T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a.

Wielkość: px
Rozpocząć pokaz od strony:

Download "T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a."

Transkrypt

1 T O P O L O G I A WPPT I, sem. letni WYK LAD 8 Zwartość D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. Wroc law, 1 kwietnia 008 Definicja 1. (X, d) jest ca lkowicie ograniczona jeśli dla każdego ɛ > 0 X jest zawarta w skończonej sumie kul o promieniu ɛ. Definicja. (X, d) jest metrycznie zwarta jeśli jest ca lkowicie ograniczona i zupe lna. Definicja 3. (X, d) jest ci agowo zwarta gdy każdy ci ag zawiera podci ag zbieżny. Definicja 4. Przez rodzinȩ scentrowan a rozumiemy rodzinȩ domkniȩtych podzbiorów {F α : α A} przestrzeni X takich, że każdy uk lad skończony {F α1, F α,..., F αk } ma przekrój niepusty. Na przyk lad każdy zstȩpuj acy ci ag (F n ) niepustych zbiorów domkniȩtych jest rodzin a scentrowan a. Definicja 5. Pokryciem (otwartym) nazywamy rodzinȩ zbiorów otwartych {U α : α A} tak a, że α U α = X. Definicja 6. (X, d) jest toplogicznie zwarta jeśli każde pokrycie zawiera pokrycie (czyli tzw. podpokrycie) skończone. Definicja 7. (X, d) jest przeliczalnie zwarta jeśli każde pokrycie przeliczalne zawiera podpokrycie skończone. Definicja 8. (X, d) jest uniwersalnie zupe lna jeśli każda przestrzeń homeomorficzna z (X, d) jest zupe lna. Definicja 9. (X, d) ma w lasność Lindelöfa jeśli każde pokrycie zawiera podpokrycie przeliczalne. T W I E R D Z E N I A Twierdzenie 0. Ci ag ly obraz zbioru ci agowo zwartego jest ci agowo zwarty. Twierdzenie 1. Metryczna i ci agowa zwartość s a równoważne. Twierdzenie. Przestrzeń metrycznie zwarta jest ograniczona, ośrodkowa, uniwersalnie zupe lna. Twierdzenie 3. Przestrzeń metryczna (X, d) uniwersalnie zupe lna jest metrycznie zwarta. Twierdzenie 4. Przestrzeń jest topologicznie zwarta wtedy i tylko wtedy gdy każda rodzina scentrowana ma przekrój niepusty. Twierdzenie 5. Przestrzeń metryczna, w której każdy zstȩpuj acy ci ag niepustych zbiorów domkniȩtych ma przekrój niepusty (w szczególności jest tak gdy każda rodzina scentrownana ma przekrój niepusty), jest metrycznie zwarta. Twierdzenie 6. Każda przestrzeń metryczna jest ośrodkowa wtedy i tylko wtedy gdy ma w lasność Lindelöfa. Twierdzenie 7. Przestrzeń metrycznie zwarta jest przeliczalnie zwarta.

2 WNIOSEK, Twierdzenie 8. Dla przestrzeni metrycznej (X, d) NWSR 1) metryczna zwartość, ) ci agowa zwartość, 3) uniwersalna zupe lność. 4) topologiczna zwartość, 5) warunek, że każda rodzina scentrowana ma przekrój niepusty, 6) warunek, że każdy zstȩpuj acy ci ag niepustych zbiorów domkniȩtych ma przekrój niepusty, 7) przeliczalna zwartość, DOWODY: Dowód Tw 0. Niech f : X Y bȩdzie ci ag la, a X zwarta. Weźmy dowolny ci ag (y n ) w obrazie f(x). Mamy y n = f(x n ) dla odpowiednio dobranych punktów x n X. Jeśli teraz (x nk ) jest podci agiem zbieżnym do pewnego x X (a istnieje taki ze zwartości ci agowej X), to (f(x nk )) jest ci agiem zbieżnym do f(x) (z ci ag lości funkcji f). Ale to jest ci ag (y nk ), czyli podci ag ci agu (y n ) i zbiega do elementu zbioru f(x). Czyli f(x) jest ci agowo zwarta. Dowód Tw 1. Niech (X, d) bȩdzie ci agowo zwarta i niech (x n ) bȩdzie ci agiem podstawowym. Ponieważ (z ci agowej zwarości) ma on podci ag zbieżny, sam jest zbieżny (do tej samej granicy to jest w lasność ci agów podstawowych). Zatem (X, d) jest zupe lna. Za lóżmy, że X nie jest ca lkowicie ograniczona. Wtedy istnieje ɛ > 0 taki, że żaden skończony uk lad kul o promieniu ɛ nie pokrywa X. Wtedy bior ac indukcyjnie za x n+1 punkt spoza sumy kul wokó l punktów x 1, x,..., x n konstruujemy ci ag punktów, w ktorym każde dwa elementy s a w odleg lości co najmniej ɛ. Taki ci ag nie ma podci agu podstawowego, co przeczy ci agowej zwartości. Zatem wykazaliśmy, że X jest ca lkowicie ograniczona. Teraz na odwrót. Niech X bȩdzie ca lkowicie ograniczona i zupe lna i weźmy dowolny ci ag (x n ). Ustalamy ci ag ɛ n malej acy do zera. Jedna ze skończenie wielu kul o promieniu ɛ 1 pokrywajcych X zawiera nieskończenie wiele wyrazów ci agu (x n ), a wiec podci ag (x nk ). Pierwszy wyraz tego ci agu bȩdzie pierwszym wyrazem y 1 przysz lego podci agu zbieżnego ci agu (x n ). Dalej, jedna ze skończenie wielu kul o promieniu ɛ zawiera nieskończenie wiele wyrazów ci agu (x nk ), a wiec podci ag (x nki ). Drugi wyraz tego ci agu bȩdzie naszym y (dlatego drugi, że pierwszy może mieć ten sam indeks w ci agu (x n ) co y 1, natomiast drugi z pewności a bȩdzie mieć indeks wyższy). I tak dalej, skonstruujemy ci ag y n bȩd acy podci agiem ci agu (x n ) o tej w lasności, że wyrazy od n-tego wzwyż s a w jednej kuli o promieniu ɛ n. Taki ci ag jest oczywiście podstawowy, a z zupe lności zbieżny. Dowód Tw. Ograniczoność wynika z tego, że skończenie wiele kul o promieniu ɛ, powiedzmy K(x 1, ɛ),..., K(x n, ɛ) zawieraj a siȩ w kuli o promieniu ɛ + M wokó l punktu x 1, gdzie M = max{d(x 1, x i ), i =,..., n}. Ośrodkowość: ośrodkiem jest zbiór środków kul pokrywaj acych o promieniach ɛ n, gdzie (ɛ n ) jest pewnym ci agiem zbieżnym do zera. Uniwersalna zupe lność wynika z Twierdzeń 0 i 1. Dowód Tw 3. Najpierw definicje pomocnicze: funkcja f : X X [0, ) nazywa siȩ funkcj a kosztów przejazdu jeśli f(x, y) = f(y, x) i f(x, x) = 0. Maj ac funkcjȩ kosztów przejazdu f definiujemy,,metrykȩ najtańszego po l aczenia wzorem d f (x, y) = inf{f(x 0, x 1 ) + f(x 1, x ) + + f(x n 1, x n )} po wszystkich skończonych uk ladach punktów x 0, x 1,..., x n takich, że x 0 = x i x n = y. Latwo sprawdza siȩ, że jest to pesudometryka (spe lnia wszystkie aksjomaty

3 metryki oprócz tego, że d f (x, y) = 0 = x = y). Oczywiście d f (x, y) f(x, y) (f(x, y) reprezentuje,,po l aczenie bezpośrednie ). W sytuacji Tw. 3 weźmy przestrzeń niezwart a i w niej ci ag (x n ) nie maj acy podci agu zbieżnego. Wybieraj ac podci ag można uzyskać ci ag (x n ) różnowartościowy (czyli o wyrazach parami różnych). Zadajemy funkcjȩ kosztu { d(x, y), gdy przynajmniej jeden z punktów x, y nie należy do cia,gu (xn ) f(x, y) = min{d(x, y), 1 n 1 m }, gdy x = x n, y = y m. (Interpretacja: punkty x n to,,lotniska, ceny przelotów z lotniska x n do lotniska x m s a takie jak odleg lości w ci agu 1 n. Z punku x do y możemy jechać,,po l adzie, albo korzystać z po l aczeń lotniczych, ale wtedy trzeba dojechać l adem do jakiegoś lotniska). Widać, że f(x, y) d(x, y), zatem d f (x, y) d(x, y), z czego wynika natychmiast, że zbieżność w d implikuje zbieżność w d f. Pokażemy, że jest też na odwrót. W tym celu wprowadzamy oznaczenie { min{d(x, xn ) : n 1} gdy x nie jest wyrazem cia,gu (x n ) r(x) = min{ 1 n+1, d(x n, x m ) : m n} gdy x = x n. Jest istotne, że dla każdego x, r(x) > 0. (Liczba ta interpretuje siȩ jako odleg lość (w nowej metryce) do najbliższego (innego niż x) lotniska). Nietrudno zauważyć, że dla każdego x i y mamy d f (x, y) min{d(x, y), r(x)} (najtańsze po l aczenie, jeśli nie jest,,po l adzie, to albo zawiera dojazd do najbliższego lotniska, albo, jeśli już jesteśmy na lotnisku najtańszy przelot do innego lotniska). Zatem jeśli d f (x, y) < r(x) to d f (x, y) = d(x, y). Z tego natychmiast wynika, że jeśli y n x w d f to y n x również w d. Zatem metryki d i d f s a równoważne i (X, d) oraz (X, d f ) s a homeomorficzne poprzez identyczność. Ostatnia rzecz, to spostrzeżenie, że ci ag (x n ) jest podstawowy w metryce d f (dla n m, d f (x n, x m ) 1 n ) ale nie jest zbieżny (bo nie by l zbieżny w równoważnej metryce d). Zatem (X, d f ) nie jest zupe lna. Dowód Tw 4. Niech F = {F α : α A} bȩdzie rodzin a zbiorów domkniȩtych o pustym przekroju. Wtedy U α = Fα c jest pokryciem. Z za lożenia o topologicznej zwartości istnieje podpokrycie skończone {U αi : i = 1,,..., n}. Wtedy przekrój skończony n i=1 F α i jest pusty, czyli rodzina F nie jest scentrowana. A zatem rodziny scentrowane maj a przekrój niepusty. Na odwrót. Niech U = {U α : α A} bȩdzie pokryciem nie posiadaj acym podpokrycia skończonego. Wtedy F = {F α : α A}, gdzie F α = Uα, c jest rodzin a scentrowan a o przekroju pustym. Dowód Tw 5. Niech X posiada w lasność, że każdy zstȩpuj acy ci ag niepustych zbiorów ma przekrój niepusty. Pokażemy ci agow a zwartość. Przypuśćmy, że (x n ) jest ci agiem bez podci agów zbieżnych. Znowu możemy za lożyć, że jest to ci ag różnowartościowy. Wtedy zbiory F n = {x n, x n+1,... } s a niepuste, zstȩpuj ace, domkniȩte (gdyby w domkniȩciu dochodzi l jakiś punkt, to by lby on granic a podci agu) i maj a przekrój pusty. Sprzeczność. Dowód Tw 6. Jeśli (X, d) jest metryczna i ośrodkowa, o ośrodku {x n : n N}, to rodzina kul K = {K(x n, 1 k ) : n, k N} jest przeliczalna. Nietrudno pokazać (z gȩstości ośrodka i elementarnych nierówności trójk ata), że jeśli U jest zbiorem otwartym i x U to istnieje K K taka, że x K U. Jeśli U jest pokryciem, to najpierw dla każdego x X wybieramy jakiś U x U taki, że x U x, a nastȩpnie wybieramy kulȩ K x K tak a, że x K x U x. Rodzina kul K 0 = {K x : x X} jest co prawda indeksowana zbiorem być może nieprzeliczalnym (x X), ale de 3

4 4 facto jest to podrodzina rodziny K, a wiec jako zbiór jest przeliczalna (wyrazy K x dla różnych x mog a siȩ powtarzać). Wystraczy teraz dla każdej kuli K K 0 wybrać jedn a jej postać jako K x(k), wtedy wybrane indexy x(k) stanowi a zbiór przeliczalny i rodzina {U xk : K K 0 } jest podpokryciem przeliczalnym (bo dla dowolnego x X mamy x K x = K x(k) U x(k) ). Czyli mamy w lasność Lindelöfa. Na odwrót: jeśli (X, d) ma w lasność Lindelöfa, to dla każdego n N bierzemy pokrycie wszystkimi kulami o promieniu 1 n, z niego wybieramy podpokrycie przeliczalne {K n,i ) : i N}. Zbiór wszystkich środków tak wybranych kul (oznaczmy go przez {x n,i : n N, i N}) jest, jak latwo widać, przeliczlnym zbiorem gȩstym, czyli ośrodkiem. Dowód Tw 7. Weźmy pokrycie przeliczalne U = {U n : n N}, które nie ma podpokrycia skończonego. Gdyby dla pewnego n 0 wszystkie,,uroz l acznienia n 1 V n = U n \ z n n 0 by ly puste oznacza loby to, że suma do n 0 1 jest ca lym X, czyli że {U 1,..., U n0 1} jest pokryciem skończonym, a za lożyliśmy, że takiego nie ma. Zatem istnieje ci ag nieskończony indeksów n k takich, że V nk. Wybierzmy po jednym punkcie x k V nk. Z ciagowej zbieżności można (wybieraj ac jeszcze raz podci ag) za lożyć, że x k zbiega do jakiegoś x X. Istnieje n 0 takie, że x U n0 (bo zbiory U n pokrywaj a X). Wtedy x k U n0 dla dużych k. Ale dla dostatecznie dużego k, n k > n 0 i wtedy V nk jest roz l aczne z U n0 (z def. V n ). Sprzeczność, bo x k V nk i jednocześnie x k V n0. i=1 Dowód Tw 8. Wynika to wprost z poprzednich twierdzeń. W lasności funkcji ci ag lych. Niech f : X Y bȩdzie funkcj a ci ag l a, gdzie (X, d) jest zwarta, a (Y, e) dowolna metryczna. Wtedy 1) f(x) jest zwarty (to już wiemy); ) f jest jednostajnie ci ag la; 3) Jeśli f jest różnowartościowa to f : X f(x) jest homeomorfizmem. 4) Jeśli f n i f s a ci ag lymi funkcjami rzeczywistymi (czyli teraz zak ladamy, że (Y, e) = (R, )) i f n zbiegaj a monotonicznie do f w każdym punkcie x X, to zbieżność ta jest jednostajna. Dowody. ) Ustalmy ɛ > 0. Dla każdego x X istnieje δ = δ(x, ɛ ) > 0 taka, że Jeśli teraz d(x, z) < δ to U i d(x, y) < δ = e(f(x), f(y)) < ɛ. d(z, y) < δ = e(f(z), f(y)) < ɛ. Innymi s lowy δ(z, ɛ) δ(x, ɛ ) dla z w pewnej kuli K x = K(x, δ(x, ɛ ) ). Te kule pokrywaj a X, zatem ze zwartości istnieje pokrycie skończone {K xi : i = 1,..., n}. Niech δ(ɛ) = min{ δ(x i, ɛ ) : i = 1,,..., n}. Twierdzimy, że d(z, y) < δ(ɛ) = e(f(z), f(y)) < ɛ niezależnie od wyboru z i y. Faktycznie, istnieje x i taki, że z K xi. Wtedy δ(z, ɛ) δ(x i, ɛ ) δ(ɛ).

5 Zatem d(z, y) < δ(ɛ) implikuje d(z, y) δ(z, ɛ) a to rzeczywiście implikuje ż adan a nierówność e(f(z), f(y)) < ɛ. 3) Trzeba pokazać, że odwzorowanie odwrotne f 1 jest ci ag le na f(x). Niech y n y w f(x). Istniej a (jedyne) punkty x n i x takie, że y n = f(x n ) i y = f(x). Musimy pokazać, że x n x. Weźmy dowolny podci ag x nk. Ma on pod-podci ag x nki zbieżny do jakiegoś x. Z ci ag lości f, ci ag f(x nki ) = y nki zbiega do f(x ). Ale jako podci ag ci agu (y n ) zbiega on również do y. St ad y = f(x ) Z różnowartościowości funkcji f mamy x = x. Pokazaliśmy, że z każdego podci agu ci agu (x n ) można wybrać pod-podci ag zbieżny do x. To oznacza zbieżność ca lego ci agu (x n ) do x. 4) Ustalmy ɛ > 0. Niech F n = {x : f(x) f n (x) ɛ}. Oczywiście jest to zbiór domkniȩty. Ponieważ f n zbiegaj a monotonicznie do f, zbiory te malej a (czyli tworz a ci ag zstȩpuj acy). Ponieważ zbieżność funkcji zachodzi w każdym punkcie x, przekrój wszystkich zbiorów F n jest pusty. Zatem, ze zwartości, nie mog a wszystkie zbiory F n być niepuste. A to oznacza, że od pewnego n 0 funkcje f n s a od funkcji f oddalone mniej niż ɛ w metryce supremum. Czyli jest zbieżność jednostajna. 5 Tomasz Downarowicz

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)

Bardziej szczegółowo

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój. Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej

Bardziej szczegółowo

Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej

Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar

Bardziej szczegółowo

1 Przestrzenie metryczne

1 Przestrzenie metryczne Topologia I Notatki do wyk ladu LITERATURA UZUPE LNIAJA CA R. Duda, Wprowadzenie do topologii, czȩść I. R. Engelking, Topologia ogólna. R. Engelking, K. Sieklucki, Wstȩp do topologii. W. Rudin, Podstawy

Bardziej szczegółowo

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013 Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej

Bardziej szczegółowo

Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu

Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 4 1. Zbiory otwarte i domkniȩte Pojȩcia które teraz wprowadzimy można rozpatrywać w każdej przestrzeni metrycznej

Bardziej szczegółowo

TOPOLOGIA PRZESTRZENI METRYCZNYCH, ZWARTOŚĆ,

TOPOLOGIA PRZESTRZENI METRYCZNYCH, ZWARTOŚĆ, TOPOLOGIA PRZESTRZENI METRYCZNYCH, ZWARTOŚĆ, SPÓJNOŚĆ I POJȨCIA BLISKIE (DO UŻYTKU WEWNȨTRZNEGO, I DO SPRAWDZENIA) R R Abstract. Poniższe notatki do ćwiczeń zbieraj a podstawowe pojȩcia i stwierdzenia

Bardziej szczegółowo

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach: Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x

Bardziej szczegółowo

Wyk lad 5. Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu. 1. Granice niew laściwe

Wyk lad 5. Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu. 1. Granice niew laściwe Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Granice niew laściwe Definicja 1 Ci ag (x n ) d aży do (jest rozbieżny do) + jeśli c R N n > N x n > c a do

Bardziej szczegółowo

Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska Wroc law Wroc law, kwiecień 2011

Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska Wroc law Wroc law, kwiecień 2011 Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska 50-370 Wroc law Wroc law, kwiecień 2011 Analiza Funkcjonalna WPPT IIr. Wyk lady 4 i 5: Przestrzenie unitarne i Hilberta (rzeczywiste

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

T O P O L O G I A O G Ó L N A WPPT WYK LAD 14 Topologie w przestrzeniach funkcji ci ag lych, Twierdzenie Stone a Weierstrassa

T O P O L O G I A O G Ó L N A WPPT WYK LAD 14 Topologie w przestrzeniach funkcji ci ag lych, Twierdzenie Stone a Weierstrassa T O P O L O G I A O G Ó L N A WPPT WYK LAD 14 Topologie w przestrzeniach funkcji ci ag lych, Twierdzenie Stone a Weierstrassa Niech X i Y oznaczaj a przestrzenie topologiczne, zaś C(X,Y) bȩdzie zbiorem

Bardziej szczegółowo

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11 M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X

Bardziej szczegółowo

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy 5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

T O P O L O G I A O G Ó L N A. WPPT WYK LAD 13 Ci agi uogólnione, topologie w przestrzeniach produktowych

T O P O L O G I A O G Ó L N A. WPPT WYK LAD 13 Ci agi uogólnione, topologie w przestrzeniach produktowych T O P O L O G I A O G Ó L N A WPPT WYK LAD 13 Ci agi uogólnione, topologie w przestrzeniach produktowych Definicja. Przez rodzinȩ skierowan a rozumiemy dowolny zbiór z porz adkiem czȩściowym (K, ), taki

Bardziej szczegółowo

nie zależy (z dok ladności a do jednostajnego homeomorfizmu) od wyboru ci agu uzbieżniaj acego c n. 1 min{n : x n y n }.

nie zależy (z dok ladności a do jednostajnego homeomorfizmu) od wyboru ci agu uzbieżniaj acego c n. 1 min{n : x n y n }. A N A L I Z A F U N K C J O N A L N A PPI 2r., sem. letni LISTY 5-9 LISTA 5 Wroc law, 14 marca - 25 kwietnia 2006 ZADANIE 1. Niech (X 1,d 1 ), (X 2,d 2 ), (X 3,d 3 ),... bȩdzie ci agiem przestrzeni metrycznych

Bardziej szczegółowo

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Niech K = R lub K = C oraz X - dowolny zbiór. Określmy dwa dzia lania: dodawanie + : X X X i mnożenie przez liczbȩ : K X X, spe lniaj ace nastȩpuj ace

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

Wyk lady z topologii I

Wyk lady z topologii I Wyk lady z topologii I Wies law Kubiś Akademia Świȩtokrzyska ul. Świȩtokrzyska 15, 25-406 Kielce, Poland E-mail: wkubis@pu.kielce.pl 1 maja 2006 Spis treści 1 Przestrzenie metryczne 3 1.1 Definicje........................................

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

sa dzie metryka z euklidesowa, to znaczy wyznaczaja ca cki, Wojciech Suwiński)

sa dzie metryka z euklidesowa, to znaczy wyznaczaja ca cki, Wojciech Suwiński) Zadanie 1 Pokazać, że dowolne dwie kule w R z metryka sa homeomorficzne Niech ρ be dzie metryka równoważna z, to znaczy wyznaczaja ca topologie na R Czy wynika z tego, że dowolne dwie kule w metryce ρ

Bardziej szczegółowo

Wstęp do topologii Ćwiczenia

Wstęp do topologii Ćwiczenia Wstęp do topologii Ćwiczenia Spis treści Przestrzeń metryczna, metryka 2 Kule w przestrzeni metrycznej 2 3 Zbieżność w przestrzeniach metrycznych 4 4 Domknięcie, wnętrze i brzeg 6 5 Zbiory gęste, brzegowe

Bardziej szczegółowo

ROZDZIA l 13. Zbiór Cantora

ROZDZIA l 13. Zbiór Cantora ROZDZIA l 3 Zbiór Cantora Jednym z najciekawszych i najcze ściej spotykanych w matematyce zbiorów jest zbiór Cantora W tym rozdziale opiszemy jego podstawowe w lasności topologiczne Najprościej można go

Bardziej szczegółowo

Wyk lad 6 Podprzestrzenie przestrzeni liniowych

Wyk lad 6 Podprzestrzenie przestrzeni liniowych Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty TEST A A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Ile różnych zbiorów otwartych

Bardziej szczegółowo

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii Zjazd 2 Przestrzenia metryczna (X, d) nazywamy parę złożona ze zbioru X i funkcji d : X X R, taka, że 1 d(x, y) 0 oraz d(x, y) = 0 wtedy i tylko wtedy, gdy x = y, 2 d(x, y) = d(y, x), 3 d(x, z) d(x, y)

Bardziej szczegółowo

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Wyprowadź z aksjomatów topologii

Bardziej szczegółowo

Wyk lad 4 Warstwy, dzielniki normalne

Wyk lad 4 Warstwy, dzielniki normalne Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Iloczyn ortogonalny funkcji Wróćmy na chwilȩ do dowodu wzorów Eulera-Fouriera. Kluczow a rolȩ odgrywa l wzór:

Bardziej szczegółowo

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 11 1 Wektory i wartości w lasne Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V

Bardziej szczegółowo

WPPT 2r., sem. letni KOLOKWIUM 1 Wroc law, 19 kwietnia 2011

WPPT 2r., sem. letni KOLOKWIUM 1 Wroc law, 19 kwietnia 2011 A N A L I Z A F U N K C J O N A L N A WPPT r, sem letni KOLOKWIUM Wroc law, 9 kwietnia 0 ZADANIE ab W pewnej przestrzeni mamy wie metryki i przy czym czyni nasz a przestrzeń zwart a a jest s labsza o (tzn

Bardziej szczegółowo

1 Elementy analizy funkcjonalnej

1 Elementy analizy funkcjonalnej M. Beśka, Dodatek 1 1 Elementy analizy funkcjonalnej 1.1 Twierdzenia o reprezentacji Zaczniemy od znanego twierdzenia Riesza Twierdzenie 1.1 (Riesz) Niech będzie zwartą przestrzenią metryczną i załóżmy,

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje

Bardziej szczegółowo

Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii

Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii Mirosław Sobolewski 25 maja 2010 Definicja. Przestrzenią metryczną nazywamy zbiór X z funkcją ρ : X X R przyporządkowującą

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie 1 MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś Wprowadzenie Istniej a dwa różne kryteria mówi ace, które narzȩdzia matematyczne należy zaliczyć do matematyki dyskretnej. Pierwsze definiuje matematykȩ

Bardziej szczegółowo

Rozdzia l 2. Najważniejsze typy algebr stosowane w logice

Rozdzia l 2. Najważniejsze typy algebr stosowane w logice Rozdzia l 2. Najważniejsze typy algebr stosowane w logice 1. Algebry Boole a Definicja. Kratȩ dystrybutywn a z zerem i jedynk a, w której dla każdego elementu istnieje jego uzupe lnienie nazywamy algebr

Bardziej szczegółowo

7. Miara, zbiory mierzalne oraz funkcje mierzalne.

7. Miara, zbiory mierzalne oraz funkcje mierzalne. 7. Miara, zbiory mierzalne oraz funkcje mierzalne. Funkcję rzeczywistą µ nieujemną określoną na ciele zbiorów S będziemy nazywali miarą, gdy dla dowolnego ciągu A 0, A 1,... zbiorów rozłącznych należących

Bardziej szczegółowo

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α FUNKCJE BORELOWSKIE Rodzinę F podzbiorów zbioru X (tzn. F X) będziemy nazywali ciałem gdy spełnione są warunki: (1) Jeśli zbiór Y F, to dopełnienie X \ Y też należy do rodziny F. (2) Jeśli S F jest skończoną

Bardziej szczegółowo

Matematyka dyskretna Oznaczenia

Matematyka dyskretna Oznaczenia Matematyka dyskretna Oznaczenia Andrzej Szepietowski W tym rozdziale przedstawimy podstawowe oznacznia. oznacza kwantyfikator ogólny dla każdego. oznacza kwantyfikator szczegó lowy istnieje. 1 Sumy i iloczyny

Bardziej szczegółowo

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości. Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu

Bardziej szczegółowo

Zbiory liczbowe widziane oczami topologa

Zbiory liczbowe widziane oczami topologa Zbiory liczbowe widziane oczami topologa Aleksander Błaszczyk Instytut Matematyki Uniwersytetu Ślaskiego Brenna, 25 wrzesień 2018 Aleksander Błaszczyk (UŚ) Zbiory liczbowe widziane oczami topologa Brenna,

Bardziej szczegółowo

Ciągłość i topologia. Rozdział Ciągłość funkcji wg. Cauchy

Ciągłość i topologia. Rozdział Ciągłość funkcji wg. Cauchy Rozdział 1 Ciągłość i topologia Nadanie precyzyjnego sensu intiucyjnemu pojęciu ciągłości jest jednym z głównych tematów dziedziny matematyki, zwanej topologią. Definicja funkcji ciągłej znana z podstawowego

Bardziej szczegółowo

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy

Bardziej szczegółowo

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową

Bardziej szczegółowo

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x))

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x)) Weronika Siwek, Metryki i topologie 1 Definicja 1. Załóżmy, że X, ρ: X X [0, ). Funkcja ρ spełnia następujące warunki: 1. x,y X (ρ(x, y) = 0 x = y) 2. 3. (ρ(x, y) = ρ(y, x)) x,y X (ρ(x, y) ρ(x, z) + ρ(z,

Bardziej szczegółowo

1. Funkcje monotoniczne, wahanie funkcji.

1. Funkcje monotoniczne, wahanie funkcji. 1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la?

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? Ci ag lość i norma Ćwiczenie. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? f (x, y) = x2 y 2 x 2 + y 2, f 2(x, y) = x2 y x 2 + y 2 f 3 (x, y) = x2 y

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

W poszukiwaniu kszta ltów kulistych

W poszukiwaniu kszta ltów kulistych W poszukiwaniu kszta ltów kulistych Piotr Mankiewicz April 4, 2005 Konwersatorium dla doktorantów Notacje 1 Cia lo wypuk le - wypuk ly, domkniȩty podzbiór ograniczony w R n. Odleg lość geometryczna dwóch

Bardziej szczegółowo

a to, jako ogon szeregu zbieżnego można uczynić dowolnie ma lym wybieraj ac dostatecznei

a to, jako ogon szeregu zbieżnego można uczynić dowolnie ma lym wybieraj ac dostatecznei Analiza Funkcjonalna WPPT IIr. semestr letni 2011 WYK LADY 2 i 3: PRZESTRZENIE UNORMOWANE i BANACHA BAZA TOPOLOGICZNA 29/03/11 Definicja. Norm a w rzestrzeni liniowej V nazywamy funkcjȩ : V [0, ) se lniaj

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.

Bardziej szczegółowo

Twierdzenie Stolza i metryki Javier de Lucas. a n = (2n + 1) 1 4 n 5 4

Twierdzenie Stolza i metryki Javier de Lucas. a n = (2n + 1) 1 4 n 5 4 Twierdzenie Stolza i metryki Javier de Lucas Zadanie Zbadać zbieżność ci agu i znaleźć granicȩ: a n 4 + 3 4 + + (2n + ) 4 n 5 4 Rozwi azanie: Żeby obliczyć tak a granicȩ korzystamy z twierdzenia Stolza,

Bardziej szczegółowo

Teoria miary i całki

Teoria miary i całki Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane

Bardziej szczegółowo

Elementy Teorii Miary i Całki

Elementy Teorii Miary i Całki Elementy Teorii Miary i Całki c Lech Drewnowski Wydział Matematyki i Informatyki Uniwersytet im. dama Mickiewicza w Poznaniu Poznań 2008 http://main2.amu.edu.pl/ drewlech/dydaktyka.html http://main2.amu.edu.pl/

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

Notatki do wykładu Analiza 4

Notatki do wykładu Analiza 4 Instytut Matematyczny Uniwersytetu Wrocławskiego Grzegorz Plebanek Notatki do wykładu Analiza 4 Rozdział I: Funkcje na przestrzeniach metrycznych Wrocław 2004 O skrypcie Skrypt ten, traktowany łącznie

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

1 Ciągłe operatory liniowe

1 Ciągłe operatory liniowe 1 Ciągłe operatory liniowe Załóżmy, że E, F są przestrzeniami unormowanymi. Definicja 1.1. Operator liniowy T : E F nazywamy ograniczonym, jeżeli zbiór T (B) F jest ograniczony dla dowolnego zbioru ograniczonego

Bardziej szczegółowo

Dekompozycje prostej rzeczywistej

Dekompozycje prostej rzeczywistej Dekompozycje prostej rzeczywistej Michał Czapek michal@czapek.pl www.czapek.pl 26 X AD MMXV Streszczenie Celem pracy jest zwrócenie uwagi na ciekawą różnicę pomiędzy klasami zbiorów pierwszej kategorii

Bardziej szczegółowo

Analiza matematyczna I

Analiza matematyczna I Analiza matematyczna I 1 Spis treści 1 Wstep. Ograniczenia i kresy zbiorów. 4 1.1 Oznaczenia..................................... 4 1.2 Zbiory liczbowe................................... 4 1.3 Kwantyfikatory...................................

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Rozdzia l 9. Zbiory liczb porz adkowych. Liczby porz adkowe izolowane i graniczne

Rozdzia l 9. Zbiory liczb porz adkowych. Liczby porz adkowe izolowane i graniczne Rozdzia l 9. Zbiory liczb porz adkowych. Liczby porz adkowe izolowane i graniczne 1. Kresy wzglȩdem dowolnego zbioru liczb porz adkowych Poświȩcimy teraz uwagȩ przede wszystkich kratowym w lasnościom klasy

Bardziej szczegółowo

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym. Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa

Bardziej szczegółowo

OSOBNO ANALITYCZNYCH

OSOBNO ANALITYCZNYCH Uniwersytet Jagielloński Instytut Matematyki Zbigniew B locki ZBIORY OSOBLIWOŚCI FUNKCJI OSOBNO ANALITYCZNYCH Praca magisterska Promotor: Prof. dr hab. Józef Siciak Kraków 99 .Wstȩp. Jeśli Ω jest zbiorem

Bardziej szczegółowo

Rozdzia l 10. Najważniejsze normalne logiki modalne

Rozdzia l 10. Najważniejsze normalne logiki modalne Rozdzia l 10. Najważniejsze normalne logiki modalne 1. Logiki modalne normalne Definicja. Inwariantny zbiór formu l X jȩzyka modalnego L = (L,,,,, ) nazywamy logik a modaln a zbazowan a na logice klasycznej

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:

Bardziej szczegółowo

Wyk lad 2 Podgrupa grupy

Wyk lad 2 Podgrupa grupy Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.

Bardziej szczegółowo

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N 14. Określenie ciągu i szeregu funkcyjnego, zbieżność punktowa i jednostajna. Własności zbieżności jednostajnej. Kryterium zbieżności jednostajnej szeregu funkcyjnego. 1 Definicja Ciąg funkcyjny Niech

Bardziej szczegółowo

Analiza Funkcjonalna - Zadania

Analiza Funkcjonalna - Zadania Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.

Bardziej szczegółowo

Pojȩcie przestrzeni metrycznej

Pojȩcie przestrzeni metrycznej ROZDZIA l 1 Pojȩcie przestrzeni metrycznej Definicja 1.1. Dowolny niepusty zbiór X z funkcja ρ : X X [0, ), spe lniaja ca naste puja ce trzy warunki M1: ρ(x, y) = 0 x = y, M2: ρ(x, y) = ρ(y, x), M3: ρ(x,

Bardziej szczegółowo

Rozdzia l 3. Elementy algebry uniwersalnej

Rozdzia l 3. Elementy algebry uniwersalnej Rozdzia l 3. Elementy algebry uniwersalnej 1. Podalgebry, homomorfizmy Definicja. Niech = B A oraz o bȩdzie n-argumentow a operacj a na zbiorze A. Mówimy, że zbiór B jest zamkniȩty na operacjȩ o, gdy dla

Bardziej szczegółowo

ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1. Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji nx 2 + x

ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1. Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji nx 2 + x ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1 Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji f n : [, [ x nx + x nx + 1, Rozwi azanie: Mówi siȩ, że ci ag funkcji f n zd aży punktowo

Bardziej szczegółowo

Rozdzia l 1. Podstawowe elementy teorii krat

Rozdzia l 1. Podstawowe elementy teorii krat Rozdzia l 1. Podstawowe elementy teorii krat 1. Zbiory czȩściowo uporz adkowane Definicja. Relacjȩ binarn a określon a na zbiorze A nazywamy relacj a czȩściowo porz adkuj ac a, gdy jest zwrotna, antysymetryczna

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I wykłady i zadania WSTĘP. Materiał w skrypcie odpowiada programowi zajęć z Topologii I w trzecim semestrze studiów na Wydziale MIM Uniwersytetu

Bardziej szczegółowo

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania. luty 2013

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania. luty 2013 Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I wykłady i zadania luty 2013 WSTĘP. Materiał w skrypcie odpowiada programowi zajęć z Topologii I w trzecim semestrze studiów na Wydziale

Bardziej szczegółowo

Sterowalność liniowych uk ladów sterowania

Sterowalność liniowych uk ladów sterowania Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,

Bardziej szczegółowo

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i

Bardziej szczegółowo

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni

Bardziej szczegółowo

Cia la i wielomiany Javier de Lucas

Cia la i wielomiany Javier de Lucas Cia la i wielomiany Javier de Lucas Ćwiczenie 1. Za lóż, że (F, +,, 1, 0) jest cia lem i α, β F. w laściwości s a prawd a? Które z nastȩpuj acych 1. 0 α = 0. 2. ( 1) α = α. 3. Każdy element zbioru F ma

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

Analiza funkcjonalna 1.

Analiza funkcjonalna 1. Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.

Bardziej szczegółowo

Rozdzia l 3. Relacje binarne

Rozdzia l 3. Relacje binarne Rozdzia l 3. Relacje binarne 1. Para uporz adkowana. Produkt kartezjański dwóch zbiorów Dla pary zbiorów {x, y} zachodzi, jak latwo sprawdzić, równość {x, y} = {y, x}. To znaczy, kolejność wymienienia

Bardziej szczegółowo

1 Przestrzenie metryczne

1 Przestrzenie metryczne 1 Przestrzenie metryczne Definicja 1.1 (metryka) Niech będzie niepustym zbiorem. Funkcję d: R + nazywamy metryką, jeśli spełnia warunki: 1 o d(x, y) = d(y, x) (symetria) 2 o d(x, y) + d(y, z) d(x, z) (nierówność

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,

Bardziej szczegółowo

Zadania do Rozdziału X

Zadania do Rozdziału X Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,

Bardziej szczegółowo

P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja

P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja 19. O ca lkach pierwszych W paragrafie 6 przy badaniu rozwia zań równania P (x, y) + Q(x, y)y = 0 wprowadzono poje cie ca lki równania, podano pewne kryteria na wyznaczanie ca lek równania. Znajomość ca

Bardziej szczegółowo

z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1

z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1 3 Szeregi zespolone 3. Szeregi liczbowe Mówimy, że szereg o wyrazach zespolonych jest zbieżny, jeżeli ci ag jego sum czȩściowych {S n }, gdzie S n = z + z +... + jest zbieżny do granicy w laściwej. Granicȩ

Bardziej szczegółowo

Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego

Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego Przy założeniu, że wszystkie składniki szeregu jest rosnący. Wynika stąd natychmiast stwierdzenie: są dodatnie, ciąg jego sum

Bardziej szczegółowo

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny: Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach

Bardziej szczegółowo