Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas"

Transkrypt

1 Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas Ćwiczenie 1. Niech W = {(x 1, x 2, x 3 ) K 3 : x x x 2 3 = x 1 x 2 + x 2 x 3 + x 3 x 1 }. Czy W jest podprzestrzeni a gdy K = R? A kiedy K = C? Podaj wymiar W gdy jest podprzestrzeni a. Rozwi azanie: Warunek ustalaj acy czy (x 1, x 2, x 3 ) W można napisać inaczej x x x 2 3 = x 1 x 2 + x 2 x 3 + x 3 x 1 2(x x x 2 3) = 2(x 1 x 2 + x 2 x 3 + x 3 x 1 ) (x 1 x 2 ) 2 + (x 2 x 3 ) 2 + (x 3 x 1 ) 2 = 0. Z tego, wynika, że dla przestrzeni liniowej nad R wektor (x 1, x 2, x 3 ) W wtedy i tylko wtedy x 1 = x 2 = x 3. Z kryterium podprzestrzeni liniowej wynika, że niepusty podzbiór W przestrzeni liniowej jest podprzestrzeni a liniow a wtedy i tylko wtedy gdy dowolna liniowa kombinacja elementów W należy do W. Oczywiście, jeżeli x, y W, to dla dowolnych λ 1, λ 2 R mamy, że λ 1 x + λ 2 y = (λ 1 x 1 + λ 2 y 1, λ 1 x 2 + λ 2 y 2, λ 1 x 3 + λ 3 y 3 ). Skoro x, y W, to x 1 = x 2 = x 3 i y 1 = y 2 = y 3, wtedy λ 1 x 1 + λ 2 y 1 = λ 1 x 2 + λ 2 y 2 = λ 1 x 3 + λ 3 y 3 i λ 1 x + λ 2 y W. Jeżeli zak ladamy, że K = C, to jeżeli x 1 = x 2 = x 3, to (x 1, x 2, x 3 ) W, np. (i, i, i) należy do W. Natomiast, ten warunek nie jest konieczny, np. dla (2, 0, 1 i 3) mamy, że (1 i 3) 2 + ( 1 i 3) 2 = i 3 + 2i 3 = 0 (x 1, x 2, x 3 ) W. Również, (2, 0, 1 + i 3) W. Widać, że dodawanie tych wektorów, tj. (4, 0, 2), nie należy do W. Wiȩc, to nie podprzestrzeń nad C.

2 Ćwiczenie 2. Niech W = {w R 4 [X] : w( 1) = w(1), w ( 1/ 3) + w (1/ 3) = 0}, gdzie w to pochodna wielomianu w i R 4 [X] to przestrzeń liniowa wielomianów aż do stopnia 4. Sprawdzić, że W jest podprzestrzeni a przestrzeni wektorowej R 4 [X], znaleźć jak aś bazȩ W i obliczyć dim W. Rozwi azanie: Sprawdzamy, że W to podprzestrzeń liniowa. Wobec kryterium przestrzeni liniowej, niepusty podzbiór W przestrzeni a liniowej jest podprzestrzeni liniow a wtedy i tylko wtedy gdy dowolna liniowa kombinacja elementów W należy do W. Dla dowolnych wielomianów P, Q W, mamy, że dla dowolnych sta lych λ, µ R wynika, że i (λp + µq)( 1) = λp ( 1) + µq( 1) = λp (1) + µq(1) = (λp + µq)(1) (λp + µq) ( 1/ 3) = λp ( 1/ 3) + µq ( 1/ 3) = λp (1/ 3) µq(1/ 3) = (λp + µq) (1/ 3). Wiȩc, dowolna liniowa kombinacja elementów W należy do W i W jest podprzestrzeni a przestrzeni R 4 [X]. Teraz ustalmy bazȩ i wymiar podprzestrzeni W. Jeżeli w R 4 [X] można napisać Skoro w( 1) = w(1) to w = 4 a α X α, a 0, a 1, a 2, a 3, a 4 R. α=0 w( 1) = a 0 a 1 + a 2 a 3 + a 4 = a 0 + a 1 + a 2 + a 3 + a 4 = w(1). Wówczas, a 1 = a 3. Ponadto, w ( 1/ 3) = w (1/ 3). Wiemy, że Wiȩc, w (X) = a 1 + 2a 2 X + 3a 3 X 2 + 4a 4 X 3. w ( 1/ 3) = a 1 2a 2 / 3+a 3 4a 4 / 3 3 = a 1 2a 2 / 3 a 3 4a 4 / 3 3 = w (1/ 3). Z tego wynika, że a 1 + a 3 = 0 a 1 = a 3.

3 Można zauważyć, że elementy W s a wielomianami których wspó lczynniki s a rozwi azaniami uk ladu a 1 + a 3 = 0. Czyli W to zbiór wielomianów postaci a 0 + a 1 X + a 2 X 2 a 1 X 3 + a 4 X 4 = a 0 + a 1 (X X 3 ) + a 2 X 2 + a 4 X 4. Widać, że wielomiany 1, X X 3, X 4, X 2 generuj a i s a liniowo niezależne. Te wektory s a liniowo niezależne i generuj a W. Wówczas, tworz a bazȩ W. Wówczas, dim W = 4. Ćwiczenie 3. Niech W = {w R 4 [X] : w( p) = w(p), w (1) + w ( 1) = 0} dla p R. Sprawdzić, że W p jest podprzestrzeni a przestrzeni wektorowej R 4 [X], znaleźć jak aś bazȩ W p i obliczyć dim W p. Dodatkowo, uzupe lnij bazȩ W do bazy R 4 [X]. Rozwi azanie: Sprawdzamy, że W to podprzestrzeń liniowa. Korzystaj ac z kryterium, zauważamy, że dla dowolnych wielomianów P, Q W i sta lych λ, µ R wynika, że i (λp + µq)( p) = λp ( p) + µq( p) = λp (p) + µq(p) = (λp + µq)(p) (λp + µq) (1) = λp (1) + µq (1) = λp ( 1) µq ( 1) = (λp + µq) ( 1). Wiȩc, dowolna liniowa kombinacja elementów W należy do W i W jest podprzestrzeni a przestrzeni R 4 [X]. Jeżeli w R 4 [X] można napisać Skoro w( p) = w(p) to w = 4 a α X α, a 0, a 1, a 2, a 3, a 4 R. α=0 w( p) = a 0 a 1 p + a 2 p 2 a 3 p 3 + a 4 p 4 = a 0 + a 1 p + a 2 p 2 + a 3 p 3 = w(p). Wówczas, pa 1 = pa 3. Ponadto, w (1) = w ( 1). Wiȩc, w (1) = a 1 + 2a 2 + 3a 3 + 4a 4 = a 1 + 2a 2 3a 3 + 4a 4 = w( 1).

4 Z tego wynika, że a 1 + 3a 3 = 0. Można zauważyć, że elementy W s a wielomianami których wspó lczynniki s a rozwi azaniami uk ladu a 1 + 3a 3 = 0, p(a 1 + a 3 ) = 0. Zatem, W p dlq p 0 to zbiór wielomianów postaci Wielomiany w = a 0 + a 2 X 2 + a 4 X 4. 1, X 2, X 4 s a liniowo niezależne i generuj a. Zatem, tworz a bazȩ. Wówczas, dim W = 3. Do tego, możemy dodać liniowo niezależne wektory X i X 3 generuj ace podprzestrzeń V = X, X 3. Widać, że 1, X 2, X 4, X, X 3 s a liniowo niezależne, to tworz a bazȩ przestrzeni R 4 [X]. Warto zauważyć, że W + V = R 5 [X]. Skoro 5 = dim W + V = dim W + dim V dim W V i dim W = 3 i dim V = 2, widać, że dim U V = 0. Wówczas, U V = {0} i U V. Zbiór wielomianów podprzestrzeni W p dla p = 0 to Wielomiany w = a 0 3a 3 X + a 2 X 2 + a 3 X 3 + a 4 X 4. 1, 3X + X 3, X 2, X 4 s a liniowo niezależne i generuj a. Zatem, tworz a bazȩ. Wówczas, dim W = 4. Do tego, możemy dodać wektor X + X 3 i tworzyć bazȩ (proszȩ sprawdzić) 1, 3X + X 3, X + X 3, X 2, X 4 przestrzeni R 5 [X]. Jak wcześniej, widać, że W X + X 3 = R 5 [X]. Ćwiczenie 4. Dane przestrzenie liniowe R 4 i R 3 [X], zdefiniujemy Φ : R 4 R 3 [X] postaci Czy Φ jest izomorfizmem? Φ(a, b, c, d) = (a + b c)x 3 + bx 2 + (c + a)x + d.

5 Rozwi azanie: Odwzorowanie Φ jest odwzorowaniem liniowym wtedy i tylko wtedy gdy dla każdych wektorów v, w R 4 i liczb λ, µ R mamy, że Φ(w + v) = Φ(w) + Φ(v), Φ(λv) = λφ(v). Widać, że jeżeli v = (a, b, c, d) i w = (ā, b, c, d) to Φ(λv) = (λa + λb λc)x 3 + λbx 2 + (λc + λa)x + λd = λφ(v) i Φ(v+w) = ((a+ā)+(b+ b) (c+ c))x 3 +(b+ b)x 2 +((c+ c)+(a+ā))x+(d+ d) = Φ(v)+Φ(w) Teraz, mamy sprawdzić, że Φ jest surjekcj a. To oznacza, że dla dowolnego istnieje v R 4 taki, że Φ(v) = w. Czyli, w = λ 3 X 3 + λ 2 X 2 + λ 1 X + λ 0 a + b c = λ 3, b = λ 2, c + a = λ 1, d = λ 0. Z tego wynika, że d = λ 0, b = λ 2 a = λ 1 c i a = (λ 3 λ 2 + λ 1 )/2 i c = (λ 3 λ 2 λ 1 )/2 Oczywiście, to odwzorowanie jest injekcj a gdy Φ(w) = Φ(v) implikuje w = v. Z poprzedniego uk ladu, wynika, że jeżeli Φ(w) = 0, to w = 0. Korzystaj ac z tego i skoro Φ jest odwzorowaniem liniowym, widać, że Φ(w) = Φ(v) Φ(w v) = 0 w v = 0 w = v. i Φ jest injekcj a. Wiȩc, Φ jest bijekcj a. Ćwiczenie 5. Dana przestrzeń liniowa K n m macierzy m n o wspó lczynnikach w ciele K, rz ad macierzy to maksymalny zbiór liniowo niezależnych kolumn. Oblicz rz ad macierzy A := , B := o wspó lczynnikach w R.

6 Rozwi azanie: Macierz A: Rz ad macierzy to wymiar przestrzeni zgenerowanej przez jej kolumny. Dana macierz M, można udowodnić, że { } r rankm = dim span {M 1,..., M j,..., M k } = dim span M 1,..., λ i M i,..., M k, gdzie λ j 0 i M i, i {1,..., k}, s a kolumnami macierzy M. Z tego wynika, że ranka := rank Zauważymy, że ani pierwsza kolumna nie jest liniow a kombinacj a innych kolumn ani innej kolumny nie można napisać jako liniowej kombinacji zawieraj acej tȩ pierwsz a kolumnȩ. To rank A := 1+rank Macierz B: rankb := rank = 1 + rank = 1+rank rank = 1 + rank i=1 = 2+rank = 2 + rank [ = [ ] = 3. ] = 4.

7 Ćwiczenie 6. Podaj bazȩ podprzestrzeni V 1, V 2 przestrzeni R 5 postaci V 1 = (0, 1, 2, 3, 1), (0, 1, 3, 4, 0), (0, 4, 9, 13, 3), V 2 = (1, 1, 2, 3, 1), (1, 0, 3, 4, 0), (1, 2, 1, 2, 2), (3, 1, 7, 9, 1), (0, 2, 5, 7, 1). Oblicz V 1 + V 2, V 1 V 2 i sprawdź, że dim(v 1 + V 2 ) = dim V 1 + dim V 2 dim(v 1 V 2 ). Rozwi azanie: Wymiar V 1 to rz ad macierzy rankb := rank = rank = 2. Wiȩc, i zdefiniujemy V 1 = (0, 1, 3, 4, 0), (0, 0, 1, 1, 1), e 1 = (0, 1, 3, 4, 0), które tworz a bazȩ V 1. Wymiar V 2 to rz ad macierzy B to rank = rank e 2 = (0, 0, 1, 1, 1), = 2 + rank = 4.

8 Wiȩc, Zdefiniujemy V 2 = (1, 0, 3, 4, 0), (0, 1, 0, 0, 0), (0, 0, 3, 4, 0), (0, 0, 1, 1, 1). f 1 = (1, 0, 3, 4, 0), f 2 = (0, 1, 0, 0, 0), f 3 = (0, 0, 3, 4, 0), f 4 = (0, 0, 1, 1, 1). Takie wektory tworz a bazȩ V 2. Widać, że U + V jest zgenerowany przez wektory baz U i V. Wiȩc, wymiar U + V to rz ad macierzy rank Widać, że dim V + U = 4, dim V = dim U = 2. Wiȩc, korzystaj ac z wzoru wynika, że dim(u + V ) = dim U + dim V dim U V dim U V = dim U + dim V dim(u + V ) = Wiȩc, U V = {0}. Czȩsto zdarza siȩ, że wzór wymiarów nie pozwala nam ustalić przeciȩcia podprzestrzeni. Aby pokazać, co zrobić w takim przypadku, obliczymy U +V drug a metod a. Widać, że każdy element x U + V można napisać w postaci x = λ 1 e 1 + λ 2 e 2 = µ 1 f 1 + µ 2 f 2 + µ 3 f 3 + µ 4 f 4. = 4.

9 Jeżeli ustalimy wszystkie wartości λ 1, λ 2, µ 1, µ 2, µ 3, to możemy ustalić x. zrobić, musimy rozwi azać uk lad: = µ 1 = 0, µ 2 = λ 1, µ 4 = λ 2, µ 3 = λ 1. = Aby to Możemy zak ladać, że λ 1, λ 2 R s a dowolne i pozwalaj a nam ustalić µ 2, µ 3, µ 4 (µ 1 = 0). Wówczas, każdy element v V 1 należy do V 1 V 2..

Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeń suma prosta przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1 W zależności od wartości parametru p podaj wymiar przestrzeni W = v 1 v v 3 gdzie p 0 v 1 = 1 + p 3 v = 5 3

Bardziej szczegółowo

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,

Bardziej szczegółowo

Topologia I, Egzamin. II termin, 2013-03-05. Nr albumu: Nazwisko prowadzącego ćwiczenia: Nr grupy:

Topologia I, Egzamin. II termin, 2013-03-05. Nr albumu: Nazwisko prowadzącego ćwiczenia: Nr grupy: Stwierdź czy następujące zdania są prawdziwe, zakreślając właściwą odpowiedź i skreślając pozostałe. 1 Zad. 1. Jeżeli przekształcenie f : (X, T ) (R, T s ) jest ciągłe, to to samo odwzorowanie jest ciągłe

Bardziej szczegółowo

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc Liczby zespolone, liniowa zależność i bazy Javier de Lucas Ćwiczenie. Dowieść, że jeśli µ := c d d c, to homografia h(x) = (ax+b)/(cx+d), a, b, c, d C, ad bc, odwzorowuje oś rzeczywist a R C na okr ag

Bardziej szczegółowo

Korzystając z wzorów de Morgana zwartość można także określić w terminach zbiorów domkniętych.

Korzystając z wzorów de Morgana zwartość można także określić w terminach zbiorów domkniętych. Rozdział 6 Zwartość 6.1 Przestrzenie zwarte Definicja 6.1.1. Przestrzeń topologiczna (X, T ) nazywa się zwarta jeśli jest przestrzenią Hausdorffa oraz z dowolnego pokrycia przestrzeni X zbiorami otwartymi

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje

Bardziej szczegółowo

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach

Bardziej szczegółowo

Podstawowe działania w rachunku macierzowym

Podstawowe działania w rachunku macierzowym Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:

Bardziej szczegółowo

Przestrzenie wektorowe, liniowa niezależność wektorów, bazy przestrzeni wektorowych

Przestrzenie wektorowe, liniowa niezależność wektorów, bazy przestrzeni wektorowych Grupa, cia lo Zadanie 1. Jakie w lasności w zbiorze liczb naturalnych, ca lkowitych, wymiernych, rzeczywistych maj dzia lania a b = a b, a b = a 2 + b 2, a b = a+b, a b = b. 2 Zadanie 2. Pokazać, że (R

Bardziej szczegółowo

Cia la i wielomiany Javier de Lucas

Cia la i wielomiany Javier de Lucas Cia la i wielomiany Javier de Lucas Ćwiczenie 1. Za lóż, że (F, +,, 1, 0) jest cia lem i α, β F. w laściwości s a prawd a? Które z nastȩpuj acych 1. 0 α = 0. 2. ( 1) α = α. 3. Każdy element zbioru F ma

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,

Bardziej szczegółowo

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 11 1 Wektory i wartości w lasne Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V

Bardziej szczegółowo

TWIERDZENIE PITAGORASA

TWIERDZENIE PITAGORASA PODSTAWY > Figury płaskie (2) TWIERDZENIE PITAGORASA Twierdzenie Pitagorasa dotyczy trójkąta prostokątnego, to znaczy takiego, który ma jeden kąt prosty. W trójkącie prostokątnym boki, które tworzą kąt

Bardziej szczegółowo

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:

Bardziej szczegółowo

MATEMATYKA 9. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 2017/2018 FUNKCJE WYKŁADNICZE, LOGARYTMY

MATEMATYKA 9. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 2017/2018 FUNKCJE WYKŁADNICZE, LOGARYTMY INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 9 FUNKCJE WYKŁADNICZE, LOGARYTMY Dla dowolnej liczby a > 0, liczby

Bardziej szczegółowo

Przestrzenie wektorowe, liniowa niezależność Javier de Lucas

Przestrzenie wektorowe, liniowa niezależność Javier de Lucas Przestrzenie wektorowe, liniowa niezależność Javier de Lucas Ćwiczenie 1. W literaturze można znaleźć pojȩcia przestrzeni liniowej i przestrzeni wektorowej. Obie rzeczy maj a tak a sam a znaczenie. Nastȩpuj

Bardziej szczegółowo

W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 3. Rozwiąż równanie: sin 5x cos x + sin x = 0. W rozwiązaniach podobnych zadań często korzystamy ze wzorów trygonometrycznych

Bardziej szczegółowo

Zagadnienia transportowe

Zagadnienia transportowe Mieczysław Połoński Zakład Technologii i Organizacji Robót Inżynieryjnych Wydział Inżynierii i Kształtowania Środowiska SGGW Zagadnienia transportowe Z m punktów odprawy ma być wysłany jednorodny produkt

Bardziej szczegółowo

Matematyka:Matematyka I - ćwiczenia/granice funkcji

Matematyka:Matematyka I - ćwiczenia/granice funkcji Matematyka:Matematyka I - ćwiczenia/granice funkcji 1 Matematyka:Matematyka I - ćwiczenia/granice funkcji Granice funkcji Zadanie 1 Wykorzystując definicję Heinego granicy funkcji, znaleźć (1) Zadanie

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

1 Granice funkcji. Definicja 1 (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f(x) w punkcie x = a, co zapisujemy.

1 Granice funkcji. Definicja 1 (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f(x) w punkcie x = a, co zapisujemy. Granice funkcji Definicja (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f() w punkcie = a, co zapisujemy f() = g (.) a jeżeli dla każdego ε > 0 można wskazać taką liczbę (istnieje

Bardziej szczegółowo

SkaiWD Laboratorium 5 PCA. Iwo Błądek. 18 maja [a 1... a N... = a 1 b a N b N

SkaiWD Laboratorium 5 PCA. Iwo Błądek. 18 maja [a 1... a N... = a 1 b a N b N SkaiWD Laboratorium PCA Iwo Błądek maja 9 Iloczyn skalarny jako projekcja Iloczyn skalarny (ang. dot product, inner product) to funkcja (R n, R n ) R przyjmująca jako argumenty dwa wektory i zwracająca

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 24 czerwca 2013 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, 24 czerwca 2013 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Rozwiąż następujące zagadnienie programowania liniowego: Zminimalizować 2x 1 x 2 +x 3 +x 4, przy ograniczeniach x 1 x 2 + 2x 3 = 2 x 2 3x 3 = 6 x 1 + x 3 + x 4 =

Bardziej szczegółowo

Przeliczalność, kresy, bijekcje Javier de Lucas

Przeliczalność, kresy, bijekcje Javier de Lucas Przeliczalność, kresy, bijekcje Javier de Lucas Zadanie 1. Wyliczyć: + [ 3 n=1, ] 4 n n. + ] n n=1, 5 + [ n n+1 n 10 t [,3] A t oraz t [,3] A t, gdzie: A t = [t, t] [ t, t]. Zadanie. Pokazać, że funkcja

Bardziej szczegółowo

Zadania z parametrem

Zadania z parametrem Zadania z paramerem Zadania z paramerem są bardzo nielubiane przez maurzysów Nie jes ławo odpowiedzieć na pyanie: dlaczego? Nie są o zadania o dużej skali rudności Myślę, że głównym powodem akiego sanu

Bardziej szczegółowo

Karta pracy: Ćwiczenie 5.

Karta pracy: Ćwiczenie 5. Imię i nazwisko: Grupa: Karta pracy: Ćwiczenie 5. Tytuł ćwiczenia: Optymalizacja geometrii prostych cząsteczek organicznych. Analiza populacyjna i rzędy wiązań. Zagadnienia do przygotowania: Przypomnij

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest

Bardziej szczegółowo

Matematyka dla liceum/funkcja liniowa

Matematyka dla liceum/funkcja liniowa Matematyka dla liceum/funkcja liniowa 1 Matematyka dla liceum/funkcja liniowa Funkcja liniowa Wstęp Co zawiera dział Czytelnik pozna następujące informacje: co to jest i jakie ma własności funkcja liniowa

Bardziej szczegółowo

Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie

Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie Seria zadań z Algebry IIR nr 29 kwietnia 207 r Notacja: We wszystkich poniższych zadaniach K jest ciałem, V wektorow a nad K zaś jest przestrzeni a Zadanie Niechaj V = K 4 [t] Określmy podprzestrzenie

Bardziej szczegółowo

Programowanie Ewolucyjne

Programowanie Ewolucyjne Programowanie Ewolucyjne Programowanie Ewolucyjne W zadaniach przeszukiwania mianem heurystyczne określa się wszelkie prawa, kryteria, zasady i intuicje (również takie, których skuteczność nie jest całkowicie

Bardziej szczegółowo

Wyk lad 6 Podprzestrzenie przestrzeni liniowych

Wyk lad 6 Podprzestrzenie przestrzeni liniowych Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)

Bardziej szczegółowo

Wykłady z Analizy Matematycznej III

Wykłady z Analizy Matematycznej III Uniwersytet Jagielloński Wydział Matematyki i Informatyki Instytut Matematyki Wykłady z Analizy Matematycznej III Marek Jarnicki (Wersja z 5 września 2010 Spis treści Rozdział 1. Wstęp.............................................................................

Bardziej szczegółowo

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni

Bardziej szczegółowo

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,

Bardziej szczegółowo

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,

Bardziej szczegółowo

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C

Bardziej szczegółowo

Przestrzenie liniowe w zadaniach

Przestrzenie liniowe w zadaniach Przestrzenie linioe zadaniach Zadanie 1. Cz ektor [3, 4, 4 jest kombinacja linioa ektoró [1, 1, 1, [1, 0, 1, [1, 3, 5 przestrzeni R 3? Roziazanie. Szukam x,, z R takich, że [3, 4, 4 x [1, 1, 1 + [1, 0,

Bardziej szczegółowo

3S TeleCloud - Aplikacje Instrukcja użytkowania usługi 3S KONTAKTY

3S TeleCloud - Aplikacje Instrukcja użytkowania usługi 3S KONTAKTY \ 3S TeleCloud - Aplikacje Instrukcja użytkowania usługi 3S KONTAKTY SPIS TREŚCI 1. LOGOWANIE DO APLIKACJI... 3 2. WYGLĄD OKNA... 4 4. MOJE KONTAKTY... 5 4.1. KONTKATY PUBLICZNE... 6 4.1.1. EDYCJA KONTAKTU...

Bardziej szczegółowo

2.1. Ruch, gradient pr dko ci, tensor pr dko ci odkszta cenia, Ruchem cia a B nazywamy dostatecznie g adko zale ne od czasu t jego odkszta cenie

2.1. Ruch, gradient pr dko ci, tensor pr dko ci odkszta cenia, Ruchem cia a B nazywamy dostatecznie g adko zale ne od czasu t jego odkszta cenie Rozdzia 2 Ruch i kinematyka 2.. Ruch, gradient pr dko ci, tensor pr dko ci odkszta cenia, wirowo Ruchem cia a B nazywamy dostatecznie g adko zale ne od czasu t jego odkszta cenie t, tzn. B X! t (X) =x

Bardziej szczegółowo

3b. Rozwiązywanie zadań ze skali mapy

3b. Rozwiązywanie zadań ze skali mapy 3b. Rozwiązywanie zadań ze skali mapy SKALA MAPY określa stopień zmniejszenia odległości przedstawionej na mapie w stosunku do odpowiedniej odległości w terenie. Wyróżniamy następujące rodzaje skali: SKALA

Bardziej szczegółowo

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych

Bardziej szczegółowo

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la?

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? Ci ag lość i norma Ćwiczenie. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? f (x, y) = x2 y 2 x 2 + y 2, f 2(x, y) = x2 y x 2 + y 2 f 3 (x, y) = x2 y

Bardziej szczegółowo

Zmiana baz. Jacek Jędrzejewski 2014. 1 Macierz przejścia od bazy do bazy 2

Zmiana baz. Jacek Jędrzejewski 2014. 1 Macierz przejścia od bazy do bazy 2 Zmiana baz Jacek Jędrzejewski 2014 Spis treści 1 Macierz przejścia od bazy do bazy 2 2 Wektory a zmiana baz 2 21 Współrzędne wektora względem różnych baz 2 22 Wektory o tych samych współrzędnych względem

Bardziej szczegółowo

Kwestionariusz należy wypełnić drukowanymi literami w języku polskim. KWESTIONARIUSZ DOTYCZĄCY PROWADZONEJ DZIAŁALNOŚCI GOSPODARCZEJ

Kwestionariusz należy wypełnić drukowanymi literami w języku polskim. KWESTIONARIUSZ DOTYCZĄCY PROWADZONEJ DZIAŁALNOŚCI GOSPODARCZEJ . (imię i nazwisko Cudzoziemca). (numer sprawy) Kwestionariusz należy wypełnić drukowanymi literami w języku polskim. KWESTIONARIUSZ DOTYCZĄCY PROWADZONEJ DZIAŁALNOŚCI GOSPODARCZEJ 1. Nazwa i forma prawna

Bardziej szczegółowo

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję

Bardziej szczegółowo

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Niech K = R lub K = C oraz X - dowolny zbiór. Określmy dwa dzia lania: dodawanie + : X X X i mnożenie przez liczbȩ : K X X, spe lniaj ace nastȩpuj ace

Bardziej szczegółowo

Jan Olek. Uniwersytet Stefana Kardynała Wyszyńskiego. Procesy z Opóźnieniem. J. Olek. Równanie logistyczne. Założenia

Jan Olek. Uniwersytet Stefana Kardynała Wyszyńskiego. Procesy z Opóźnieniem. J. Olek. Równanie logistyczne. Założenia Procesy z Procesy z Jan Olek Uniwersytet Stefana ardynała Wyszyńskiego 2013 Wzór równania logistycznego: Ṅ(t)=rN(t)(1- N ), gdzie Ṅ(t) - przyrost populacji w czasie t r - rozrodczość netto, (r > 0) N -

Bardziej szczegółowo

1. Rozwiązać układ równań { x 2 = 2y 1

1. Rozwiązać układ równań { x 2 = 2y 1 Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,

Bardziej szczegółowo

KOLOKWIUM Z ALGEBRY I R

KOLOKWIUM Z ALGEBRY I R Instrucje: Każde zadanie jest za 4 puntów. Rozwi azanie ażdego zadania musi znajdować siȩ na osobnej artce oraz być napisane starannie i czytelnie. W nag lówu ażdego rozwi azania musz a znajdować siȩ dane

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na

Bardziej szczegółowo

Dynamiczne algorytmy tekstowe

Dynamiczne algorytmy tekstowe Dynamiczne algorytmy tekstowe Piotr Sankowski - p. 1/29 Dynamiczne algorytmy tekstowe równość dynamicznych sekwencji, wyszukiwanie wzorców za tydzień. - p. 2/29 Dynamiczna równość Utrzymujemy rodzinę F

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

RAPORT z diagnozy Matematyka na starcie

RAPORT z diagnozy Matematyka na starcie RAPORT z diagnozy Matematyka na starcie przeprowadzonej w klasach pierwszych szkół ponadgimnazjalnych 1 Analiza statystyczna Wskaźnik Wartość wskaźnika Wyjaśnienie Liczba uczniów Liczba uczniów, którzy

Bardziej szczegółowo

Przygotowały: Magdalena Golińska Ewa Karaś

Przygotowały: Magdalena Golińska Ewa Karaś Przygotowały: Magdalena Golińska Ewa Karaś Druk: Drukarnia VIVA Copyright by Infornext.pl ISBN: 978-83-61722-03-8 Wydane przez Infornext Sp. z o.o. ul. Okopowa 58/72 01 042 Warszawa www.wieszjak.pl Od

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

STRONA GŁÓWNA SPIS TREŚCI. Zarządzanie zawartością stron... 2 Tworzenie nowej strony... 4 Zakładka... 4 Prawa kolumna... 9

STRONA GŁÓWNA SPIS TREŚCI. Zarządzanie zawartością stron... 2 Tworzenie nowej strony... 4 Zakładka... 4 Prawa kolumna... 9 STRONA GŁÓWNA SPIS TREŚCI Zarządzanie zawartością stron... 2 Tworzenie nowej strony... 4 Zakładka... 4 Prawa kolumna... 9 1 ZARZĄDZANIE ZAWARTOŚCIĄ STRON Istnieje kilka sposobów na dodanie nowego szablonu

Bardziej szczegółowo

Wyk lad 13 Funkcjona ly dwuliniowe

Wyk lad 13 Funkcjona ly dwuliniowe 1 Izomorfizmy kanoniczne Wyk lad 13 Funkcjona ly dwuliniowe Definicja 13.1. Niech V i W bed przestrzeniami liniowymi. Funkcje ξ : V W R nazywamy funkcjona lem dwuliniowym, jeżeli i a,b R α,β V γ W ξa α

Bardziej szczegółowo

Twierdzenie Stolza i metryki Javier de Lucas. a n = (2n + 1) 1 4 n 5 4

Twierdzenie Stolza i metryki Javier de Lucas. a n = (2n + 1) 1 4 n 5 4 Twierdzenie Stolza i metryki Javier de Lucas Zadanie Zbadać zbieżność ci agu i znaleźć granicȩ: a n 4 + 3 4 + + (2n + ) 4 n 5 4 Rozwi azanie: Żeby obliczyć tak a granicȩ korzystamy z twierdzenia Stolza,

Bardziej szczegółowo

Algebra z geometrią 2012/2013

Algebra z geometrią 2012/2013 Algebra geometrią 22/23 Seria XVI Javier de Lucas Zadanie. Wnacć rąd macier: A :, B : 2 4 3 4 3 2 3 3 5 7 3 3 6 3 Rowiąanie: Macier A: Sposób: Rąd macier to wmiar prestreni generowanej pre jej kolumn.

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

Wykład 1 Tomasz Żak Instytut Matematyki i Informatyki C-11, pok. 313, www.im.pwr.wroc.pl/ zak

Wykład 1 Tomasz Żak Instytut Matematyki i Informatyki C-11, pok. 313, www.im.pwr.wroc.pl/ zak Wykład 1 Tomasz Żak Instytut Matematyki i Informatyki C-11, pok. 313, www.im.pwr.wroc.pl/ zak Zasady zaliczenia Zajęcia są obowiązkowe, wolno opuścić 4 godziny. W semestrze 2 kolokwia po 50 punktów. Rozwiązywanie

Bardziej szczegółowo

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkê z kodem (Wpisuje zdaj¹cy przed rozpoczêciem pracy) KOD ZDAJ CEGO MMA-P1A1P-021 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY ARKUSZ I MAJ ROK 2002 Instrukcja dla zdaj¹cego Czas pracy

Bardziej szczegółowo

KURS GEOMETRIA ANALITYCZNA

KURS GEOMETRIA ANALITYCZNA KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie

Bardziej szczegółowo

Egzamin z GAL-u (Informatyka) 2. termin 19/02/2019 CzÍúÊ teoretyczna I

Egzamin z GAL-u (Informatyka) 2. termin 19/02/2019 CzÍúÊ teoretyczna I ImiÍ i nazwisko: Numer albumu: CzÍúÊ teoretyczna I Instrukcja: Odpowiedzi naleøy pisaê na arkuszu z pytaniami. W zadaniach 1-10 naleøy udzielaê odpowiedzi TAK lub NIE, przy czym nawet jedna niepoprawna

Bardziej szczegółowo

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.

Bardziej szczegółowo

Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie

Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie 1. Wprowadzenie W wielu zagadnieniach dotyczących sterowania procesami technologicznymi niezbędne jest wyznaczenie

Bardziej szczegółowo

(α + β) a = α a + β a α (a + b) = α a + α b (α β) a = α (β a). Definicja 4.1 Zbiór X z dzia laniami o wyżej wymienionych w lasnościach

(α + β) a = α a + β a α (a + b) = α a + α b (α β) a = α (β a). Definicja 4.1 Zbiór X z dzia laniami o wyżej wymienionych w lasnościach Rozdzia l 4 Przestrzenie liniowe 4.1 Przestrzenie i podprzestrzenie 4.1.1 Definicja i podstawowe w lasności Niech X z dzia laniem dodawania + b edzie grupa przemienna (abelowa). Oznaczmy przez 0 element

Bardziej szczegółowo

1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ).

1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ). B 2 Suma Zbadać, czy liniowo niezależne wektory u, v, w stanowią bazę przestrzeni liniowej lin { u + 2 v + w, u v + 2 w, 3 u + 5 w } 2 Współrzędne wektora (, 4, 5, 4 ) w pewnej bazie podprzestrzeni U R

Bardziej szczegółowo

I. LOGICZNE STRUKTURY DRZEWIASTE

I. LOGICZNE STRUKTURY DRZEWIASTE I LOGICZNE STRUKTURY DRZEWIASTE Analizując dany problem uzyskuje się zadanie projektowe w postaci pewnego zbioru danych Metoda morfologiczna, która została opracowana w latach 1938-1948 przez amerykańskiego

Bardziej szczegółowo

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni

Bardziej szczegółowo

Kurs wyrównawczy dla kandydatów i studentów UTP

Kurs wyrównawczy dla kandydatów i studentów UTP Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka

7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka 7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka Oczekiwane przygotowanie informatyczne absolwenta gimnazjum Zbieranie i opracowywanie danych za pomocą arkusza kalkulacyjnego Uczeń: wypełnia komórki

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA TYPY GRAFÓW c.d. Graf nazywamy dwudzielnym, jeśli zbiór jego wierzchołków można podzielić na dwa rozłączne podzbiory, tak że żadne dwa wierzchołki należące do tego samego podzbioru nie są sąsiednie. G

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

Relacyjne Bazy Danych PODSTAWOWE POJĘCIA BAZODANOWE

Relacyjne Bazy Danych PODSTAWOWE POJĘCIA BAZODANOWE Relacyjne Bazy Danych PODSTAWOWE POJĘCIA BAZODANOWE Podstawowe definicje 1. Baza danych to uporządkowany zbiór danych z określonej dziedziny tematycznej, zorganizowany w sposób ułatwiający do nich dostęp.

Bardziej szczegółowo

XXIX OLIMPIADA FIZYCZNA (1979/1980). Etap II, zadanie doświadczalne D.

XXIX OLIMPIADA FIZYCZNA (1979/1980). Etap II, zadanie doświadczalne D. 9OF_II_D KO OF Szczecin: www.o.szc.pl XXIX OLIMPIADA FIZYCZNA (979/98). Etap II, zadanie doświadczalne D. Źródło: W. Gorzkowski: Olimpiady izyczne XXIII i XXIV. WSiP, Warszawa 977. Autor: Waldemar Gorzkowski,

Bardziej szczegółowo

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym. Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa

Bardziej szczegółowo

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3

Bardziej szczegółowo

Wprowadzenie do równań ró znicowych i ró zniczkowych.

Wprowadzenie do równań ró znicowych i ró zniczkowych. Wprowadzenie do równań ró znicowych i ró zniczkowych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Wprowadzenie do równań ró znicowych i ró zniczkowych. maj 2013 1 / 11 Przyjmijmy nast ¾epuj ¾ace oznaczenia:

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

TEST WIADOMOŚCI: Równania i układy równań

TEST WIADOMOŚCI: Równania i układy równań Poziom nauczania: Gimnazjum, klasa II Przedmiot: Matematyka Dział: Równania i układy równań Czas trwania: 45 minut Wykonała: Joanna Klimeczko TEST WIADOMOŚCI: Równania i układy równań Liczba punktów za

Bardziej szczegółowo

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową

Bardziej szczegółowo

Zadania. SiOD Cwiczenie 1 ;

Zadania. SiOD Cwiczenie 1 ; 1. Niech A będzie zbiorem liczb naturalnych podzielnych przez 6 B zbiorem liczb naturalnych podzielnych przez 2 C będzie zbiorem liczb naturalnych podzielnych przez 5 Wyznaczyć zbiory A B, A C, C B, A

Bardziej szczegółowo

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Instrukcja dla zdaj cego (poziom rozszerzony) Czas pracy 120 minut 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

do obliczania prędkości w przekrojach doliny, korytach rzek, rynnach o dowolnym kształcie i dowolnym współczynniku szorstkości.

do obliczania prędkości w przekrojach doliny, korytach rzek, rynnach o dowolnym kształcie i dowolnym współczynniku szorstkości. Wykres 9 do obliczania prędkości w przekrojach doliny, korytach rzek, rynnach o dowolnym kształcie i dowolnym współczynniku szorstkości. Dla wykresu 9 przyjęto wzór Ganquilleta i Kuttera: gdzie: v = #

Bardziej szczegółowo

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v) Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla

Bardziej szczegółowo

OFERTA REKLAMOWA PORTALU NASZ SZYDŁOWIEC.PL

OFERTA REKLAMOWA PORTALU NASZ SZYDŁOWIEC.PL OFERTA REKLAMOWA PORTALU NASZ SZYDŁOWIEC.PL NASZ SZYDŁOWIEC - to niezależne od wpływów władzy samorządowej, rozwijające się media lokalne. W swojej pracy kierujemy się rzetelnością i szybkością w przekazywanych

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Instrukcja dla zdającego (poziom rozszerzony) Czas pracy 120 minut 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

Wyk lad 10 Przestrzeń przekszta lceń liniowych

Wyk lad 10 Przestrzeń przekszta lceń liniowych Wyk lad 10 Przestrzeń przekszta lceń liniowych 1 Określenie przestrzeni przekszta lceń liniowych Niech V i W bed a przestrzeniami liniowymi Oznaczmy przez L(V ; W ) zbór wszystkich przekszta lceń liniowych

Bardziej szczegółowo