a negatve mpact on economc growth. In most cases, nvestors make decsons takng nto consderaton economc nformaton presented by companes. Fnancal frauds substantally affect data ncluded n fnancal statements. For ths reason, t seems mportant to undertake steps amng at fraud detecton. A key role n ths ssue may be assumed by audtors who are responsble for dentfyng sgnfcant fnancal rregulartes.

9 O pewnym modelu pozwalającym dentyfkować 9 In the paper, a certan mathematcal programmng model whch can be useful for audtors durng detectng rregulartes caused by fnancal frauds s dscussed. In the case of ths model, the decson problem conssts n fndng a gven number of the k most suspcous records n a data set that should be thoroughly audted. Benfordʼs Law s used as a base whle constructng the model.

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/3, 2015, str. 248 257 ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ Sławomr

Bardziej szczegółowo

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Grzegorz PRZEKOTA ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Zarys treśc: W pracy podjęto problem dentyfkacj cykl gełdowych.

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Analiza ryzyka jako instrument zarządzania środowiskiem

Analiza ryzyka jako instrument zarządzania środowiskiem WARSZTATY 2003 z cyklu Zagrożena naturalne w górnctwe Mat. Symp. str. 461 466 Elżbeta PILECKA, Małgorzata SZCZEPAŃSKA Instytut Gospodark Surowcam Mneralnym Energą PAN, Kraków Analza ryzyka jako nstrument

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

Minister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha 25 00-918 Warszawa Dnia 03 czerwca 2009 r.

Minister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha 25 00-918 Warszawa Dnia 03 czerwca 2009 r. Mnster Edukacj arodowej Pan Katarzyna HALL Mnsterstwo Edukacj arodowej al. J. Ch. Szucha 25 00-918 arszawa Dna 03 czerwca 2009 r. TEMAT: Propozycja zmany art. 30a ustawy Karta auczycela w forme lstu otwartego

Bardziej szczegółowo

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Sera: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 1905 Adranna MASTALERZ-KODZIS Unwersytet Ekonomczny w Katowcach OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.

Bardziej szczegółowo

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Ewa Szymank Katedra Teor Ekonom Akadema Ekonomczna w Krakowe ul. Rakowcka 27, 31-510 Kraków STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Abstrakt Artykuł przedstawa wynk badań konkurencyjnośc

Bardziej szczegółowo

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA

Bardziej szczegółowo

Regulamin promocji upalne lato 2014 2.0

Regulamin promocji upalne lato 2014 2.0 upalne lato 2014 2.0 strona 1/5 Regulamn promocj upalne lato 2014 2.0 1. Organzatorem promocj upalne lato 2014 2.0, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrcal Engneerng 015 Mkołaj KSIĄŻKIEWICZ* OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU

Bardziej szczegółowo

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych NAFTA-GAZ styczeń 2011 ROK LXVII Anna Rembesa-Śmszek Instytut Nafty Gazu, Kraków Andrzej Wyczesany Poltechnka Krakowska, Kraków Zastosowane symulatora ChemCad do modelowana złożonych układów reakcyjnych

Bardziej szczegółowo

D Archiwum Prac Dyplomowych - Instrukcja dla opiekunów/promotorów/recenzentów

D Archiwum Prac Dyplomowych - Instrukcja dla opiekunów/promotorów/recenzentów D Archwum Prac Dyplomowych - Instrukcja dla opekunów/promotorów/recenzentów Kraków 13.01.2016 r. Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Alcja Wolny-Domnak Unwersytet Ekonomczny w Katowcach MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Wprowadzene

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

SYSTEM ZALICZEŃ ĆWICZEŃ

SYSTEM ZALICZEŃ ĆWICZEŃ AMI, zma 010/011 mgr Krzysztof Rykaczewsk System zalczeń Wydzał Matematyk Informatyk UMK SYSTEM ZALICZEŃ ĆWICZEŃ z Analzy Matematycznej I, 010/011 (na podst. L.G., K.L., J.M., K.R.) Nnejszy dokument dotyczy

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Analiza i diagnoza sytuacji finansowej wybranych branż notowanych na Warszawskiej Giełdzie Papierów Wartościowych w latach

Analiza i diagnoza sytuacji finansowej wybranych branż notowanych na Warszawskiej Giełdzie Papierów Wartościowych w latach Jacek Batóg Unwersytet Szczecńsk Analza dagnoza sytuacj fnansowej wybranych branż notowanych na Warszawskej Gełdze Paperów Wartoścowych w latach 997-998 W artykule podjęta została próba analzy dagnozy

Bardziej szczegółowo

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

Realizacja logiki szybkiego przeniesienia w prototypie prądowym układu FPGA Spartan II

Realizacja logiki szybkiego przeniesienia w prototypie prądowym układu FPGA Spartan II obert Berezowsk Natala Maslennkowa Wydzał Elektronk Poltechnka Koszalńska ul. Partyzantów 7, 75-4 Koszaln Mchał Bałko Przemysław Sołtan ealzacja logk szybkego przenesena w prototype prądowym układu PG

Bardziej szczegółowo

ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH

ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH Adranna Mastalerz-Kodzs Ewa Pośpech Unwersytet Ekonomczny w Katowcach ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH Wprowadzene Zagadnene wyznaczana optymalnych

Bardziej szczegółowo

OeconomiA copernicana 2013 Nr 3. Modele ekonometryczne w opisie wartości rezydualnej inwestycji

OeconomiA copernicana 2013 Nr 3. Modele ekonometryczne w opisie wartości rezydualnej inwestycji OeconomA coperncana 2013 Nr 3 ISSN 2083-1277, (Onlne) ISSN 2353-1827 http://www.oeconoma.coperncana.umk.pl/ Klber P., Stefańsk A. (2003), Modele ekonometryczne w opse wartośc rezydualnej nwestycj, Oeconoma

Bardziej szczegółowo

Krzysztof Borowski Zastosowanie metody wideł cenowych w analizie technicznej

Krzysztof Borowski Zastosowanie metody wideł cenowych w analizie technicznej Krzysztof Borowsk Zastosowane metody wdeł cenowych w analze technczne Wprowadzene Metoda wdeł cenowych została perwszy raz ogłoszona przez Alana Andrewsa 1 w roku 1960. Trzy lne wchodzące w skład metody

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

MINISTER EDUKACJI NARODOWEJ

MINISTER EDUKACJI NARODOWEJ 4 MINISTER EDUKACJI NARODOWEJ DWST WPZN 423189/BSZI13 Warszawa, 2013 -Q-4 Pan Marek Mchalak Rzecznk Praw Dzecka Szanowny Pane, w odpowedz na Pana wystąpene z dna 28 czerwca 2013 r. (znak: ZEW/500127-1/2013/MP),

Bardziej szczegółowo

PORÓWNANIE METOD PROSTYCH ORAZ METODY REGRESJI HEDONICZNEJ DO KONSTRUOWANIA INDEKSÓW CEN MIESZKAŃ

PORÓWNANIE METOD PROSTYCH ORAZ METODY REGRESJI HEDONICZNEJ DO KONSTRUOWANIA INDEKSÓW CEN MIESZKAŃ PORÓWNANIE METOD PROSTYCH ORAZ METODY REGRESJI HEDONICZNEJ DO KONSTRUOWANIA INDEKSÓW CEN MIESZKAŃ Radosław Trojanek Katedra Inwestycj Neruchomośc Unwersytet Ekonomczny w Poznanu e-mal: r.trojanek@ue.poznan.pl

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH

RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH Stansław KOWALIK e-mal: skowalk@wsb.edu.pl Wyższa Szkoła Bznesu Dąbrowa Górncza RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH Streszczene Praca dotyczy nekooperacynych sekwencynych ger dwuosobowych o sume

Bardziej szczegółowo

Ćwiczenie 10. Metody eksploracji danych

Ćwiczenie 10. Metody eksploracji danych Ćwczene 10. Metody eksploracj danych Grupowane (Clusterng) 1. Zadane grupowana Grupowane (ang. clusterng) oznacza grupowane rekordów, obserwacj lub przypadków w klasy podobnych obektów. Grupa (ang. cluster)

Bardziej szczegółowo

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów. Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

Regulamin promocji fiber xmas 2015

Regulamin promocji fiber xmas 2015 fber xmas 2015 strona 1/5 Regulamn promocj fber xmas 2015 1. Organzatorem promocj fber xmas 2015, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna 2015

Bardziej szczegółowo

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Mara Konopka Katedra Ekonomk Organzacj Przedsęborstw Szkoła Główna Gospodarstwa Wejskego w Warszawe Analza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Wstęp Polska prywatyzacja

Bardziej szczegółowo

Problem nośności granicznej płyt żelbetowych w ujęciu aktualnych przepisów normowych. Prof. dr hab. inż. Piotr Konderla, Politechnika Wrocławska

Problem nośności granicznej płyt żelbetowych w ujęciu aktualnych przepisów normowych. Prof. dr hab. inż. Piotr Konderla, Politechnika Wrocławska Proble nośnośc grancznej płt żelbetowch w ujęcu aktualnch przepsów norowch Prof. dr hab. nż. Potr Konderla Poltechnka Wrocławska 1. Wprowadzene Przedote analz jest płta żelbetowa zbrojona ortogonalne paraetrzowana

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

Nieparametryczne Testy Istotności

Nieparametryczne Testy Istotności Neparametryczne Testy Istotnośc Wzory Neparametryczne testy stotnośc schemat postępowana punkt po punkce Formułujemy hpotezę główną odnoszącą sę do: zgodnośc populacj generalnej z jakmś rozkładem, lub:

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

Regulamin promocji zimowa piętnastka

Regulamin promocji zimowa piętnastka zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna

Bardziej szczegółowo

Nota 1. Polityka rachunkowości

Nota 1. Polityka rachunkowości Nota 1. Poltyka rachunkowośc Ops przyjętych zasad rachunkowośc a) Zasady ujawnana prezentacj nformacj w sprawozdanu fnansowym Sprawozdane fnansowe za okres od 01 styczna 2009 roku do 31 marca 2009 roku

Bardziej szczegółowo

D Archiwum Prac Dyplomowych - Instrukcja dla studentów

D Archiwum Prac Dyplomowych - Instrukcja dla studentów Kraków 01.10.2015 D Archwum Prac Dyplomowych - Instrukcja dla studentów Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu Rolnczego m. H. Kołłątaja

Bardziej szczegółowo

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO Artur Zaborsk Unwersytet Ekonomczny we Wrocławu ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO Wprowadzene Od ukazana

Bardziej szczegółowo

Proste modele ze złożonym zachowaniem czyli o chaosie

Proste modele ze złożonym zachowaniem czyli o chaosie Proste modele ze złożonym zachowanem czyl o chaose 29 kwetna 2014 Komputer jest narzędzem coraz częścej stosowanym przez naukowców do ukazywana skrzętne ukrywanych przez naturę tajemnc. Symulacja, obok

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Problem plecakowy (KNAPSACK PROBLEM).

Problem plecakowy (KNAPSACK PROBLEM). Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

OKREŚLANIE PARZYSTOŚCI LICZB W RESZTOWYM SYSTEMIE LICZBOWYM Z WYKORZYSTANIEM KONWERSJI DO SYSTEMU Z MIESZANYMI PODSTAWAMI

OKREŚLANIE PARZYSTOŚCI LICZB W RESZTOWYM SYSTEMIE LICZBOWYM Z WYKORZYSTANIEM KONWERSJI DO SYSTEMU Z MIESZANYMI PODSTAWAMI POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrcal Engneerng 2013 Mrosław PLEBANEK* OKREŚLANIE PARZYSTOŚCI LICZB W RESZTOWYM SYSTEMIE LICZBOWYM Z WYKORZYSTANIEM KONWERSJI DO SYSTEMU Z

Bardziej szczegółowo

OKRESOWA EMERYTURA KAPITAŁOWA ZE ŚRODKÓW ZGROMADZONYCH W OFE

OKRESOWA EMERYTURA KAPITAŁOWA ZE ŚRODKÓW ZGROMADZONYCH W OFE OKRESOWA EMERYTURA KAPITAŁOWA ZE ŚRODKÓW ZGROMADZONYCH W OFE Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Warunk nabywana prawa do okresowej emerytury kaptałowej ze środków zgromadzonych w otwartym

Bardziej szczegółowo

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model Jadwga LAL-JADZIAK Unwersytet Zelonogórsk Instytut etrolog Elektrycznej Elżbeta KAWECKA Unwersytet Zelonogórsk Instytut Informatyk Elektronk Ocena dokładnośc estymacj funkcj korelacyjnych z użycem modelu

Bardziej szczegółowo

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów.

Bardziej szczegółowo

A O n RZECZPOSPOLITA POLSKA. Gospodarki Narodowej. Warszawa, dnia2/stycznia 2014

A O n RZECZPOSPOLITA POLSKA. Gospodarki Narodowej. Warszawa, dnia2/stycznia 2014 Warszawa, dna2/styczna 2014 r, RZECZPOSPOLITA POLSKA MINISTERSTWO ADMINISTRACJI I CYFRYZACJI PODSEKRETARZ STANU Małgorzata Olsze wska BM-WP 005.6. 20 14 Pan Marek Zółkowsk Przewodnczący Komsj Gospodark

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej...

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej... Adam Waszkowsk * Adam Waszkowsk Zastosowane welowymarowej analzy porównawczej w doborze spó³ek do portfela nwestycyjnego Zastosowane welowymarowej analzy porównawczej... Wstêp Na warszawskej Ge³dze Paperów

Bardziej szczegółowo

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz NAFTA-GAZ marzec 2011 ROK LXVII Tadeusz Kwlosz Instytut Nafty Gazu, Oddzał Krosno Zastosowane metody statystycznej do oszacowana zapasu strategcznego PMG, z uwzględnenem nepewnośc wyznaczena parametrów

Bardziej szczegółowo

NOWA EMERYTURA Z FUNDUSZU UBEZPIECZEŃ SPOŁECZNYCH

NOWA EMERYTURA Z FUNDUSZU UBEZPIECZEŃ SPOŁECZNYCH NOWA EMERYTURA Z FUNDUSZU UBEZPIECZEŃ SPOŁECZNYCH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Warunk nabywana prawa do nowej emerytury oraz jej wysokość określa ustawa z dna 17 grudna 1998 r.

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

WSPOMAGANIE KOOPERACJI Z WYKORZYSTANIEM TEORII GIER I ANALIZY WIELOKRYTERIALNEJ

WSPOMAGANIE KOOPERACJI Z WYKORZYSTANIEM TEORII GIER I ANALIZY WIELOKRYTERIALNEJ Macej Wolny WPOMAGANIE KOOPERACJI Z WYKORZYTANIEM TEORII GIER I ANALIZY WIELOKRYTERIALNEJ Wprowadzene Kooperacja mędzy organzacjam ma stotne znaczene w życu gospodarczym. Podmoty gospodarcze lub ch poszczególne

Bardziej szczegółowo

Analiza korelacji i regresji

Analiza korelacji i regresji Analza korelacj regresj Zad. Pewen zakład produkcyjny zatrudna pracownków fzycznych. Ich wydajność pracy (Y w szt./h) oraz mesęczne wynagrodzene (X w tys. zł) przedstawa ponższa tabela: Pracownk y x A

Bardziej szczegółowo

Kierownik Katedry i Kliniki: prof. dr hab. Bernard Panaszek, prof. zw. UMW. Recenzja

Kierownik Katedry i Kliniki: prof. dr hab. Bernard Panaszek, prof. zw. UMW. Recenzja KATEDRA KLINIKA CHORÓB WEWNĘTRZNYCHYCH GERIATRII ALERGOLOGU Unwersytet Medyczny m. Pastów Śląskch we Wrocławu 50-367 Wrocław, ul. Cure-Skłodowskej 66 Tel. 71/7842521 Fax 71/7842529 E-mal: bernard.panaszek@umed.wroc.pl

Bardziej szczegółowo

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na

Bardziej szczegółowo

ASPEKT SYTUACJI STATUS QUO WE WSPOMAGANIU WIELOKRYTERIALNEGO WYBORU BAZUJĄCEGO NA TEORII GIER

ASPEKT SYTUACJI STATUS QUO WE WSPOMAGANIU WIELOKRYTERIALNEGO WYBORU BAZUJĄCEGO NA TEORII GIER Macej Wolny ASPEKT SYTUACJI STATUS QUO WE WSPOMAGANIU WIELOKRYTERIALNEGO WYBORU BAZUJĄCEGO NA TEORII GIER Wprowadzene Zagadnena welokryteralne dotyczą sytuacj, w których rozpatruje sę elementy zboru dopuszczalnych

Bardziej szczegółowo

2. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI

2. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI Część. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI.. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI W metodze sł w celu przyjęca układu podstawowego należało odrzucć węzy nadlczbowe. O lczbe odrzuconych węzów decydował

Bardziej szczegółowo

REGULAMIN PROMOCJI Teraz płacisz 50%, resztę za pół roku

REGULAMIN PROMOCJI Teraz płacisz 50%, resztę za pół roku REGULAMIN PROMOCJI Teraz płacsz 50%, resztę za pół roku 1 1. Organzatoram promocj Teraz płacsz 50%, resztę za pół roku (zwanej dalej: Promocją) są: Alor Bank S.A. z sedzbą w Warszawe, ul. Łopuszańska 38D,

Bardziej szczegółowo

Wyznaczanie lokalizacji obiektu logistycznego z zastosowaniem metody wyważonego środka ciężkości studium przypadku

Wyznaczanie lokalizacji obiektu logistycznego z zastosowaniem metody wyważonego środka ciężkości studium przypadku B u l e t y n WAT Vo l. LXI, Nr 3, 2012 Wyznaczane lokalzacj obektu logstycznego z zastosowanem metody wyważonego środka cężkośc studum przypadku Emla Kuczyńska, Jarosław Zółkowsk Wojskowa Akadema Technczna,

Bardziej szczegółowo

o Puchar Pytii - Wybory Prezydenckie 2015

o Puchar Pytii - Wybory Prezydenckie 2015 Centrum Ba. d ań I oścowych nad Po tyką Unhversytetu Jage o ń s k e go Protokół obrad Kaptuły Konkursu o Puchar Pyt - Wybory Prezydencke 2015 Na posedzenu w dnu 2 czerwca 2015 roku na Wydzae Matematyk

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 13 20

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 13 20 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Fola Pomer. Unv. Technol. Stetn. 2010, Oeconomca 280 (59), 13 20 Iwona Bą, Agnesza Sompolsa-Rzechuła LOGITOWA ANALIZA OSÓB UZALEŻNIONYCH OD ŚRODKÓW

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

Analiza zmienności czasu przejazdu linii metra

Analiza zmienności czasu przejazdu linii metra BAUER Marek 1 Analza zmennośc czasu przejazdu ln metra WSTĘP W powszechnej opn metro jest najlepszym systemem transportu mejskego. UmoŜlwa szybke przemeszczena pasaŝerów, a jego uŝyteczność rośne w marę

Bardziej szczegółowo

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO WSKAŹNIK OCENY SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO Dagmara KARBOWNICZEK 1, Kazmerz LEJDA, Ruch cała człoweka w samochodze podczas wypadku drogowego zależy od sztywnośc nadwoza

Bardziej szczegółowo

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją Olgopol dynamczny Rozpatrzmy model sekwencyjnej konkurencj loścowej jako gra jednokrotna z pełną doskonalej nformacją (1934) Dwa okresy: t=0, 1 tzn. frma 2 podejmując decyzję zna decyzję frmy 1 Q=q 1 +q

Bardziej szczegółowo

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji.

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji. Zakład Systemów Zaslana (Z-5) Opracowane nr 323/Z5 z pracy statutowej pt. Opracowane metody predykcj czasu życa bater na obekce oceny jej aktualnego stanu na podstawe analzy beżących parametrów jej eksploatacj.

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

Prawdziwa ortofotomapa

Prawdziwa ortofotomapa Prawdzwa ortofotomapa klasyczna a prawdzwa ortofotomapa mnmalzacja przesunęć obektów wystających martwych pól na klasycznej ortofotomape wpływ rodzaju modelu na wynk ortorektyfkacj budynków stratege opracowana

Bardziej szczegółowo