Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło siebie. 2. Ze zbioru elemetowego losujemy ze zwracaiem r elemetów. Jakie jest prawdopodobieństwo tego, że któryś elemet się powtórzył? 3. Siedmiu pasażerów przydzieloo losowo do trzech wagoów. Jakie jest prawdopodobieństwo tego, że i) wszyscy trafili do jedego wagou, ii) w każdym wagoie zalazło się przyajmiej dwóch z tych pasażerów? 4. Z klasy liczącej 11 chłopców i 13 dziewczyek wylosowao czteroosobową delegację. Oblicz prawdopodobieństwo tego, że w skład delegacji wchodzi więcej chłopców iż dziewczyek. 5. Oblicz prawdopodobieństwo tego, że w grze w brydża gracz N otrzymał a) wszystkie karty różej wartości; b) dokładie dwa piki; c) co ajmiej dwa piki; d) dwa piki, 3 kiery, 4 kara, 4 trefle; e) układ 4432; f) układ 4441. 6. Oblicz prawdopodobieństwo tego, że w grze w pokera talią 24 kartową gracz otrzyma z ręki a) parę b) dwie pary c) straighta d) trójkę e) fulla f) karetę g) kolor h) pokera. 7. 1 jedakowych ciastek rozdzieloo między czwórkę dzieci w sposób losowy. Oblicz prawdopodobieństwo tego, iż a) Jacek otrzymał dokładie 1 ciastko b) Jacek otrzymał co ajmiej 1 ciastko c) każde z dzieci otrzymało co ajmiej 1 ciastko 8. Jakie jest prawdopodobieństwo tego, że w totolatka wylosowaa będzie szóstka ie zawierająca dwu kolejych liczb. 9. a) Ile różych słów (iekoieczie sesowych) moża utworzyć permutując litery słowa MA- TEMATYKA? b) Jeśli wybierzemy losowo któreś z tych słów jakie jest prawdopodobieństwo tego, że litery T ie stoją obok siebie? 1. Klasa liczy 15 ucziów, a każdej lekcji do odpowiedzi jest losoway jede uczeń. Oblicz prawdopodobieństwo tego, że w ciągu 16 lekcji każdy uczeń będzie przepytay. 11. W szafie zajduje się par butów, a chybił trafił wybieramy z ich k butów przy czym k. Oblicz prawdopodobieństwo tego, że a) wśród wylosowaych butów jest coajmiej jeda para, b) wśród wylosowaych butów jest dokładie jeda para. 1 12. Jakie jest prawdopodobieństwo tego, że przy losowym umieszczeiu N listów w N zaadresowaych kopertach żade list ie trafi do właściwego adresata?
Zadaia z Rachuku Prawdopodobieństwa I - 2 1. Z przedziału [, 1] wybrao w sposób losowy dwa pukty, które podzieliły go a trzy odciki. Jaka jest szasa, że z tych odcików da się zbudować trójkąt? 2. (Igła Buffoa) Igłę o długości l rzucoo w sposób losowy a płaszczyzę z zazaczoymi liiami rówoległymi. Odległość między sąsiedimi liiami wyosi d > l. Oblicz prawdopodobieństwo tego, że igła przetie którąś z liii. 3. (Paradoks Bertrada) Z okręgu wybrao w sposób losowy cięciwę. Oblicz prawdopodobieństwo tego, że ma oa długość większą od długości boku trójkąta rówoboczego wpisaego w okrąg. 4. Na ieskończoą szachowicę o boku 1 rzucoo moetę o średicy 2 3. Jakie jest prawdopodobieństwo tego, że moeta a) zajdzie się całkowicie we wętrzu jedego z pól, b) przetie się z dwoma bokami szachowicy? 5. Załóżmy, że P(A B) = 1/2, P(A B) = 1/4, P(A \ B) = P(B \ A). Oblicz P(A) i P(B \ A). 6. Załóżmy, że A B C = Ω, P(B) = 2P(A), P(C) = 3P(A), P(A B) = P(B C) = P(A C). Wykaż, że 1/6 P(A) 1/4. 7. Załóżmy, że P(A) 2/3, P(B) 2/3, P(C) 2/3 i P(A B C) =. Oblicz P(A). 8. Wykaż, że dla dowolych zdarzeń A 1,..., A zachodzą ierówości i=1 ( P(A i ) P 9. Wyzacz σ ciało geerowae przez a) dwa zbiory A i B; b) trzy zbiory A, B i C. i=1 A i ) 1. Czy istieje σ-ciało złożoe z 7-elemetów? P(A i ) i=1 1 i<j P(A i A j ). 2
Zadaia z Rachuku Prawdopodobieństwa I - 3 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek stoi bezpośredio przed Agatką, jeśli Agatka stoi bezpośredio przed Dorotką; b) Jacek stoi przed Agatką, jeśli Agatka stoi przed Dorotką; c) Jacek stoi przed Agatką, jeśli wiemy, że Agatka ie stoi ostatia. 2. Z talii 24 kartowej losujemy 5 kart bez zwracaia. Oblicz prawdopodobieństwo tego, że wylosowaliśmy dokładie 3 asy jeśli wiadomo, że a) mamy coajmiej jedego asa; b) mamy asa czarego koloru; c) mamy asa pik; d) pierwszą wylosowaą kartą jest as; e) pierwszą wylosowaą kartą jest czary as; f) pierwszą wylosowaą kartą jest as pik. 3. W urie zajduje się b kul białych i c kul czarych. Losujemy z ury po jedej kuli a astępie zwracamy ją do ury dokładając a kul tego samego koloru. Oblicz prawdopodobieństwo tego, że a) pierwsza i druga wylosowaa kula będzie biała; b) druga wylosowaa kula będzie biała; c) za pierwszym razem wylosowao kulę białą, jeśli wiemy, że za drugim razem wylosowao kulę białą; d) w pierwszych trzech losowaiach wylosujemy kule tego samego koloru. 4. W populacji jest 15% dyslektyków. Jeśli w teście diagostyczym uczeń popełi 6 lub więcej błędów, to zostaje uzay za dyslektyka. Każdy dyslektyk a pewo popełi co ajmiej 6 błędów w takim teście, ale rówież ie-dyslektyk może popełić więcej iż 5 błędów z prawdopodobieństwem 1/1. Jasio popełił w teście 6 błędów - jakie jest prawdopodobieństwo tego, że jest dyslektykiem? Jakie jest prawdopodobieństwo tego, że w kolejym teście popełi co ajmiej 6 błędów? 5. Prawdopodobieństwo, że losowo wybraa rodzia ma dzieci jest rówe { αp dla = 1, 2,... p = 1 =1 αp = 1 αp 1 p dla =. Zakładając, że wszystkie 2 rozkładów płci dzieci w rodziie o dzieciach jest rówoprawdopodobe oblicz prawdopodobieństwo tego, że losowo wybraa rodzia ma a) coajmiej jedą córkę; b) dokładie jedą córkę? c) Losowo wybraa rodzia ma przyajmiej jedą córkę, jakie jest prawdopodobieństwo tego, że jest oa jedyaczką? 6. W Małej Większej są dwie szkoły podstawowe - SP1 i SP2. Przeprowadzoe pod koiec roku szkolego egzamiy wykazały, że większy procet dziewczyek w SP1 potrafi rozłożyć liczbę 215 a czyiki pierwsze iż w SP2 podobie większy procet chłopców z SP1 potrafi to zrobić iż w SP2. Czy zaczy to, że statystycze dziecko ze szkoły r 1 lepiej wypadło w rozkładaiu liczby 215 od statystyczego dziecka ze szkoły r 2? 3
Zadaia z Rachuku Prawdopodobieństwa I - 4 1. Test a rzadką chorobę, którą dotkiętą jest jeda osoba a 5 tysięcy, daje fałszywą pozytywą odpowiedź u osoby zdrowej w 2% przypadków, a u osoby chorej zawsze daje pozytywy wyik. Jakie jest prawdopodobieństwo, że osoba u której test przyiósł wyik pozytywy jest faktyczie chora? 2. Rzucamy dwa razy kostką. Rozważmy zdarzeia: A za pierwszym razem wypadła liczba oczek podziela przez trzy, B za drugim razem wylosowao liczbę oczek podzielą przez trzy, C suma wyrzucoych oczek jest parzysta. Czy zdarzeia A, B, C są parami iezależe? Czy są iezależe? 3. Na kartkach zapisao różych liczb rzeczywistych, astępie kartki włożoo do pudełka, wymieszao i losowao kolejo bez zwracaia. Niech A k ozacza zdarzeie, że k-ta z wylosowaych liczb jest większa od wszystkich poprzedich. Wykaż, że P(A k ) = 1/k oraz zdarzeia A 1, A 2,..., A są iezależe. 4. Wyzacz ajbardziej prawdopodobą liczbę sukcesów w schemacie Beroulliego. 5. Rzucoo 1 razy kostką. Jakie jest prawdopodobieństwo tego, że w pierwszym rzucie wypadła szóstka, jeśli wiadomo, że a) w 1 rzutach wypadło dokładie 7 szóstek b) w 9 astępych rzutach wypadło dokładie 7 szóstek. 6. Rzucamy szóstką do mometu aż wypadie piątka lub po raz trzeci szóstka. Jakie jest prawdopodobieństwo tego, że rzucimy dokładie razy. 7. Prawdopodobieństwo tego, że w ciągu jedego dia a autostradzie będzie k wypadków jest rówe 5 k e 5 /k!, k = 1, 2,.... Prawdopodobieństwo tego, że w daym wypadku będzie uczesticzył samochód czerwoy jest 1/3. Oblicz prawdopodobieństwo tego, że w ciągu jedego dia a autostradzie będzie k wypadków z udziałem samochodów czerwoych. 8. Niech (Ω, F, P) będzie przestrzeią probabilistyczą modelującą schemat Beroulliego z parametrami i p. Dla k przez A k określamy zdarzeie, że zaszło k sukcesów. Wykaż, że P(B A k ) dla B F ie zależy od parametru p. 9. Rzucoo kostkami do gry. Określmy zdarzeia A k - a k-tej kostce wypadła szóstka, 1 k oraz A +1 - suma wyrzucoych oczek jest podziela przez 6. Wykaż, że dowole spośród zdarzeń A 1,..., A +1 jest iezależych, ale łączie zdarzeia A 1,..., A ie są iezależe. 1. Niech X ozacza ajdłuższą serię orłów w rzutach moetą symetryczą. Wykaż, że a) P(X a log 2 ) przy dla a < 1, b) P(X a log 2 ) 1 przy dla a > 1. 11. Rzucamy ieskończeie wiele razy kostką. Udowodij, że z prawdopodobieństwem 1 wystąpi ieskończeie wiele serii złożoych z 215 szóstek pod rząd. 12. Rzucamy ieskończeie wiele razy moetą a której orzeł wypada z prawdopodobieństwem p. Przez A ozaczmy zdarzeie, że w pierwszych rzutach wypadło tyle samo orłów, co reszek. Wykaż, że i) jeśli p 1/2, to z prawdopodobieństwem 1 zajdzie skończeie wiele spośród zdarzeń A 1, A 2,... ii*) jeśli p = 1/2, to z prawdopodobieństwem 1 zajdzie ieskończeie wiele spośród zdarzeń A 1, A 2,... 4
Zadaia z Rachuku Prawdopodobieństwa I - 5 1. Zdarzeia A 1, A 2,... są iezależe oraz P(A ) < 1 dla wszystkich. Wykaż, że astępujące waruki są rówoważe: i) z prawdopodobieństwem 1 zajdzie przyajmiej jedo ze zdarzeń A, ii) z prawdopodobieństwem 1 zajdzie ieskończeie wiele zdarzeń A. 2. Dwaj gracze grają w orła i reszkę moetą symetryczą. Jeśli wypadie orzeł, gracz A płaci B 1 zł., a jeśli reszka, to B płaci A 1 zł. Gra się kończy, gdy któryś z graczy zostaie bez pieiędzy. Na początku gry gracz A ma a zł., a B b zł. a) Wykaż, że z prawdopodobieństwem 1 gra się zakończy. b) Oblicz prawdopodobieństwo tego, że grę wygra gracz A. 3. Prawdopodobieństwo wygraia w pewej loterii jest rówe 1 6. W loterii zagrało 5 tysięcy osób. Jakie jest dokłade prawdopodobieństwo tego, że i) ktoś wygrał, ii) wygrała więcej iż jeda osoba? iii) Oszacuj prawdopodobieństwa z i) i ii). iv) Czy odpowiedź w i) się zmiei, jeśli wiemy, że każda z osób obstawiała iy wyik losowaia? 4. Do pewej tabeli wpisao = 1 liczb. Prawdopodobieństwo, że pojedycza liczba została błędie wpisaa wyosi, 5. Wprowadzoe liczby są sprawdzae przez kotrolera, który ie wychwytuje błędu z prawdopodobieństwem, 2. Oszacuj prawdopodobieństwo tego, że po weryfikacji tabela zawiera przyajmiej dwie błęde liczby. 5. Jaś i Małgosia raz w tygodiu grają w teisa. Prawdopodobieństwo, że w pojedyczym meczu zwycięży Małgosia jest rówe p (, 1). Niech X ozacza umer meczu w którym Małgosia wygrała z Jasiem po raz k-ty. Zajdź rozkład X. 6. Rzucamy dwa razy kostką. Niech X ozacza miimum, a Y maksimum z uzyskaych liczb oczek. Zajdź rozkłady zmieych X i Y i sprawdż, że 7 X ma te sam rozkład co Y. Jak się zmiei odpowiedź, gdy będziemy rzucać 1 razy? 5
Zadaia z Rachuku Prawdopodobieństwa I - 6 1. Na przestrzei losowej Ω = [, 1] z prawdopodobieństwem geometryczym określamy zmiee losowe. X(t) = t(1 t), Y (t) = 1 [,1/2] (t). i) Wykaż, że X i Y są zmieymi losowymi ii) Wyzacz σ-ciała σ(x) i σ(y ). iii) Czy zmiea Y jest σ(x)-mierzala? Czy zmiea X jest σ(y )-mierzala? iv) Wyzacz dystrybuaty zmieych X i Y. 2. Niech X 1, X 2,..., X będą rzeczywistymi zmieymi losowymi a pewej przestrzei probabilistyczej oraz S k = X 1 +... + X k dla 1 k. Wykaż, że σ(x 1, X 2,..., X ) = σ(s 1, S 2,..., S ). 3. Zmiea losowa X ma dystrybuatę dla t < 1 F X (t) = 7 + 2t dla t < 1 14 2 7 + t dla 1 14 t < 3 7 1 dla t 3 7. Oblicz P(X 3 7 ), P( < X < 3 7 ), P(X = ), P( 1 14 X 3 7 ). 4. Dystrybuata zmieej losowej X ma postać dla t < 1 F X (t) = 2 t dla t < 2 1 dla t 2. Zajdź dystrybuatę zmieych mi(1, X) i max(x, X 2 ). 5. Na pewym skrzyżowaiu zieloe światło dla pieszych świeci się przez 3 sekud, a czerwoe przez 2 miuty (ie ma światła żółtego). Pa Abacki przychodzi a skrzyżowaie w losowym momecie czasu. a) Zajdź dystrybuatę czasu oczekiwaia przez paa Abackiego a zieloe światło. b) Pa Abacki czeka już miutę a zieloe światło. Jakie jest prawdopodobieństwo tego, że będzie musiał czekać jeszcze poad pół miuty? 6. Niech F : R [, 1] będzie prawostroie ciągłą, iemalejącą fukcją taką, że lim t F (t) = 1 oraz lim t F (t) =. Wykaż, że F jest dystrybutą pewej zmieej losowej. Wskazówka. Określmy Ω = (, 1) z prawdopodobieństwem geometryczym, zaś zmieą losową X jako X(t) = sup{s: F (s) t}, t (, 1). 6
Zadaia z Rachuku Prawdopodobieństwa I - 7 1. Zajdź wszystkie zmiee losowe X o wartościach aturalych, takie, że P(X ) > oraz P(X + m X ) = P(X m) dla wszystkich liczb aturalych, m. 2. Podaj przykład zmieej o rozkładzie dyskretym, której dystrybuata jest ściśle rosąca. 3. Zmiea losowa X ma gęstość cx 2 1 [,5] (x). Zajdź liczbę c oraz dystrybuatę zmieej X. 4. Załóżmy, że dystrybuata F zmieej losowej X jest ciągła i kawałkami klasy C 1. Wykaż, że X ma rozkład ciągły (z gęstością g = F ). 5. Zajdź rozkład zmieej ax + b oraz e X, gdy X ma rozkład wykładiczy z parametrem λ. 6. Zajdź rozkłady zmieych bx + c, e X i X 2, gdy X ma rozkład ormaly N (a, σ 2 ). 7. Zmiea losowa X ma rozkład wykładiczy z parametrem 1. Wyzacz rozkłady zmieych X oraz {X}. Czy zmiee te są iezależe? 8. Zmiea losowa ma ciągłą, ściśle rosącą dystrybuatę X. Zajdź rozkład zmieej F X (X). Czy odpowiedź się zmiei, gdy dystrybuata ie jest ściśle rosąca? A gdy jest ieciągła? 9. Podaj przykład zmieej X o ciągłej dystrybuacie, która ie ma rozkładu ciągłego (tz. ie ma gęstości). 1. Załóżmy, że X jest ieujemą zmieą losową oraz P(X > t) > dla wszystkich t. Wykaż, że P(X > t + s X > s) = P(X > t) wtedy i tylko wtedy, gdy X ma rozkład wykładiczy z pewym parametrem λ. 7
Zadaia z Rachuku Prawdopodobieństwa I - 8 1. Z talii 52 kartowej losujemy 5 razy ze zwracaiem po jedej karcie. Niech X ozacza liczbę wyciągiętych pików, Y - kierów, a Z - waletów. Czy zmiee X i Y są iezależe? Czy zmiee X i Z są iezależe? 2. Zmiee X 1, X 2,..., X są iezależe oraz P(X i = ±1) = 1/2. i) Czy zmiee X 1 + X 2, X 1 X 2 są iezależe? ii) Czy zmiee X 1 + X 2, X 3, X 4 + X 5 X 6 są iezależe? iii) Czy zmiee X 1, X 1 X 2,..., X 1 X 2 X są iezależe? 3. Dla t [, 1] i = 1, 2,... iech X (t) ozacza -tą cyfrę rozwiięcia dwójkowego liczby t (w przypadku dwu rozwiięć wybieramy to ze skończoą liczbą 1). Udowodij, że X 1, X 2,... są iezależymi zmieymi losowymi a ([, 1], B([, 1]), ). 4. Zmiea X jest iezależa od samej siebie. Wykaż, że istieje liczba c taka, że P(X = c) = 1. 5. Zmiee losowe X 1,..., X są iezależe, przy czym X i ma rozkład wykładiczy z parametrem λ i. Zajdź rozkład zmieej max{x 1,..., X }. 6. Zmiee losowe X i Y są iezależe oraz mają rozkłady geometrycze z parametrami odpowiedio p i q. Oblicz P(X Y ). 7. Zmiee losowe X i Y są iezależe oraz mają rozkłady wykładicze z parametrami odpowiedio λ i µ. Oblicz P(X Y ). 8. Zmiee losowe X i Y są iezależe, przy czym dystrybuata X jest ciągła. Wykaż, że P(X = Y ) =. 9. Niech X 1,..., X będą iezależymi zmieymi losowymi o jedakowym rozkładzie z ciągłą dystrybuatą F. Dla ω Ω iech X1 (ω),..., X(ω) będzie ustawieiem X 1 (ω),..., X (ω) w porządku rosącym X1 (ω) X2 (ω)... X(ω) (czyli w szczególości X1 = mi{x 1,..., X }, X = max{x 1,..., X }. Zajdź dystrybuatę Xk dla k = 1,..., (X k azywamy k-tą statystyką porządkową ciągu X 1,..., X ). 1. Zmiee X i Y są iezależe i mają rozkład N (, 1). Zajdź łączy rozkład wektora losowego (X + Y, X Y ). Co moża powiedzieć o jego współrzędych? 8
Zadaia z Rachuku Prawdopodobieństwa I - 9 1. Dwuwymiarowy wektor losowy (X, Y ) ma rozkład z gęstością g(x, y) = cxy1 { x y 1}. i) Zajdź stałą c. Czy zmiee X, Y są iezależe? ii) Oblicz P(X + Y 1). iii) Zajdź rozkład zmieej X/Y. Czy zmiea X/Y jest iezależa od Y? 2. X, Y są iezależymi zmieymi losowymi o rozkładzie wykładiczym z parametrami λ i µ, zajdź rozkład zmieej X/Y. 3. Zmiee X, Y są iezależe i mają rozkład jedostajy a przedziale [ 1, 1]. Oblicz P(X 2 + Y 2 1). 4. Załóżmy, że P(X = ) = P(X = 1) = 1 4 oraz P(X = 5) = 1 1 2. Oblicz EX, E X+1, E si(πx) i Var(X). 5. Oblicz Et X dla t R i X o rozkładzie Poissoa z parametrem λ. 6. Zmiea losowa X ma gęstość g(x) = 3 8 x2 I [,2] (x). Oblicz EX, E 1 2+X oraz Var(X2 ). 7. Oblicz wartość oczekiwaą i wariację rozkładu geometryczego z parametrem p. 8. Zmiea losowa X ma dystrybuatę Oblicz E(1X + 2). F X (t) = dla t < 1 2 t dla t < 1 3 4 dla 1 t < 5 1 dla t 5. 9. Roztrzepaa sekretarka umieściła w sposób losowy N listów w N uprzedio zaadresowaych kopertach. Niech X ozacza liczbę listów, które trafiły do właściwej koperty. Zajdź wartość oczekiwaą i wariację X. 1. Do klasy chodzi 2 ucziów. Nauczyciel a każdej lekcji pyta losowo wybraego uczia. Zajdź wartość oczekiwaą i wariację liczby ucziów przepytaych w ciągu 15 lekcji. 11. Każdy bok i przekątą siedmiokąta pomalowao w sposób losowy a jede z trzech kolorów (zakładamy, że kolory różych odcików są dobierae iezależie i każdy z trzech dostępych kolorów jest wybieray z jedakowym prawdopodobieństwem). Oblicz wartość oczekiwaą liczby jedobarwych trójkątów o wierzchołkach bedących wierzchołkami siedmiokąta. 12. Udowodij, że dla dowolej rzeczywistej zmieej losowej X i p >, E X p = p t p 1 P( X t)dt. 13. Wykaż, że jeśli zmiea losowa X przyjmuje tylko wartości całkowite ieujeme, to EX = P(X k) = P(X > k). k=1 14. Niech (π(1),..., π()) ozacza losową permutację zbioru {1,..., }. Niech N ozacza ajwiększą liczbę taką, że π(k) > π(k 1) dla k N. Oblicz EN. k= 9
Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Zmiee X, X 1,... są iezależe i mają jedakowy rozkład z ciągłą dystrybuatą. Niech N := if{ : X > X }. Zajdź rozkład N i oblicz EN. 2. Kij o długości 1 złamao w losowym pukcie. Oblicz wartość oczekiwaą stosuku i) długości kawałka prawego do długości lewego, ii) długości kawałka krótszego do długości kawałka dłuższego. 3. Zmiee losowe X, Y spełiają waruki Var(X) = 2, Var(Y ) = 4, Cov(X, Y ) = 1. Oblicz Var(2X 3Y ) i Cov(5X + 2Y, X 3Y ). 4. Zmiea losowa X ma wariację σ 2, wykaż, że P( X EX 4σ) 1 16. 5. Zmiee losowe X 1,..., X są iezależe i mają rozkłady Poissoa z parametrami λ 1,..., λ. Wykaż, że X 1 + X 2 +... + X ma rozkład Poissoa z parametrem λ 1 + λ 2 +... + λ. 6. Mówimy, że zmiea X ma rozkład Γ z parametrem r > (oz. X Γ(r)), jeśli X ma gęstość g r (x) = 1 Γ(r) xr 1 e x I {x }, gdzie Γ(r) = x r 1 e x dx. a) Wykaż, że jeśli zmiee X 1,..., X są iezależe oraz X i Γ(r i ), to X 1 +... + X Γ(r 1 +... + r ). b) Wykaż, że jeśli zmiee X 1,..., X są iezależe oraz każda z ich ma rozkład wykładiczy z parametrem λ, to X 1 +... + X 1 λγ(). (Uwaga. Rozkład aγ(r) w zależości od przyjetej kowecji się ozacza jako rozkład Γ(r, a) lub Γ(1/a, r).) c) Wykaż, że jeśli zmiee X 1,..., X są iezależe oraz X i N (, 1), to X1 2 +... + X 2 2Γ(/2). (Uwaga. Rozkład te występuje w wielu zastosowaiach statystyczych i się azywa rozkładem chi kwadrat o stopiach swobody.) 7. Zmiee X 1, X 2, ε 1, ε 2 są iezależe, przy czym X i mają rozkład wykładiczy z parametrem λ, a P(ε i = ±1) = 1/2. Zajdź rozkład ε i X i, X 1 X 2 oraz ε 1 X 1 + ε 2 X 2. 8. Zmiee X i Y są iezależe i mają rozkład geometryczy z parametrami odpowiedio p i q. Zajdź rozkład X + Y oraz X Y. 1
Zadaia z Rachuku Prawdopodobieństwa I - 11 1. Mówimy, że zmiea losowa X jest symetrycza, jeśli zmiee X i X mają te sam rozkład. Wykaż, że astępujące waruki są rówoważe: i) X jest symetrycza, ii) X ma te sam rozkład, co εx, gdzie ε jest iezależe od X i P(ε = ±1) = 1/2, iii) Ef(X) = dla dowolej ieparzystej, ograiczoej fukcji f. 2. Niech X 1, X 2,... będzie ciągiem iezależych zmieych losowych o rozkładzie wykładiczym z parametrem λ. Zdefiiujmy oraz dla t >, S =, S k = k X i, k = 1, 2,.... i=1 N t := sup{ : S t}. Wykaż, że N t ma rozkład Poissoa z parametrem λt. 3. Niech S = i=1 a iε i, gdzie (ε i ) są iezależymi zmieymi losowymi takimi, że P(ε i = ±1) = 1/2. Wykaż, że dla wszystkich λ R, Ee λs e 1 2 λ2 ES 2 i wywioskuj stąd, że dla t, ( P S t(es 2 ) 1/2) 2e t2 /2. 4. Niech S = ε 1 + ε 2 +... + ε, gdzie (ε i ) są jak w poprzedim zadaiu. Wykaż, że oraz lim sup lim if S 2 log 1 p.. S 2 log 1 p... 5. Zmiea losowa X spełia waruek E X ( ) 2 = 1, 2,.... Wykaż, że X <, tz. istieje liczba M < taka, że P( X > M) =. 6. Nadajik wysyła sygał X, a odbiorik odbiera sygał Z = ax + Y, gdzie a >, a Y jest losowym zaburzeiem iezależym od X. Załóżmy, że EX = m, Var(X) = 1, EY =, Var(Y ) = σ 2. Oblicz współczyik korelacji X i Z oraz regresję liiową X względem Z, tz. ajlepsze (względem wariacji) przybliżeie liiowe X za pomocą Z. 11
Zadaia z Rachuku Prawdopodobieństwa I - 12 1. Zmiee (ε ) 1 są iezależymi zmieymi Rademachera, tz. P(ε i = ±1) = 1/2. Wykaż, że ciąg X = i=1 ε i ie jest zbieży p... Czy jest zbieży według prawdopodobieństwa? 2. Niech (ε ) 1 będą jak w poprzedim zadaiu. Wykaż, że szereg S = =1 2 ε jest zbieży p.. i zajdź rozkład S. 3. Ciągi zmieych losowych (X ) 1 oraz (Y ) 1 są zbieże według prawdopodobieństwa odpowiedio do X i Y. Udowodij, że i) ciąg X + Y jest zbieży do X + Y według prawdododobieństwa, ii) ciąg X Y jest zbieży do XY według prawdododobieństwa. 4. Daa jest całkowala zmiea losowa X. Określamy dla 1, dla X (ω) < X (ω) = X(ω) dla X (ω) dla X (ω) >. Czy ciąg X jest zbieży prawie a pewo? Czy jest zbieży w L 1? 5. Zmiee X 1, X 2,... są iezależe, mają te sam rozkład oraz P( X i < 1) = 1. Wykaż, że ciąg R = X 1 X 2 X zbiega do p... 6. Zmiee X 1, X 2,... są iezależe, ieujeme, mają te sam rozkład oraz P( X i = ) < 1. Wykaż, że =1 X = p... 7. Day jest ciąg (X ) 1 iezależych zmieych losowych o rozkładzie wykładiczym z parametrem λ. i) Wykaż, że jeśli λ > 1, to z prawdopodobieństwem 1, X < log dla dużych, a jeśli λ 1, to z prawdopodobieństwem 1, X log dla ieskończeie wielu. ii) Zbadaj zbieżość według prawdopodobieństwa i prawie a pewo ciągu (X / log ) 1. 12
Zadaia z Rachuku Prawdopodobieństwa I - 13 1. Zmiee (X ) 1 są iezależe, przy czym X ma rozkład Poissoa ze średią 1/. Zbadaj zbieżość ciągu X i) według prawdopodobieństwa; ii) prawie a pewo; iii) w L 2 i L 3/2. 2. Liczby p, q > spełiają waruek 1/p + 1/q = 1. Wykaż, że jeśli X zbiega do X w L p oraz Y zbiega do Y w L q, to X Y zbiega do XY w L 1. 3. Zmiee X i Y są zbieże według prawdopodobieństwa do zmieych X i Y odpowiedio. Wykaż, że jeśli dla każdego, zmiea X ma te sam rozkład co zmiea Y, to zmiee X i Y mają jedakowy rozkład. 4. Wykaż, że X P X wtedy i tylko wtedy gdy E mi( X X, 1). 5. Niech X 1, X 2,... będzie ciągiem zmieych iezależych o jedakowym rozkładzie takim, że E X <. Wykaż, że 1 max P i X i. 6. Wykaż, że jeśli ε jest ciągiem liczb dodatich zbieżych do takim, że =1 P( X X ε ) <, to X X p... 7. Zmiee X 1, X 2,..., X są iezależe i mają średią zero i skończoe czwarte momety. Wykaż, że 4 E X i = EXi 4 + 6 EXi 2 EXj 2. i=1 i=1 1 i<j 8. Niezależe zmiee losowe X 1, X 2,... mają średią zero oraz M := sup EX 4 <. Wykaż, że 1 i=1 X i zbiega do p.. 13
Zadaia z Rachuku Prawdopodobieństwa I - 14 1. Zmiee losowe X 1, X 2,... są iezależe o wspólym rozkładzie wykładiczym z parametrem λ. Pokaż, że ciągi zmieych losowych a) X 1X 2 + X 2 X 3 +... + X X +1, b) X 1 + X 2 +... + X X1 2 + X2 2 +... + X2 są zbieże prawie a pewo i wyzacz ich graice. 2. Day jest ciąg (X ) 1 iezależych zmieych losowych o rozkładzie Poissoa z parametrem 215. Wykaż, że ciąg zmieych losowych X 1 X 2 X 3 + X 2 X 3 X 4 +... + X X +1 X +2 jest zbieży prawie a pewo i zajdź jego graicę. 3. Zmiee X 1, X 2,... są iezależe, przy czym X ma rozkład jedostajy a przedziale (1/, 1]. Udowodij, że ciąg średich X 1 + X 2 +... + X jest zbieży prawie a pewo i oblicz jego graicę. 4. Zmiee X 1, X 2,... są iezależe o wspólym rozkładzie jedostajym a [, 2]. Czy ciąg M = (X 1 X 2 X ) 1/ jest zbieży p..? Jeśli tak, to do jakiej graicy? 5. Oblicz graice a) lim b) lim c) lim d) lim 1 1 x 2 1 +... + x 2... dx 1... dx, x 1 +... + x 1... x 2 1 +... + x2 dx 1... dx, 1 1 1... 1... ( x1 +... + x f ) dx 1... dx, gdzie f : [, 1] R jest fukcją ciągłą, + x 1 +... + x e (x1+...+x) dx 1... dx. 6. Wykaż, że dla dowolego ciągu (X ) 1 iezależych zmieych losowych o jedakowym rozkładzie takim, że E X i < ciąg średich X 1 + X 2 +... + X EX 1 w L 1 przy. 7. Załóżmy, że zmiea N ma rozkład Poissoa z parametrem. Wykaż, że N / 1 w L 1 przy. 14
Zadaia z Rachuku Prawdopodobieństwa I - 15 1. Zmiee losowe (ε ) 1 są iezależe i P(ε = ±1) = 1/2. Wykaż, że 1 a ε jest zbieży prawie a pewo wtedy i tylko wtedy, gdy 1 a2 <. 2. Dae są iezależe zmiee losowe X 1, X 2,... takie, że X ma rozkład jedostajy a [, ]. Wyzacz wszystkie liczby p dla których szereg 1 jest zbieży prawie a pewo. 3. Załóżmy, że P(X = ) = P(X = ) = 1 2 2 oraz P(X = ) = 1 1 2 dla = 1, 2,.... Wykaż, że 1 X jest zbieży p.. oraz 1 Var(X ) =. 4. Prawdopodobieństwo urodzeia chłopca wyosi, 517. Oszacuj prawdopodobieństwo tego, że wśród 1 oworodków liczba chłopców ie przewyższy liczby dziewczyek. 5. Rzucamy kostką do gry aż do wystąpieia szóstki po raz 5. Oszacuj prawdopodobieństwo tego, że rzucimy co ajwyżej 4 razy. 6. Na campusie uiwersyteckim są dwie restauracja po 12 miejsc każda. Wiadomo, że codzieie 2 osób będzie chciało zjeść obiad, a wyboru restauracji dokouje losowo i iezależie. Jaka jest szasa, że w którejś restauracji zabrakie miejsc? Ile miejsc ależy przygotować w każdej restauracji, by powyższe prawdopodobieństwo było miejsze od,1? 7. W pewym mieście w wyborach prezydeckich głosuje 5. osób. Zakładając, że wyborcy głosują a każdego z dwu kadydatów losowo i iezależie z prawdopodobieństwem 5% jaka jest szasa, że różica między kadydatami będzie miejsza iż 1 głosów? 8. Agata rzuciła moetą 1 razy i uzyskała 7 orłów. Jacek chce powtórzyć te wyczy (tz. otrzymać 7 lub więcej orłów) i zamierza w tym celu rzucać moetą aż do skutku. Ile średio serii po 1 rzutów potrzeba, aby się doczekać 7 lub więcej orłów? 9. Pewe biuro badaia opiii publiczej plauje zrobić sodaż wyborczy przed wyborami prezydeckimi. Przy założeiu losowego wyboru uczestików sodażu ile musi przepytać osób by z prawdopodobieństwem.95 uzyskae w sodażu wyiki poparcia dla poszczególych kadydatów róziły się od prawdziwych preferecji wyborczych ie więcej iż o 2 pukty procetowe? Jak zmiei się odpowiedź jeśli biuro bada poparcie kadydatów, których chce wybrać ie więcej iż 1% wyborców? 1. Zmiee (ε ) 1 są iezależe i P(ε = ±1) = 1/2. a) Oblicz w zależości od t, lim P(ε 1 + ε 2 +... + ε t ). b) Wykaż, że ciąg ε1+ε2+...+ε ie jest zbieży prawie a pewo. 11. Zmiee X 1, X 2,... są iezależe oraz P(X i = 1/2) = P(X i = 2) = 1/2. Niech R = (X 1 X 2 X ) 1/. Oblicz lim P(R t). X p 15