Logika matematyczna i teoria mnogości (I) J. de Lucas
|
|
- Wiktoria Kamińska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Logika matematyczna i teoria mnogości (I) J. de Lucas Ćwiczenie 1. (Zad. L. Newelskiego) Niech p oznacza zdanie Ala je, zaś q zdanie As wyje. Zapisz jako formu ly rachunku zdań nastȩpuj ace zdania: 1.1. Ala je, jeśli As wyje As nie wyje, zaś Ala nie je Ani Ala nie je, ani As nie wyje As wyje, jeśli Ala je As wyje dok ladnie wtedy, gdy Ala je Ala je, a As wyje Albo Ala nie je, albo As wyje B adź Ala je, b adź As wyje. Rozwi azanie: Zdania 1-6, 9 i 11 s a dość oczywiste. Natomiast, trzeba wyjaśnić resztȩ. Wyrażenia: albo, b adź... b adź... czy lub mog a oznaczać inne reczy w zależności od kontekstu. Najczȩściej lub odpowiada alternatywa: p lub q jest prawdziwe, gdy CO NAJMNIEJ JEDNO ze zdań p i q jest prawdziwe, albo odpowiada alternatywa roz l acznej, czyli albo p albo q (również p albo q ) jest prawdziwe, gdy DOK LADNIE JEDNO ze zdań p i q jest prawdziwe, b adź p b adź q jest prawdziwe, gdy JEDNO lub ŻADNE ze zdań jest prawdziwe. Ten spójnik nazywa siȩ dysjunkcj a. Z powyższych komentarzy wynika, że: 1.1. q p, 1.2. p q, 1.3. p q, 1.4. p q, 1.5. p q, 1.6. p q, 1.7. ( p q) (p q), 1.8. p q, Ciekawość 1. W informatyce (w teorii obwodów logicznych) używa siȩ wielu innych spójników : NAND, NOR, XOR. Można latwo twierdzić, że istniej a 2 4 spójników dwuargumentowych.
2 Ćwiczenie 2. Wykaż, że nastȩpuj ace formy zdaniowe s a tautologiami: (p q) ( q p), ( prawo transpozycji ), p p, ( prawo wy l aczonego środka, prawo tertium non datur ), (p q) [(p q) (q p)], ( prawo zastȩpowania równoważności ), (p q) ( p q), ( prawo zastȩpowania implikacji ), (p q) ( p q), ( prawo przeczenia koniunkcji ), (p q) (p q), ( prawo przeczenia implikacji ), Rozwi azanie: Powyższe formy można twierdzić za pomoc a nastȩpuj acych tabel: 1. (p q) ( q p), ( prawo transpozycji ), p q q p q p ( p q) p p, ( prawo wy l aczonego środka, prawo tertium non datur ), p p p p (p q) [(p q) (q p)], ( prawo zastȩpowania równoważności ), p q p q p q(r) q p(s) r s (p q) (r s)
3 4. p q p q, ( prawo zastȩpowania implikacji ), p q p q p q (p q) p q, (p q) p q, ( prawo przeczenia koniunkcji ), p q p q p q (p q) p q (p q) p q (p q) (p q), ( prawo przeczenia implikacji ), p q p q p q (p q) p q, Ćwiczenie 3. Sprawdź, czy nastȩpuj ace formy zdaniowe s a tautologiami: 1. (p q) ( p q), 2. p p. 3. (p q r) [(p r) q)], 4. ((p q) r) [(p r) q].
4 Rozwi azanie: 1. Nie jest tautologi a. 2. Nie jest tautologi a 3. Jest tautologi a. 4. Nie jest tautologi a. p q p q p q(r) p q(s) r s p p p p p q r q p r (p r) q p q r p q r p r p r q (p q r) (p r q)
5 Ćwiczenie 4. Sprawdź, czy nastȩpuj ace regu ly wnioskowania s a poprawne: p,p q q,( modus ponens ), p q, q p,( modus tollens ), p r,q r (p q) r, p q,q r p r, ( sylogizm warunkowy ) 5. (p q) p p q,( regu la sprowadzania do sprzeczności ). Rozwi azanie: 1. [p (p q)] q jest fa lszywe gdy q = 0 i p (p q) = 1. Ale z za lożenia p (p q) = 1 wynika, że p = 1 i q = 1. To, kiedy [p (p q)] q jest fa lszywe, to q = 1 i q = 0. To jest niemożliwe, wiȩc [p (p q)] q nie może być fa lszywe i jest tautologi a. 2. [(p q) q] p jest fa lszywe gdy p = 0 i q (p q) = 1. Ale z q (p q) = 1 wynika, że p = 1 i q = 0. Wiȩc, [ q (p q)] p nie może być fa lszywe. 3. Tablica prawdy tej regu ly p q r p r q r (p q) r [(p r) (q r)] [(p q) r]
6 4. Tablica prawdy tej regu ly p q r p q q r p r [(p q) (q r)] (p r) Regu la ta jest fa lszywa, gdy (p q) p jest prawdziwe i p q jest fa lszywe. Natomiast, p q = 0 wymaga, że p = 1 i q = 0. W takim przypadku, (p q) p jest fa lszywe. Wiȩc, regu la jest zawsze prawdziwa, czyli jest tautologi a. Ciekawość 2. Regu la do sprowadzenia do sprzeczności pojawia siȩ bardzo czȩsto w matematyce. Ćwiczenie 5. Udowodnij nastȩpuj ace prawa rachunku zbiorów: 1. (A\B) B =, (A\B) B = A B, 2. A\(B C) = (A\B) (A\C), A\(B C) = (A\B) (A\C), 3. A\(A\B) = A B. 4. A B B C A C, (przechodniość inkluzji), 5. A B A A B, A\B A, 6. (A B C D) (A C B D) (A C B D). Rozwi azanie: 1. (A\B) B =, (A\B) B = A B, Wiemy, że (A\B) B = wtedy i tylko wtedy x, x (A\B) B x.
7 Mamy, że x (A\B) B (x A x B ) (x B) x A x B x / B. Skoro x B x / B i x s a zawsze fa lszywe (mówi siȩ, że s a sprzecznościami) mamy, że (x A x B x / B) x. Z tego, x (A\B) B x. Można rozwi azać ten problem trochȩ inaczej. (A\B) B = {x (x A) (x / B)) x B} i = {x r(x)}, gdzie r(x) to sprzeczność. Oczywiście, jeżeli zdania logiczne, które zdefiniuj a zbiory s a sobie równe, to oba zbiory bȩd a równe. W laśnie, niech x A bȩdzie p i x B bȩdzie q, wtedy p q p q q r (p q q) r Drug a relacjȩ można udowodnić podobnie. 2. A\(B C) = (A\B) (A\C), A\(B C) = (A\B) (A\C), Mamy, że x A\(B C) x A x / (B C) x A (x B x C). Z prawa Morgana wynika, że (x B x C) (x B) (x C). Zatem x A\(B C) ((x A) (x B)) ((x A) (x C)) i Wiȩc, x A\(B C) (x A\B) (x A\C) x A\B A\C. A\(B C) = A\B A\C.
8 Drugi sposób: Wiemy, że i A\(B C) = {x (x A) (x B)) ((x A) (x C))} A\B A\C = {x x A\B A\C}. Jeżeli funkcje zdaniowe zdefiniuj a A\(B C) i A\B A\C s a równoważne, to oba zbiory s a sobie równe. W laśnie, niech p, q i r bȩd a x A, x B i x C, to p q r p (q r) (p q) (p r) Wiȩc, takie funkcje s a równoważne i A\B A\C = A\B A\C. Drug a relacjȩ można udowodnić podobnie. 3. A\(A\B) = A B. Podobnie do poprzedniego przyk ladu. 4. A B B C A C, (przechodniość inkluzji), Przechodniość inkluzji jest równoważna do [( x, x A x B) ( x, x B x C)] ( x, x A x C). Możemy sprawdzić, że wniosek (x A x B) (x B x C)] (x A x C) jest tautologi a. Niech p bȩdzie x A, q bȩdzie x B i r bȩdzie x C, można przedstawić poprzedni wniosek jako (p q) (q r) (p r). Korzystaj ac z tabeli prawdy tego wniosku,
9 p q r p q q r p r (p q) (q r) (p r) można twierdzić, że jest tautologi a. Wiȩc, A B B C A C. 5. A B A A B, A\B A, Najpierw, udowodnimy, że A B A. To znaczy, że Ale, x, x A B x A. x A B x A x B. Możemy twierdzić, że x A x B x A jest tautologi a: Wiȩc, p q p q p q q x A B x A x B x A i A B A. Resztȩ relacji można twierdzić podobnie. 6. (A B C D) (A C B D) (A C B D). Twierdzenie jest podobne do poprzednich przyk ladów.
10 Ćwiczenie 6. Udowodnij, że dla zbiorów A i B nastȩpuj ace warunki s a równoważne: A B, A B = A, A B = B. Rozwi azanie: Jeżeli A B, wtedy x, x A x B. Wartość logiczna zdania x A x B jest równa wartości zdania x A x B x A. W laśnie, niech p i q bȩd a x A i x B, to Wiȩc, Czyli A B A B = A. Jeżeli A B = A, wtedy p q p q p q p ( x, x A x B) ( x, x A x B x A). x, (x A x B) x A. Wartość logiczna zdania x A x B x A jest równa wartości zdania x A x B x B. W laśnie, niech p i q bȩd a x A i x B, to Wiȩc, p q p q p p q p q q ( x, x A x B x A) ( x, x A x B x B). Czyli A B = A A B = B. Podsumowuj ac, A B A B = A A B = B.
11 Ćwiczenie 7. Udowodnij nastȩpuj ace wzory rachunku podzbiorów zbioru X: 1. A A =, A A = X, 2. A\B = A B, 3. (A B) = A B, (A B) = A B, (prawa de Morgana), 4. A B A B =, 5. A B B A. Rozwi azanie: 1. Mamy, że A A = {x x A x A } i = {x q(x)}, gdzie q(x) jest form a zdaniow a, która jest zawsze fa lszywa, tj. q(x) = 0 dla każdego elementu x. Wiȩc, A A i s a równe, gdy ich formy zadaniowe s a równe. Mowi ac inaczej A A = x, (x A x A 0). Niech p bȩdzie x A musimy sprawdzić, że p p 0. ćwiczeniu 3.II. Zatem A A =. 2. Mamy, że To twierdziliśmy w (A B) = {x (x A x B)} i A B = {x x A x B }. Niech p bȩdzie x A i q bȩdzie x B. Wiȩc, jeżeli (p q) p q to (A B) = A B. Sprawdzamy, że to tautologia p q p q (p q) p q (p q) p q
Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań
Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Micha l Ziembowski m.ziembowski@mini.pw.edu.pl www.mini.pw.edu.pl/ ziembowskim/ October 2, 2016 M. Ziembowski (WUoT) Elementy logiki i teorii
Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0
ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru
Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń
Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest
Rachunek zdao i logika matematyczna
Rachunek zdao i logika matematyczna Pojęcia Logika - Zajmuje się badaniem ogólnych praw, według których przebiegają wszelkie poprawne rozumowania, w szczególności wnioskowania. Rachunek zdao - dział logiki
Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:
1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość
Lekcja 3: Elementy logiki - Rachunek zdań
Lekcja 3: Elementy logiki - Rachunek zdań S. Hoa Nguyen 1 Materiał a) Zdanie proste, złożone b) Spójniki logiczne (funktory zdaniotwórcze):,,,,, (alternatywa wykluczająca - XOR). c) Tautologia, zdanie
1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.
Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze
Elementy logiki i teorii mnogości
Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy
Cia la i wielomiany Javier de Lucas
Cia la i wielomiany Javier de Lucas Ćwiczenie 1. Za lóż, że (F, +,, 1, 0) jest cia lem i α, β F. w laściwości s a prawd a? Które z nastȩpuj acych 1. 0 α = 0. 2. ( 1) α = α. 3. Każdy element zbioru F ma
Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas
Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,
Matematyka I TEORIA MNOGOŒCI I LOGIKA. Æwiczenia KMMF. 1. Narysowaæsumê i przeciêcie zbiorów A = {x Ε R; x > 2} oraz B = {x Ε R; x 8}.
Matematyka I Javier de Lucas Æwiczenia KMMF TEORIA MNOGOŒCI I LOGIKA 1. Narysowaæsumê i przeciêcie zbiorów A = {x Ε R; x > 2} oraz B = {x Ε R; x 8}. Mamy, e A wygl¹ da nastêpuj¹ co: Mo emy te wpisaæa =
Wstęp do logiki. Klasyczny Rachunek Zdań II
Wstęp do logiki Klasyczny Rachunek Zdań II DEF. 1 (Słownik). Następujące znaki tworzą słownik języka KRZ: p 1, p 2, p 3, (zmienne zdaniowe) ~,,,, (spójniki) ), ( (nawiasy). DEF. 2 (Wyrażenie). Wyrażeniem
Matematyka ETId Elementy logiki
Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),
Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości
ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1. Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji nx 2 + x
ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1 Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji f n : [, [ x nx + x nx + 1, Rozwi azanie: Mówi siȩ, że ci ag funkcji f n zd aży punktowo
Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne
Literatura: podstawowa: C. Radhakrishna Rao, Statystyka i prawda, 1994. G. Wieczorkowska-Wierzbińska, J. Wierzbiński, Statystyka. Od teorii do praktyki, 2013. A. Aczel, Statystyka w zarządzaniu, 2002.
0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.
Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek
Wykład 1. Informatyka Stosowana. 3 października Informatyka Stosowana Wykład 1 3 października / 26
Wykład 1 Informatyka Stosowana 3 października 2016 Informatyka Stosowana Wykład 1 3 października 2016 1 / 26 Wykłady : 45h (w semestrze zimowym) ( Egzamin) 30h (w semetrze letnim ) ( Egzamin) Zajęcia praktyczne:
Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.
Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"
Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41
Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października
Wykład 1. Informatyka Stosowana. 2 października Informatyka Stosowana Wykład 1 2 października / 33
Wykład 1 Informatyka Stosowana 2 października 2017 Informatyka Stosowana Wykład 1 2 października 2017 1 / 33 Wykłady : 45h (w semestrze zimowym) (Egzamin) 30h (w semetrze letnim) (Egzamin) 3h lekcyjne
Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych
Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych Zapoznaj z poniŝszym tekstem reprezentującym wiedzę logiczną o wartościach logicznych będących interpretacjami formuł złoŝonych
Dalszy ciąg rachunku zdań
Dalszy ciąg rachunku zdań Wszystkie możliwe funktory jednoargumentowe p f 1 f 2 f 3 f 4 0 0 0 1 1 1 0 1 0 1 Wszystkie możliwe funktory dwuargumentowe p q f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10 f 11 f
Rozdzia l 10. Najważniejsze normalne logiki modalne
Rozdzia l 10. Najważniejsze normalne logiki modalne 1. Logiki modalne normalne Definicja. Inwariantny zbiór formu l X jȩzyka modalnego L = (L,,,,, ) nazywamy logik a modaln a zbazowan a na logice klasycznej
ĆWICZENIE 2. DEF. Mówimy, że formuła A wynika logicznie z formuł wartościowanie w, takie że w A. A,, A w KRZ, jeżeli nie istnieje
ĆWICZENIE 2 Klasyczny Rachunek Zdań (KRZ): wynikanie logiczne, wnioskowanie, niezawodny schemat wnioskowania, wnioskowanie dedukcyjne, równoważność logiczna, iniowalność spójników za mocą formuły. DEF.
4 Klasyczny rachunek zdań
4 Klasyczny rachunek zdań Elementy Logiki i Teorii Mnogości 2015/2016 Spis najważniejszych tautologii: (a) p p prawo wyłączonego środka (b) ( p) p prawo podwójnej negacji (c) p q q p (d) p q q p prawo
Elementy logiki matematycznej
Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w
Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010
Logika obliczeniowa Instytut Informatyki Poznań, rok akademicki 2009/2010 1 formu l rachunku zdań Wartościowanie i sta le logiczne Logiczna równoważność 2 Model formu ly Formu la spe lniona Formu la spe
Wyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
Konsekwencja logiczna
Konsekwencja logiczna Niech Φ 1, Φ 2,..., Φ n będa formułami logicznymi. Formuła Ψ wynika logicznie z Φ 1, Φ 2,..., Φ n jeżeli (Φ 1 Φ 2 Φ n ) Ψ jest tautologia. Formuły Φ 1, Φ 2,..., Φ n nazywamy założeniami
LOGIKA ALGORYTMICZNA
LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R
Egzamin z logiki i teorii mnogości, rozwiązania zadań
Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?
Wybierz cztery z poniższych pięciu zadań. Poprawne rozwiazanie dwóch zadań oznacza zdany egzamin.
Logika, II rok Etnolingwistyki UAM, 20 VI 2008. Imię i Nazwisko:.............................. GRUPA: I Wybierz cztery z poniższych pięciu zadań. Poprawne rozwiazanie dwóch zadań oznacza zdany egzamin.
Rachunek zdań 1 zastaw zadań
Rachunek zdań 1 zastaw zadań Zadanie 1 ([1]) Wyraź w języku KRZ następujące zdania języka naturalnego: (a) Jeśli Jan jest ateistą to Jan nie jest katolikiem. (b) Jeśli Jan jest ateistą to nieprawda, że
W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się
1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania
Logika pragmatyczna dla inżynierów
Logika pragmatyczna Logika pragmatyczna dla inżynierów Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.edu.pl materiały + literatura + informacje na stronie www. Zaliczenie: Test pisemny
LOGIKA Klasyczny Rachunek Zdań
LOGIKA Klasyczny Rachunek Zdań Robert Trypuz trypuz@kul.pl 5 listopada 2013 Robert Trypuz (trypuz@kul.pl) Klasyczny Rachunek Zdań 5 listopada 2013 1 / 24 PLAN WYKŁADU 1 Alfabet i formuła KRZ 2 Zrozumieć
Elementy logiki. Zdania proste i złożone
Elementy logiki Zdania proste i złożone. Jaka jest wartość logiczna następujących zdań: (a) jest dzielnikiem 7 lub suma kątów wewnętrznych w trójkącie jest równa 80. (b) Jeśli sin 0 =, to 5 < 5. (c) Równanie
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Elementy logiki
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Elementy logiki 1. Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa.
Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:
Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x
Wykład 1. Informatyka Stosowana. 1 października Informatyka Stosowana Wykład 1 1 października / 26
Wykład 1 Informatyka Stosowana 1 października 2018 Informatyka Stosowana Wykład 1 1 października 2018 1 / 26 Wykłady : 45h (w semestrze zimowym) (Egzamin) 30h (w semetrze letnim) (Egzamin) 3h lekcyjne
Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:
Logika pragmatyczna Logika pragmatyczna Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + literatura + informacje na stronie www. Zaliczenie: Kolokwium pisemne na
Wyk lad 2 Podgrupa grupy
Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.
Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu
Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Historia teorii mnogości Teoria mnogości to inaczej nauka o zbiorach i ich własnościach; Zapoczątkowana przez greckich matematyków i filozofów w
Wyk lad 4 Warstwy, dzielniki normalne
Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,
Rozdzia l 9. Zbiory liczb porz adkowych. Liczby porz adkowe izolowane i graniczne
Rozdzia l 9. Zbiory liczb porz adkowych. Liczby porz adkowe izolowane i graniczne 1. Kresy wzglȩdem dowolnego zbioru liczb porz adkowych Poświȩcimy teraz uwagȩ przede wszystkich kratowym w lasnościom klasy
Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc
Liczby zespolone, liniowa zależność i bazy Javier de Lucas Ćwiczenie. Dowieść, że jeśli µ := c d d c, to homografia h(x) = (ax+b)/(cx+d), a, b, c, d C, ad bc, odwzorowuje oś rzeczywist a R C na okr ag
ROZDZIAŁ 1. Rachunek funkcyjny
ROZDZIAŁ 1 Rachunek funkcyjny Niech X 1,..., X n będą dowolnymi zbiorami. Wyrażenie (formułę) ϕ(x 1,..., x n ), w którym występuje n zmiennych x 1,..., x n i które zamienia się w zdanie logiczne, gdy zamiast
Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 4. Semantyka Klasycznego Rachunku Zdań 1 Skróty: Język Klasycznego Rachunku Zdań zamiast Klasyczny Rachunek Zdań piszę
Lista 1 (elementy logiki)
Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły
Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 1
Matematyka I BJiOR Semestr zimowy 2018/2019 Wykład 1 Zasady współpracy https://mat.ug.edu.pl/~matpz/ wykłady nie są obowiązkowe, ale nieobecności będą odnotowywane nieobecności nie należy usprawiedliwiać,
1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów
1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów Logika matematyczna, dział matematyki zajmujący się badaniem własności wnioskowania (dowodzenia)
Elementy logiki matematycznej
Elementy logiki matematycznej Przez p, q będziemy oznaczać zdania. Każdemu zdaniu możemy przyporządkować wartość logiczną 1, gdy jest prawdziwe oraz wartość logiczną 0, gdy jest fałszywe. Oznaczmy wartość
Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.
Elementy logiki. Klasyczny rachunek zdań. 1 Elementy logiki Klasyczny rachunek zdań Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza Elementy
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
15. DOWODZENIE VI WTÓRNE REGUŁY WNIOSKOWANIA I REGUŁY PODSTAWIANIA
15. DOWODZENIE VI WTÓRNE REGUŁY WNIOSKOWANIA I REGUŁY PODSTAWIANIA W systemie SD dla każdego spójnika istnieje reguła wprowadzania i reguła eliminacji tegoż spójnika. Niemniej jednak dowodzenie za pomocą
Zestaw 1. Podaj zdanie odwrotne i przeciwstawne (kontrapozycję) dla każdego z następujących
Zestaw 1 Zadanie 1. Podaj zdanie odwrotne i przeciwstawne (kontrapozycję) dla każdego z następujących zdań: a) p (q r). b) Jeśli x + y = 1, to x 2 + y 2 1. c) Jeśli 2 + 2 = 4, to 3 + 3 = 8. Zadanie 2.
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest
Szymon G l ab. Struktury losowe II Graf losowy. Instytut Matematyki, Politechnika Lódzka
Instytut Matematyki, Politechnika Lódzka Graf losowy jako granica Fraisse Przez K graf oznaczmy rodzinȩ wszystkich skończonych grafów (np. na N). Niech G bȩdzie granic a Fraisse rodziny K graf. Strukturȩ
Podstawy matematyki dla informatyków. Logika formalna. Skªadnia rachunku zda« Skróty i priorytety. Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011
Podstawy matematyki dla informatyków Logika formalna Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011 Skªadnia rachunku zda«symbole (zmienne) zdaniowe (p, q, r,...), oraz znaki i s formuªami zdaniowymi.
Elementy logiki Zbiory Systemy matematyczne i dowodzenie twierdzeń Relacje
Dr Maciej Grzesiak, pok.724 E e-mail: maciej.grzesiak@put.poznan.pl http://www.put.poznan.pl/ maciej.grzesiak Konsultacje: poniedziałek, 8.45-9.30, środa 8.45-9.30, piątek 9.45-10.30, pokój 724E Treść
Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.
Elementy logiki. Klasyczny rachunek zdań. Elementy logiki Klasyczny rachunek zdań Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 Spójniki
Wartości logiczne. Za zdanie b. Powiedzenie studenci miewaja
Wartości logiczne Za zdanie b edziemy uważać dowolne stwierdzenie, o którym można powiedzieć, że jest albo prawdziwe, albo fa lszywe, i które nie może być jednocześnie i prawdziwe, i fa lszywe. Powiedzenie
Roger Bacon Def. Def. Def Funktory zdaniotwórcze
Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym
Rachunek zdań i predykatów
Rachunek zdań i predykatów Agnieszka Nowak 14 czerwca 2008 1 Rachunek zdań Do nauczenia :! 1. ((p q) p) q - reguła odrywania RO 2. reguła modus tollens MT: ((p q) q) p ((p q) q) p (( p q) q) p (( p q)
Rozdzia l 8. Pojȩcie liczby porz adkowej
Rozdzia l 8. Pojȩcie liczby porz adkowej 1. Liczby naturalne a liczby porz adkowe Oto cztery pierwsze liczby naturalne zapisane wed lug różnych czterech notacji w porz adku od najmniejszej do najwiȩkszej:,
ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la?
Ci ag lość i norma Ćwiczenie. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? f (x, y) = x2 y 2 x 2 + y 2, f 2(x, y) = x2 y x 2 + y 2 f 3 (x, y) = x2 y
Rozdzia l 2. Najważniejsze typy algebr stosowane w logice
Rozdzia l 2. Najważniejsze typy algebr stosowane w logice 1. Algebry Boole a Definicja. Kratȩ dystrybutywn a z zerem i jedynk a, w której dla każdego elementu istnieje jego uzupe lnienie nazywamy algebr
Logika formalna SYLABUS A. Informacje ogólne
Logika formalna SYLABUS A. Informacje ogólne studiów Poziom kształcenia Profil studiów Forma studiów Rodzaj przedmiotu Rok studiów /semestr Wymagania wstępne Liczba godzin zajęć Założenia i cele przedmiotu
Rozdzia l 3. Relacje binarne
Rozdzia l 3. Relacje binarne 1. Para uporz adkowana. Produkt kartezjański dwóch zbiorów Dla pary zbiorów {x, y} zachodzi, jak latwo sprawdzić, równość {x, y} = {y, x}. To znaczy, kolejność wymienienia
Automatyka Lab 1 Teoria mnogości i algebra logiki. Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu
Automatyka Lab 1 Teoria mnogości i algebra logiki Harmonogram zajęć Układy przełączające: 1. Algebra logiki - Wprowadzenie 2. Funkcje logiczne - minimalizacja funkcji 3. Bramki logiczne - rysowanie układów
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar
Sterowalność liniowych uk ladów sterowania
Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,
M. Nowak, Materia ly do wyk ladu z logiki na kierunkach humanistycznych
M. Nowak, Materia ly do wyk ladu z logiki na kierunkach humanistycznych Pojȩcie znaku Definicja znaku Ch. S. Peirce a: Znak jest to coś, co komuś zastȩpuje coś innego pod pewnym wzglȩdem lub w pewien sposób.
Liczba 2, to jest jedyna najmniejsza liczba parzysta i pierwsza. Oś liczbowa. Liczba 1, to nie jest liczba pierwsza
1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 3 Liczba 2, to jest jedyna najmniejsza liczba parzysta i pierwsza 2 1 0 1 2 3 x Oś liczbowa. Liczba 1, to nie jest liczba pierwsza MATEMATYKA
Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki
0 1 Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki 2. W następujących dwóch prawach wyróżnić wyrażenia specyficznie matematyczne i wyrażenia z zakresu logiki (do
Roger Bacon Def. Def. Def. Funktory zdaniotwórcze
Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym
Drzewa Semantyczne w KRZ
Drzewa Semantyczne w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 7 XII 2006, 13:30 15:00 Jerzy Pogonowski (MEG) Drzewa Semantyczne w KRZ 7 XII 2006, 13:30 15:00
Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)
Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych
0.1 Sposȯb rozk ladu liczb na czynniki pierwsze
1 Temat 5: Liczby pierwsze Zacznijmy od definicji liczb pierwszych Definition 0.1 Liczbȩ naturaln a p > 1 nazywamy liczb a pierwsz a, jeżeli ma dok ladnie dwa dzielniki, to jest liczbȩ 1 i sam a siebie
Zagadnienia podstawowe dotyczące metod formalnych w informatyce
Zagadnienia podstawowe dotyczące metod formalnych w informatyce! Logika Analiza języka i czynności badawczych (np. rozumowanie, definiowanie, klasyfikowanie) w celu poznania takich reguł posługiwania się
MATEMATYKA REPREZENTACJA LICZB W KOMPUTERZE
1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 B l ad bezwzglȩdny zaokr aglenia liczby ɛ = fl() B l ad wzglȩdny zaokr aglenia liczby 0 δ = fl() B l ad procentowy zaokr aglenia liczby 0
Wykład I. Literatura. Oznaczenia. ot(x 0 ) zbiór wszystkich otoczeń punktu x 0
Wykład I Literatura Podręczniki 1. G. M. Fitherholz Rachunek różniczkowy i całkowy 2. W. Żakowski Matematyka tom I Zbiory zadań 1. W. Krysicki, L. Włodarski Analiza matematyczna w zadaniach tom I i II
Rozdzia l 3. Elementy algebry uniwersalnej
Rozdzia l 3. Elementy algebry uniwersalnej 1. Podalgebry, homomorfizmy Definicja. Niech = B A oraz o bȩdzie n-argumentow a operacj a na zbiorze A. Mówimy, że zbiór B jest zamkniȩty na operacjȩ o, gdy dla
Logika Matematyczna 16 17
Logika Matematyczna 16 17 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semantyka KRP (3) Jerzy Pogonowski (MEG) Logika Matematyczna 16 17 Semantyka KRP (3) 1 / 24
25 lutego 2013, godzina 23: 57 strona 1. P. Urzyczyn: Materia ly do wyk ladu z semantyki. Logika Hoare a
25 lutego 2013, godzina 23: 57 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Logika Hoare a Rozważamy najprostszy model imperatywnego jezyka programowania z jednym typem danych. Wartości tego
Przeliczalność, kresy, bijekcje Javier de Lucas
Przeliczalność, kresy, bijekcje Javier de Lucas Zadanie 1. Wyliczyć: + [ 3 n=1, ] 4 n n. + ] n n=1, 5 + [ n n+1 n 10 t [,3] A t oraz t [,3] A t, gdzie: A t = [t, t] [ t, t]. Zadanie. Pokazać, że funkcja
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
PODSTAWY LOGIKI I TEORII MNOGOŚCI
Stefan Sokołowski PODSTAWY LOGIKI I TEORII MNOGOŚCI Inst Informatyki Stosowanej, PWSZ Elbląg, 2015/2016 Podstawy logiki i teorii mnogoci Wykład1,str1 Na http://studentpwszelblagpl/ stefan/dydaktyka/logteomno
Definicja: alfabetem. słowem długością słowa
Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na
Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.
Logika formalna wprowadzenie Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. 1. Zdanie logicznie prawdziwe (Prawda logiczna) Zdanie, którego analityczność
Wstęp do matematyki Piotr Jędrzejewicz UMK Toruń 2014
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wstęp do matematyki
Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań System aksjomatyczny logiki Budując logikę
Imię i nazwisko:... OBROŃCY PRAWDY
Egzamin: Logika Matematyczna, I rok JiNoI, 30 czerwca 2014 Imię i nazwisko:........................................... OBROŃCY PRAWDY Wybierz dokładnie cztery z poniższych pięciu zadań i spróbuj je rozwiazać.
1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to:
1 Rachunek zdań Formuły zdaniowe (lub krócej: zdania) w klasycznym rachunku zdań składają się ze zmiennych zdaniowych nazywanych też zdaniami składowymi (oznaczane są zazwyczaj p, q, r,...) oraz operatorów