Ci ag lość i norma Ćwiczenie. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? f (x, y) = x2 y 2 x 2 + y 2, f 2(x, y) = x2 y x 2 + y 2 f 3 (x, y) = x2 y x 4 + y 2. Rozwi azanie: Musimy zdefiniować funkcjȩ f w postaci w taki sposób, że f (x, y) = { x 2 y 2, x 2 +y 2 (x, y), k, (0, 0). f (0, 0) = k (x,y) (0,0) dla pewnej liczby k. Krótko mówi ac, poprzednia definicja mówi nam, że wartość funkcji f zd aża do k wzd luż każdej możliwej drogi do zera. Natomiast, widać na pierwszym rysunku, że jeżeli d ażymy do zera wzd luż linii x = 0, wartość funkcji zd aża do i jeżeli d ażymy do zera wzd luż linii y = 0, to wartość funkcji zd aża do : Wiȩc, ta funkcja nie wygl ada na ci ag l a, ale trzeba to udowodnić. Ponadto, nie zawsze mamy wykres funkcji. Wiȩc, musimy podać metodȩ aby ustalić czy funkcja może być ci ag la.
Kiedy myśy, że funkcja nie bȩdzie ci ag la lub nie wiemy wcale co może siȩ zdarzyć, naj latwiej bȩdzie sprawdzić kilka warunków koniecznych dla ci ag lości funkcji. Najpierw, sprawdzamy granice iterowane. Jeżeli funkcja jest ci ag la w punkcie (0, 0), to istniej a granice f (x, y) = x 0 y 0 y 0 x 0 f (x, y) = f (0, 0). Jeżeli granice funkcji f nie istniej a lub nie s a sobie równe, to funkcja nie może być ci ag la. Geometrycznie, granica iterowana f x 2 y 2 (x, y) = x 0 y 0 x 2 + y = x 2 2 x 0 x = 2 wskazuje do której wartości f d aży gdy najpierw y d aży do zera i potem x d aży do zera. Geometrycznie, granica iterowana f (x, y) = x 2 y 2 x 0 x 2 + y = 2 y 0 y 0 y 2 y 2 = wskazuje do której wartości f d aży gdy najpierw x d aży do zera i potem y d aży do zera. Na wykresie widać, że granice iterowane nie s a sobie równe, ponieważ wartość funkcji f d aży do innych wartości kiedy d ażymy do zera wzd luż poprzednich dróg. Zatem, nie możemy zdefiniować f w taki sposób, że funkcja f bȩdzie ci ag la. Sprawdzamy teraz trzeci a funkcjȩ. Znowu, musimy ustalić czy możemy ustalić k w taki sposób, że {, (x, y), x f 3 (x, y) = 4 +y 2 k, (0, 0).
i Znowu, korzystamy z granic iterowanych: f 3(x, y) = x 4 + y 2 = y 0 0 = 0 f 3(x, y) = x 0 y 0 x 4 + y = 0 = 0. 2 x 0 Granice iterowane istniej a i s a sobie równe. Widać, że jeżeli funkcja f 3 ma być ci ag la, to ma być f 3 (0, 0) = 0. Natomiast, to nie zagwarantuje, że f 3 jest ci ag la. Aby to zagwarantować, musimy sprawdzić kolejny warunek konieczny: granice wzd luż linii. Jeżeli funkcja f 3 jest ci ag la w (0, 0), to f 3(x, y) = f 3 (0, 0) = 0, y=λx,x 0 f 3(x, y) = f 3 (0, 0) = 0, λ R. x=λy,y 0 Widać, że i f 3(x, y) = y=λx,x 0 f 3(x, y) = x=λy,y 0 y=λx,x 0 x=λy,y 0 x 4 + y 2 = x 4 + y 2 = y=λx,x 0 x=λy,y 0 λx 3 (x 2 + λ 2 )x 2 = y=λx,x 0 λy 3 ( + λ 4 y 2 )y 2 = x=λy,y 0 λ ( + λ 2 ) x = 0. λ ( + λ 4 y 2 ) y = 0. To jeszcze nie oznacza, że granica istnieje. Te warunki nie mog a udowodnić, że funkcja jest ci ag la. Z teoretycznego punktu widzenia, to s a warunki konieczne, aby funkcja f 3 by la ci ag la. Z praktycznego punktu widzenia, korzystamy z nich, aby udowodnić, że jakiś warunek nie spe lnia siȩ i funkcja nie jest ci ag la. Mówi ac inaczej, to s a warunki aby udowodnić, że funkcja nie jest ci ag la. Kolejnym warunkiem do sprawdzenia, jest sprawdzenie, czy wartość funkcji f 3 d aży do zera wzd luż parabol, czyli Widać, że to nie spe lnia siȩ f 3 (x, y) = 0, y=λx 2,x 0 f 3 (x, y) = 0. x=λy 2,y 0 λx 4 f 3 (x, y) = y=λx 2,x 0 x 0 x 4 + λ 2 x = 4 λ + λ 2. Wiȩc, funkcja f 3 nie jest ci ag la ponieważ granica zależy od λ.
Szczerze mówi ac, widać od samego pocz atku, że tak mia lo być. Funkcja f 3 poza zerem jest taka, że jeżeli y = λx 2 to licznik i mianownik s a wielomianami gdzie każdy wyraz jest czwartego stopnia (mówi siȩ że wielomiany s a jednorodne). W takim przypadku, rzadko siȩ zdarza, że funkcja jest ci ag la. Zbadamy teraz funkcjȩ f 2 (x, y). Najpierw, sprawdzamy granice iterowane, wzd luż linii i paraboli. Z drugiej strony f 2(x, y) = x 0 y 0 f 2(x, y) = x 2 + y 2 = x 0 0 = 0. x 2 + y 2 = y 0 0 = 0. f 2(x, y) = x 0 y 0 x 2 + y = 0 = 0. 2 x 0 f 2(x, y) = x 2 + y 2 = y 0 0 = 0. Widać, że w każdym przypadku, granice istniej a i s a takie same. W takim przypadku, chyba czas aby ustalić, czy funkcja jest ci ag la. Musimy udowodnić, że ɛ > 0, δ > 0, (x, y) (0, 0) < δ f 2 (x, y) f 2 (0, 0) < ɛ. (.) Warto przypominać, że to czȩsto jest skomplikowane. Lepiej zajmować si a tym, tylko gdy myśy, że funkcja ma być ci ag la, np. po sprawdzeniu granic iterowanych, itd. Aby udowodnić, że (2.) spe lnia siȩ, musimy szukać takiej δ, że f 2 (x, y) f 2 (0, 0) < ɛ dla danego ɛ > 0. Trzeba zauważyć, ż e ogólnie δ zależy od ɛ. Teraz mamy zagwarantować, że f 2 (x, y) < ɛ, ponieważ f 2 (0, 0) = 0. Aby to zrobić, postȩpujemy zawsze tak samo. Ograniczamy f 2 (x, y) za pomoc a funkcji, która zależy tylko od x 2 + y 2. Zobaczmy jak. f 2 (x, y) = x2y x 2 + y 2.
Widać, że xy (x 2 + y 2 )/2, faktycznie (x y) 2 0 x 2 + y 2 2xy x 2 + y 2 2xy ponieważ x 2 + y 2 0. Korzystaj ac z tego mamy, że Teraz, trzeba pamiȩtać, że Wiȩc, f 2 (x, y) = 2 xy2 x 2 + y 2(x2 + y 2 ) y 2 y. 2 x 2 + y 2 y, x x 2 + y 2. f 2 (x, y) = 2 xy2 x 2 + y 2 2(x2 + y 2 ) x 2 + y 2 y 2 y 2 x 2 + y 2. Ograniczyliśmy f 2 za pomoc a funkcji 2 x 2 + y 2 która tylko zależy od x 2 + y 2. Korzystaj ac z tego, widać, że jeżeli x 2 + y 2 < δ to f 2 (x, y) 2 x 2 + y 2 < 2δ. Skoro δ musimy ustalić dla pewnej ɛ > 0, to możemy ustalić, że δ < ɛ/2 i wtedy f 2 (x, y) 2 x 2 + y 2 < 2δ < ɛ. Ćwiczenie 2. Sprawdzić istnienie i ewentualnie obliczyć granice (x,y) (0,0) + x2 y 2 x 2 + y 2, (x,y) (0,0) ( + x2 y 2 ) x 2 +y 2, ( + (x,y) (0,0) x2 + y 2 ) x 2 +y 2.
Rozwi azanie: Mamy, że + x2 y 2 x 2 + y 2 = Zatem (x,y) (0,0) ( + 2 ) (x 2 + y 2 )( + 2 + ) = 2 (x 2 + y 2 )( + 2 + ). + x2 y 2 x 2 + y 2 = (x,y) (0,0) Jak w poprzednim zadaniu, musimy sprawdzić, czy 2 (x 2 + y 2 )( + 2 + ). ɛ > 0, δ > 0, 0 < (x, y) (0, 0) < δ f 2 (x, y) k < ɛ. (2.) dla pewnej liczby k. Proszȩ zauważyć, że powyższa definicja jest niezależna od wartości w punkcie (0, 0) ponieważ tylko musimy zbadać gdy 0 < (x, y) (0, 0) < δ. Aby sprawdzić ci ag lość w poprzednim zadaniu, mieliśmy (x, y) (0, 0) < δ. Jakkolwiek, sprawdzamy (2.) jak wcześniej. Aby ustalić k możemy sprawdzić granice iterowane. S a latwe do obliczenia i jeżeli granica istnieje, ich wartość ma być wartości a granicy funkcji. W naszym przypadku mamy x 0 y 0 + x2 y 2 x 2 + y 2 = x 0 x 2 = 0. Trzeba ograniczyć 2 (x 2 + y 2 )( + 2 + ). Jak wcześniej, xy (x 2 + y 2 )/2. Zatem 2 (x 2 + y 2 )( + 2 + ) (x 2 + y 2 ) 2 4(x 2 + y 2 )( + 2 + ) = (x 2 + y 2 ) 4( + 2 + ). Widać, że + 2 + 2, zatem
2 (x 2 + y 2 )( + 2 + ) (x2 + y 2 ). 8 Jeżeli (x, y) < δ, to 2 (x 2 + y 2 )( + 2 + ) (x2 + y 2 ) < δ 8 8. Jeżeli ustalamy δ < 8ɛ, wiȩc, 2 (x 2 + y 2 )( + 2 + ) (x2 + y 2 ) 8 < ɛ. Poprzednia metoda jest czȩsto bardzo wolna. Jeżeli to możliwe, lepiej korzystać z innych metod. Na przyk lad, za pomoc a twierdzenia trzech ci agów. Skoro xy (x 2 + y 2 )/2 i ( + 2 ) mamy, że Z twierdzenia trzech ci agów Widać, że funkcja ( + 2 ) x 2 +y 2 ( + (x 2 + y 2 ) 2 /4) x 2 +y 2. ( + (x,y) (0,0) x2 y 2 ) x 2 +y 2 ( + (x,y) (0,0) (x2 + y 2 ) 2 /4) ( + (x 2 + y 2 ) 2 /4) zależy tylko od h = x 2 + y 2. Wiȩc, można obliczyć ( + (x,y) (0,0) (x2 + y 2 ) 2 /4) x 2 +y 2 To zwyk la granica jednej zminnej typu liczby e: h 0 ) /h ( + h2 = 4 h 0 [ ( ) 4 + h2 4 x 2 +y 2 = h 0 ( + h 2 /4) /h. ] h 2 h 2 4 h x 2 +y 2. = e h 0 h2 4h =.
Z tego wynika, że ( + (x,y) (0,0) x2 y 2 ) x 2 +y 2 ( + (x,y) (0,0) (x2 + y 2 ) 2 /4) x 2 +y 2 =. i ( + (x,y) (0,0) x2 y 2 ) x 2 +y 2 =. W ostatnim przypadku, widać, że granica ( + (x,y) (0,0) x2 + y 2 ) x 2 +y 2. To granica jednej zmiennej: ( + (x,y) (0,0) x2 + y 2 ) x 2 +y 2. = h 0 ( + h) h = e. Ćwiczenie 3. Niech T : R n R m bȩdzie odwzorowaniem liniowym o macierzy [t i j] w bazach kanonicznych. Wyznaczyć T jeśli (a) w R n x = x + + x n zaś w R m x = max i=...m x i, (b) w obu przestrzeniach x = max i x i. Rozwi azanie: Jėzeli (R n, n ) i (R m, m ) s a przestrzeniami unormowymi, norma operatora liniowego T : R n R m siȩ zdefiniuje jako T = sup T x m. x n= Aby t lumaczyć geometryczne znaczenie tej definicji, podamy nastȩpuj acy przyk lad. Niech T : R 2 R 2 bedzie operatorem liniowym w bazach kanoniczych postaci [ ] 2 2. (3.)
Wektory jednostkowe w R 2 nastȩpuj acego obszaru ze wzglȩdu na (x, y) = x + y s a na brzegu Obrazy tych wektorów s a na brzegu obszaru W tej przestrzeni zdefiniujemy normȩ (x, y) = max( x, y ), czyli norma wektora (x, y) to najwiȩksza wartość wszglȩdna wsród wsp lórzȩdnych wektora (x, y). Widać, że dla naszego operatora, najwiȩksza norma wektora T x, dla x 2 =, to 2. Wiȩc, T = 2. Możemy obliczyc normȩ T z inn a norm a w jego dziedzinej (x, y) = max( x, y ) w R 2. W tym przypadku, wektory które maj a normȩ w R 2 ze wzglȩdu na (x, y) = x + y s a na brzegu nastȩpuj acego obszaru
Obrazy tych wektorów s a na brzegu obszaru Widać, że najwiȩksza norma tych wektorów to 4. Zatem, T = 4. Teraz obliczymy normȩ ogólnego operatora T : R n R m. Zaczynamy zbadaj ac operator T dla (x,..., x n ) n = n i= x i i (x,..., x m ) m = max i=,...,m x i. Aby ustalić T najpierw udowodnimy, że T można ograniczyć przez pewn a sta l a k i pożniej, że T x m = k dla pewnego wektora x R n z x n =. W tym sposob, otrzymamy, że T = k. Korzystaj ac z nierówności trójk atowej mamy, że T x m = t i jx j = max m j= i=,...,m j= t i jx j max i=,...,m t i jx j. j= Mamy, że t i j max t i j. i=,...,n j=,...,m
Z tego wynika, że dla x n = to T x m max t i j max i=,...,n i=,...,m j=,...,m j= Ponadto, jeżeli i 0 i j 0 s a takie, że to możemy zdefiniować wektor postaci x j = max t i j i=,...,n j=,...,m x j = j= t i 0 j0 = max t i j, i=,...,n j=,...,m x 0 = [0,..., j 0,..., 0] T. max i=,...,n j=,...,m Wtedy x 0 = i T x 0 m = max t i jx j 0 i=,...,n = max i=,...,n ti j 0 = t i 0 j0. j= t i j x n = max t i j. i=,...,n j=,...,m Skoro T x m max i=,...,n t i j dla każdego x spe lniaj acego, że x n = i T x 0 m = j=,...,m max i=,...,n t i j to j=,...,m T = max t i j. i=,...,n j=,...,m Widać w naszym pierwszym przyk ladzie, że norma macierzy (3.) to 2, czyli najwiȩksza wartość wspó lczynników T w naszej bazie. Obliczmy teraz T kiedy mamy tak a sam a normȩ x = max i x i w R n i R m. Jak wcześniej, aby ustalić wartosć T najpierw udowodnimy, że T jest ograniczona przez pewn a sta l a k i pożniej, że T x m = k dla pewnego wektora x R n. W tym sposób, otrzymamy, że T = k. Mamy, że T x m = t i jx j = max m j= i=,...,m j= t i jx j max i=,...,m t i jx j j= Mamy, że x i max i=,...,n xi.
Z tego wynika, że dla x n = to T x m max i=,...,n xi max Ponadto, jeżeli i 0 jest taki, że t i 0 j = max j=,...,n i=,...,m j=,...,n i=,...,m j=,...,n Teraz możemy zdefiniować wektor postaci Wtedy x 0 n = i t i j = max t i j T max i=,...,m j=,...,n i=,...,m j=,...,n x 0 = [sign[t i 0 ], sign[t i 0 2 ],...,..., sign[t i 0 n ]] T. t i j. t i j = j=,...,n t i 0 j. T x 0 m = max t i jx j 0 i=,...,m j= j= t i 0 j x j 0 = t i 0 j T x 0 m = j= t i 0 j. j= Ponieważ T x m to t i 0 j, i T x 0 m = t i 0 j. j= j= T = max i=,...,m j=,...,n t i j. Dla macierzy (3.) zauważaliśmy, że T = 4, to w lasnie max i=,...,m j=,...,n ti j.