Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń."

Transkrypt

1 Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń. Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego z ograniczeniami chwilowymi sterowania i z uwik lanym sterowaniem w równaniach stanu Rozważmy zadanie optymalnego sterowania docelowego z uwik lanym sterowaniem w równaniach stanu i z ograniczeniami chwilowymi sterowania: zminimalizować wskaźnik jakości G(x, u) = uwzglȩdniaj ac równanie stanu warunki graniczne t1 oraz ograniczenia chwilowe sterowania t 0 g(x(t), u(t), t)dt ẋ(t) = f(x(t), u(t), t), t [t 0, t 1 ], x(t 0 ) = x 0, x(t 1 ) = x 1 u(t) U, t [t 0, t 1 ]. Za lóżmy chwilowe ograniczenia w postaci u(t) u max, t [t 0, t 1 ]. Wprowadzamy kwadratow a funkcjȩ kary za przekroczenie ograniczeń chwilowych K j (u j (t)) = { 0 gdy u j (t) u max j, ρ j ( u j (t) u max j ) gdy u j (t) > u max j, gdzie ρ j > 0 jest wspó lczynnikiem kary. Wraz ze wzrostem wspó lczynnika kary ρ j + funkcja kary staje siȩ coraz bardziej stroma i tym samym coraz dok ladniejsza. 1

2 Stosuj ac metodȩ funkcyjnych mnożników Lagrange a λ(t) dla równań stanu i funkcjȩ kary K(u(t)). = m j=1 K j(u j (t)) dla ograniczeń chwilowych sterowania w l aczamy te ograniczenia do wskaźnika jakości G(x, λ, u). = t1 t 0 ( g(x(t), u(t), t) + λ T (t)(ẋ(t) f(x(t), u(t), t)) + K(u(t)) ) dt minimalizowanego przy jedynych pozosta lych ograniczeniach jakimi s a warunki graniczne x(t 0 ) = x 0, x(t 1 ) = x 1. Tak wiȩc rozszerzamy zakres zmiennych do postaci wektora zmiennych funkcyjnych (x, λ, u) traktuj ac je jako równoprawne zmienne optymalizacyjne z przestrzeni C 1. Warunki konieczne optymalności określimy definiuj ac funkcjȩ g jak nastȩpuje g(x(t), ẋ(t), λ(t), λ(t), u(t), u(t), t) = g(x(t), u(t), t) + λ T (t)(ẋ(t) f(x(t), u(t), t)) + K(u(t)) i zapisujemy warunki konieczne optymalności w postaci nastȩpuj acego uk ladu równań Eulera-Lagrange a równanie optymalnego kostanu (równanie sprzȩżone) równanie optymalnego stanu g o x(t) d dt gȯ x(t) = 0, t [t 0, t 1 ], ( ) g o λ(t) d dt gȯ λ (t) = 0, t [t 0, t 1 ], ( ) równanie optymalnego sterowania g u(t) o d dt gȯ u(t) = 0, t [t 0, t 1 ], ( ). Jest to uk lad n + m równań różniczkowych dla n + m zmiennych funkcyjnych. Mnożnik funkcyjny λ(t) nazywany jest w zadaniach sterowania optymalnego zmienn a kostanu (wektorem kostanu) lub zmienn a sprzȩżon a (wektorem zmiennych sprzȩżonych). Uk lad tych równań pozwala dla niektórych klas problemów sterowania optymalnego efektywnie sparametryzować sterowanie

3 optymalne, co u latwia jego dookreślenie za pomoc a prostego dodatkowego algorytmu obliczeniowego. Minimalnoczasowe sterowanie docelowe dla uk ladów liniowych Zadanie polega na minimalizacji czasu realizacji procesu docelowego G(x, u) = t1 t 0 dt = t 1 t 0 z uwzglȩdnieniem liniowego stacjonarnego równania stanu uk ladu ẋ(t) = Ax(t) + Bu(t), t [t 0, t 1 ], warunków dwugranicznych x(t 0 ) = x 0, x(t 1 ) = x 1 oraz ograniczeń chwilowych sterowania u(t) u max, t [t 0, t 1 ]. Rozszerzamy zestaw zmiennych i zapisujemy zmodyfikowany wskaźnik jakości G(x, λ, u) = t1 t 0 ( 1 + λ T (t)(ẋ(t) Ax(t) Bu(t)) + K(u(t)) ) dt. W tym przypadku funkcja g przybiera postać g(x(t), ẋ(t), λ(t), λ(t), u(t), u(t), t) = 1+λ T (t)(ẋ(t) Ax(t) Bu(t))+K(u(t)). Obliczamy pochodne funkcji g g x = λ T (t)a, gẋ = λ T (t), g λ = (ẋ(t) Ax(t) Bu(t)) T, g λ = 0, g u = λ T (t)b + K u (u(t)), g u = 0. Zapisujemy uk lad równań Eulera-Lagrange a 3

4 równanie optymalnego kostanu równanie optymalnego stanu λ T (t)a λ T (t) = 0, ẋ(t) Ax(t) Bu(t) = 0, równanie optymalnego sterowania λ T (t)b + K u (u(t)) = 0. Ostatnie równanie można przepisać w postaci uk ladu równań skalarnych dla poszczególnych zmiennych steruj acych K j,uj (u j (t)) = n λ i (t)b ij, j = 1,..., m. i=1 Tak wiȩc optymalne przebiegi zmiennych steruj acych określone s a dla zależnościami u o j(t) = u max j sign( n λ i (t)b ij ), j = 1,..., m. Ponieważ charakter rozwi azania równania sprzȩżonego i=1 λ(t) = A T λ(t) zależy od charakteru wartości w lasnych macierzy stanu A, wiȩc również i postać sterowania optymalnego zależy od tych wartości. Jeśli wartości w lasne s 1, s,..., s n macierzy stanu A s a rzeczywiste jednokrotne, to zmienne sprzȩżone s a sumami eksponent λ i (t) = C i1 e s 1t + C i e s t C in e snt, t [t 0, t 1 ], i = 1,..., n. Lemat: Suma n eksponent może zmieniać znak w przedziale [t 0, t 1 ] nie wiȩcej niż n 1 razy. Wniosek: Sterowanie minimalnoczasowe dla uk ladu liniowego, którego macierz stanu posiada wartości w lasne rzeczywiste jednokrotne, przyjmuje wartości +u max j lub u max j i zmienia znak w przedziale [t 0, t 1 ] nie wiȩcej niż n 1 razy. Mówimy, że sterowanie optymalne jest w tym przypadku typu przekaźnikowego lub typu bang- bang. 4

5 Wniosek ten obowi azuje także dla przypadku wielokrotnych rzeczywistych wartości w lasnych macierzy stanu A, gdyż suma n eksponent mnożonych przez funkcje potȩgowe również zmienia znak w przedziale [t 0, t 1 ] nie wiȩcej niż n 1 razy. Przyk lad: Minimalnoczasowe sterowanie tarcz a obrotow a tarcza obrotowa θ(t), Ω(t) U(t) silnik rewersyjny przek ladnia zmienna steruj aca - napiȩcie obwodu steruj acego silnika u(t) = U(t), zmienne stanu - po lożenie k atowe tarczy x 1 (t) = θ(t), prȩdkość k atowa tarczy x (t) = Ω(t). Zadanie minimalnoczasowego sterowania docelowego tarcz a obrotow a polega na minimalizacji wskaźnika jakości G(x, u) = z uwzglȩdnieniem równań stanu ẋ 1 (t) = x (t), ẋ (t) = bu(t), t [0, t 1 ], warunków dwugranicznych x i (0) = x i0, x i (t 1 ) = x i1, oraz ograniczeń amplitudy sterowania u(t) 1, t [0, t 1 ]. W tym przypadku równanie wartości w lasnych det(si A) = 0 przyjmuje postać s = 0, a zatem macierz stanu posiada podwójn a zerow a wartość w lasn a. oznacza to, że sterowanie minimalnoczasowe tarcz a obrotow a jest typu przekaźnikowego i zmienia znak nie wiȩcej niż 1 raz w przedziale [0, t 1 ]. Aby przedstawić algorytm wyznaczania konkretnego przebiegu sterowania minimalnoczasowego dla rozważanego obiektu określimy postać trajektorii stanu dla sterowania optymalnego u o (t) = ±1 przy dowolnych warunkach 5 t1 0 dt

6 pocz atkowych x 1 (0) = x 10, x (0) = x 0 i zerowych warunkach końcowych x 1 (t 1 ) = 0, x (t 1 ) = 0. Ca lkuj ac równania stanu ze sterowaniem u o (t) = ±1 uzyskujemy x (t) = C 1 ± t, x 1 (t) = C + C 1 t ± 0.5t. Z warunków pocz atkowych wynika, że x (0) = C 1 C 1 = x 0, x 1 (0) = C C = x 10. Przebiegi wspó lrzȩdnych stanu w funkcji czasu można zapisać jak nastȩpuje x 1 (t) = 0.5t + x 0 t + x 10, x (t) = ±t + x 0. Eliminujemy czas z tych zależności 0.5x (t) = 0.5(x 0 ± t) = 0.5(x 0 ± x 0 t + t ) = 0.5x 0 ± x 0 t + 0.5t czyli 0.5x (t) 0.5x 0 = 0.5t ± x 0 t i Ponieważ ±0.5x 0.5x 0 = ±0.5t + x 0 t. x 1 (t) x 10 = ±0.5t + x 0 t, wiȩc miȩdzy wspó lrzȩdnymi stanu x 1 i x zachodzi zwi azek x 1 = ±0.5x 0.5x 0 + x 10. Oznacza to, że trajektorie stanu uk ladu ze sterowaniem optymalnym s a parabolami jako funkcje x 1 (x ), przy czym dla sterowania u o (t) = +1 mamy x 1 = 0.5x 0.5x 0 + x 10, a dla sterowania u o (t) = 1 mamy x 1 = 0.5x + 0.5x 0 + x 10. 6

7 Punkt pocz atkowy trajektorii stanu określony jest przez warunki pocz atkowe (x 10, x 0 ). Wyróżnimy nastȩpuj ace trzy charakterystyczne obszary p laszczyzny stanu: krzywa prze l aczeń P jest zbiorem punktów (x 1, x ) spe lniaj acych równanie x 1 = 0.5x sign(x ), obszar nad krzyw a prze l aczeń S jest zbiorem punktów (x 1, x ) spe lniaj acych nierówność x 1 > 0.5x sign(x ), obszar pod krzyw a prze l aczeń S + jest zbiorem punktów (x 1, x ) spe lniaj acych nierówność x 1 < 0.5x sign(x ). Sterowanie minimalnoczasowe w uk ladzie otwartym określane jest w nastȩpuj acy sposób: jeśli punkt pocz atkowy trajektorii stanu znajduje siȩ na krzywej prze l aczeń, to u o (t) = +1, t [0, t 1 ] jeśli x 0 i u o (t) = 1, t [t 0, t 1 ] jeśli x 0, jeśli punkt pocz atkowy trajektorii stanu znajduje siȩ nad krzyw a prze l aczeń, to u o (t) = 1, t [0, t) aż do momentu t osi agniȩcia krzywej prze l aczeń - wtedy nastȩpuje prze l aczenie na u o (t) = +1, t [ t, t 1 ], jeśli punkt pocz atkowy trajektorii stanu znajduje siȩ pod krzyw a prze l aczeń, to u o (t) = +1, t [0, t) aż do momentu t osi agniȩcia krzywej prze l aczeń - wtedy nastȩpuje prze l aczenie na u o (t) = 1, t [ t, t 1 ]. Prosta postać analityczna krzywej prze l aczeń pozwala latwo określić sterowanie minimalnoczasowe w uk ladzie zamkniȩtym jeśli ϑ(x 1, x ) 0, ϑ(x 1, x ) trajektorii stanu znajduje siȩ poza krzyw a prze l aczeń), to. = x x sign(x ) (punkt bież acy u o (x 1, x ) = sign(ϑ(x 1, x )), jeśli ϑ(x 1, x ) = 0 (punkt bież acy trajektorii stanu znajduje siȩ na krzywej 7

8 prze l aczeń), to u o (x 1, x ) = sign(x ). Sterowanie minimalnoczasowe w rozważanym uk ladzie może być realizowane z użyciem programowalnej karty szybkiego przetwarzania (fast processing programmable cards - Industrial Instruments) implementuj acej algorytm sprzȩżenia zwrotnego. Programowalna karta szybkiego przetwarzania sterowanie Obiekt sterowania wyjście US OS 8

9 Jeśli wartości w lasne s 1, s,..., s n macierzy stanu A s a zespolone, to zmienne sprzȩżone s a funkcjami oscylacyjnymi i w zwi azku z tym sterowanie minimalnoczasowe może mieć wiȩcej niż n 1 prze l aczeń. Przyk lad: minimalnoczasowe sprowadzanie oscylatora idealnego do po lożenia równowagi. ściana podstawowa amortyzator sprȩżynowy Obiekt sterowania M si la stabilizuj aca Uk lad o charakterze oscylatora idealnego jest opisywany równaniami stanu ẋ 1 (t) = x (t), ẋ (t) = a 1 x 1 (t) + u(t), t [0, t 1 ], z warunkami granicznymi x i (0) = x i0, x i (t 1 ), i = 1, i z ograniczeniami chwilowymi sterowania u(t) 1, gdzie a 1 jest wspó lczynnikiem amortyzatora sprȩżynowego. Dla celów analizy w lasności matematycznych modelu uk ladu użyteczna jest symetryzacja równań stanu uzyskiwana przez podstawienia ω = a 1, x 1 (t) := x 1 (t)/ω. Równania stanu oscylatora idealnego ze sterowaniem po symetryzacji przybieraj a postać ẋ 1 (t) = ωx (t), ẋ = ωx 1 (t) + u(t), t [0, t 1 ]. W tym przypadku macierze stanu, kostanu i sterowania można zapisać nastȩpuj aco: ( ) ( ) ( ) 0 ω A =, A T 0 ω 0 =, B = ω 0 ω 0 1 9

10 Równanie optymalnego kostanu λ(t) = A T λ T (t) implikuje dla zmiennych sprzȩżonych równania λ 1 (t) = ωλ (t), λ (t) = ωλ 1 (t). Uk lad ten można zredukować do pojedynczego równania drugiego rzȩdu z równaniem charakterystycznym λ 1 (t) = ω λ 1 (t) r = ω, r 1, = ±jω. Oznacza to, że zmienne sprzȩżone s a w tym przypadku okresowymi funkcjami czasu i w szczególności λ (t) = αsin(ωt + β). Z równania optymalnego sterowania uzyskujemy K u (u(t)) = λ (t). Wynika st ad, że przebieg sterowania minimalnoczasowego jest określony zależności a u o (t) = sign(αsin(ωt + β)). Wnioski z równania sterowania minimalnoczasowego: Sterowanie minimalnoczasowe oscylatora idealnego przyjmuje wartości +1 lub 1 (jest typu bang-bang). Czas sta lości sterowania minimalnoczasowego na poziomie +1 lub 1 nie może być d luższy niż π/ω jednostek czasu (okres drgań badanego oscylatora wynosi π/ω, a czas przebiegu po lowy okrȩgu wynosi π/ω). Tylko pierwszy i ostatni przedzia l sta lości sterowania może być mniejszy od π/ω, a wszystkie pośrednie przedzia ly (jeśli wszystkich przedzia lów sta lości sterowania jest wiȩcej niż dwa) musz a być równe π/ω. Liczba prze l aczeń sterowania minimalnoczasowego może nieograniczenie narastać wraz ze wzrostem czȩstotliwości sterowania. 10

11 Kszta lt trajektorii stanu oscylatora idealnego ze sterowaniem u = +1: ẋ 1 (t) = ωx (t), ẋ (t) = ωx 1 (t) + 1 ẍ 1 (t) = ω x 1 (t) + ω x 1 (t) = 1/ω + c 1 cos ωt + (c /ω)sin ωt, x (t) = c 1 ωsin ωt + c cos ωt x 10 = c 1 + 1/ω; x 0 = c ω x 1 (t) = 1/ω + (x 10 1/ω)cos ωt + x 0 sin ωt, x (t) = (x 10 1/ω)sin ωt + x 0 cos ωt ωx 1 (t) 1 = (ωx 10 1)cos ωt + ωx 0 sin ωt, ωx (t) = (ωx 1 (t) 1)sin ωt + ωx 0 cos ωt. Na tej podstawie ustalamy zwi azek miȩdzy zmiennymi x 1 (t) i x (t) podnosz ac do kwadratu ostatnie zależności (ωx 1 1) + (ωx ) = (ωx 10 1) + (ωx 0 ). Stosuj ac analogiczne przekszta lcenia uzyskujemy dla sterowania u = 1 (ωx 1 + 1) + (ωx ) = (ωx 10 1) + (ωx 0 ). Tak wiȩc trajektorie stanu oscylatora idealnego s a, we wspó lrzȩdnych (ωx 1, ωx ), okrȩgami o środku (1, 0) dla sterowania u = +1 i okrȩgami o środku ( 1, 0) dla sterowania u = 1. Promień okrȩgu jest równy ρ = ((ωx10 1) + (ωx 0 ) ). 11

12 ωx ωx 1 ωx ωx 1 1

13 Przyk lad: minimalnoczasowe sprowadzanie oscylatora z t lumieniem w lasnym do po lożenia równowagi. ściana podstawowa amortyzator sprȩżynowy Obiekt sterowania M si la stabilizuj aca t lumik Uk lad o charakterze oscylatora z t lumieniem w lasnym jest opisywany równaniami stanu ẋ 1 (t) = x (t), ẋ (t) = x 1 (t) ξx (t) + u(t), t [0, t 1 ], z warunkami granicznymi x i (0) = x i0, x i (t 1 ), i = 1, i z ograniczeniami chwilowymi sterowania u(t) 1, gdzie ξ (0, 1) jest wspó lczynnikiem t lumienia oscylatora. Dla celów analizy w lasności matematycznych modelu uk ladu dokonujemy symetryzacji równań stanu wprowadzaj ac nowe wspó lrzȩdne stanu za pomoc a przekszta lcenia ( x 1 x ) = ξ 1 ξ ξ 1 ( z 1 z ) czyli ( z 1 z ) = ( ) ( 1 ξ 0 ξ 1 x 1 x ) 13

14 Równania stanu w nowych wspó lrzȩdnych przybior a postać ( ) ( ) ( ) ż 1 (t) 1 ξ = ż (t) ξ 1 1 ξ ξ 1 ξ ξ 1 ( ) ( ) z 1 (t) 0 + u(t) z (t) 1 czyli ( ) ( ) ( ) ( ) ż 1 (t) ξ 1 ξ = ż (t) z 1 (t) 0 + u(t). 1 ξ ξ z (t) 1 Zadanie minimalnoczasowego sterowania dla oscylatora z t lumieniem w lasnym w nowych wspó lrzȩdnych stanu przybierze postać: zminimalizować wskaźnik jakości G(z, u) = t1 uwzglȩdniaj ac ograniczenia w postaci przekszta lconych równań stanu 0 dt ż(t) = Az(t) + Bu(t), t [0, t 1 ], z(0) = z 0, z(t 1 ) = z 1 oraz w postaci maksymalnej dopuszczalnej amplitudy sterowania u(t) 1, t [0, t 1 ], gdzie ( ) ( ) ξ 1 ξ A = 0, B = u(t). 1 ξ ξ 1 Zapisujemy zmodyfikowany funkcjona l Lagrange a G(z, λ, u) = t1 0 oraz równania Eulera-Lagrange a ( 1 + λ T (t)(ż(t) Az(t) Bu(t)) + K(u(t)) ) dt λ(t) = A T λ(t), ż(t) = Az(t) + Bu(t), K u (u(t)) = λ T (t)b, gdzie ( A T ξ = 1 ξ ) 1 ξ ξ 14

15 Z równania optymalnego sterowania wynika, że u o (t) = sign(λ (t)). W zwi azku z tym analizujemy rozwi azanie równań sprzȩżonych przyjmuj acych w zapisie skalarnym postać λ 1 (t) = ξλ 1 (t) + 1 ξ λ (t), λ (t) = 1 ξ λ 1 (t) + ξλ (t). Wyznaczamy rozwi azanie uk ladu równań sprzȩżonych jako uk ladu stacjonarnych jednorodnych równań różniczkowych λ 1 (t) = C 1 e ξt sin( 1 ξ t + C, λ (t) = C 1 e ξt cos( 1 ξ t + C. Tak wiȩc sterowanie minimalnoczasowe określone jest przez znak funkcji typu cosαt (modulowanej przez eksponentȩ) u o (t) = sign(c 1 e ξt cos( 1 ξ t + C ). Wynika st ad, że sterowanie minimalnoczasowe dla oscylatora z t lumieniem w lasnym przyjmuje wartości +1 lub -1 i zachowuje sta l awartość nie d lużej niż π 1 ξ jednostek czasu. Aby określić krzyw a prze l aczeń sterowania minimalnoczasowego zapisujemy równania stanu dla u(t) = ±1: i ich rozwi azanie dla u o = +1 ż 1 (t) = ξz 1 (t) + 1 ξ z (t), ż (t) = ξz 1 (t) ξz (t) ± 1. oraz dla u o = 1 z 1 (t) = 1 ξ + C 1 e ξt cos( 1 ξ t + C ), z (t) = ξ C 1 e ξt sin( 1 ξ t + C ) z 1 (t) = 1 ξ + C 1 e ξt cos( 1 ξ t + C ), 15

16 z (t) = ξ C 1 e ξt sin( 1 ξ t + C ). Wprowadzaj ac wspó lrzȩdna biegunowe uzyskujemy dla u o = +1 ρ(t). = C 1 e ξt, ϕ(t). = 1 ξ t C z 1 (t) 1 ξ = ρ(t)cos ϕ(t), z (t) ξ = ρ(t)sin ϕ(t). Trajektoria stanu opisywana tymi równaniami jest spiral a logarytmiczn a o środku ( 1 ξ, ξ). Natomiast dla u o = 1 uzyskujemy z 1 (t) + 1 ξ = ρ(t)cos ϕ(t), z (t) + ξ = ρ(t)sin ϕ(t). Trajektoria stanu opisywana tymi równaniami jest spiral a logarytmiczn a o środku ( 1 ξ, ξ). Po lowa zwoju każdej ze wskazanych spirali odpowiada π 1 ξ jednostkom czasu. Pierwsze dwa kawa lki krzywej prze l aczeń określone s a spiralami przechodz acymi przez pocz atek uk ladu wspó lrzȩdnych. Kolejne kawa lki krzywej prze l aczeń określane s a przez osi aganie tych pierwszych kawa lków za pomoc a po lowy zwoju spirali jako przebiegu trajektorii stanu uk ladu odpowiadaj acego π 1 ξ jednostkom czasu. Każdemu stanowi pocz atkowemu po lożonemu nad krzyw a prze l aczeń odpowiada sterowanie optymalne u o = 1, a pod krzyw a - sterowanie optymalne u o =

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego

Bardziej szczegółowo

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego

Bardziej szczegółowo

Wprowadzenie do metod sterowania optymalnego

Wprowadzenie do metod sterowania optymalnego Wprowadzenie do metod sterowania optymalnego Pojȩcie procesu sterowania obejmuje zestaw trajektorii stanu i sterowania (x, u) X U, gdzie X jest przestrzeni a trajektorii stanu, a U jest przestrzeni a sterowania.

Bardziej szczegółowo

Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina.

Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Podstawowy problem sterowania optymalnego dla uk ladów nieliniowych W podstawowym problemie sterowania optymalnego minimalizacji

Bardziej szczegółowo

Sterowalność liniowych uk ladów sterowania

Sterowalność liniowych uk ladów sterowania Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,

Bardziej szczegółowo

Liniowe uk lady sterowania.

Liniowe uk lady sterowania. Liniowe uk lady sterowania Rozwi azywanie liniowych rownań stanu Uk lady z czasem ci ag lym Liniowe stacjonarne równania stanu Przyk lad: Uk lad sterowania tarcz a obrotow a prȩt sprȩżysty tarcza obrotowa

Bardziej szczegółowo

Wprowadzenie do teorii sterowania

Wprowadzenie do teorii sterowania Wprowadzenie do teorii sterowania Literatura podstawowa T. Kaczorek i inni, Podstawy teorii sterowania, WNT, Warszawa 2005. T. Kaczorek, Teoria sterowania i systemów, PWN, Warszawa 1996. T. Kaczorek, Teoria

Bardziej szczegółowo

Stabilność liniowych uk ladów sterowania

Stabilność liniowych uk ladów sterowania Stabilność liniowych uk ladów sterowania Stabilność uk ladów z czasem ci ag lym W teorii stabilności uk ladów sterowania badamy wrażliwość trajektorii stanu na zaburzenia stanu pocz atkowego. Interesuje

Bardziej szczegółowo

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

Synteza optymalnego regulatora stanu. Uk lady z czasem ci ag lym.

Synteza optymalnego regulatora stanu. Uk lady z czasem ci ag lym. Synteza optymalnego regulatora stanu. Uk lady z czasem ci ag lym. Po wyznaczeniu optymalnego nominalnego) procesu sterowania x o, u o nasuwa siȩ kwestia podtrzymywania tego procesu w warunkach ma lych

Bardziej szczegółowo

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne

Bardziej szczegółowo

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji

Bardziej szczegółowo

Ekonomia matematyczna i dynamiczna optymalizacja

Ekonomia matematyczna i dynamiczna optymalizacja Ekonomia matematyczna i dynamiczna optymalizacja Ramy wyk ladu i podstawowe narz edzia matematyczne SGH Semestr letni 2012-13 Uk lady dynamiczne Rozwiazanie modelu dynamicznego bardzo czesto można zapisać

Bardziej szczegółowo

Sterowanie optymalne

Sterowanie optymalne Sterowanie optymalne Sterowanie Procesami Ciągłymi 2017 Optymalizacja statyczna funkcji Funkcja celu/kryterialna/kosztów Ograniczenie Q(x) min x x = arg min Q(x) x x X, gdzie X zbiór rozwiązań dopuszczalnych

Bardziej szczegółowo

liniowych uk ladów sterowania

liniowych uk ladów sterowania Sterowalność i obserwowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t),

Bardziej szczegółowo

Po wprowadzeniu zmiennych uzupe lniaj acych otrzymamy równoważny mu problem w postaci kanonicznej:

Po wprowadzeniu zmiennych uzupe lniaj acych otrzymamy równoważny mu problem w postaci kanonicznej: ROZDZIA L Metoda sympleksowa Motto: Matematyka nie może wype lnić życia ale jej nieznajomość już niejednemu je wype lni la H Steinhaus Tablica sympleksowa Rozważmy ZPL w postaci klasycznej maksymalizować

Bardziej szczegółowo

CHEMIA KWANTOWA MONIKA MUSIA L. Ćwiczenia. mm

CHEMIA KWANTOWA MONIKA MUSIA L. Ćwiczenia.   mm CHEMIA KWANTOWA MONIKA MUSIA L Ćwiczenia METODY PRZYBLIŻONE ROZWIA ZYWANIA RÓWNANIA SCHRÖDINGERA METODA WARIACYJNA metoda wariacyjna ĤΨ n = E n Ψ n Ψ n ortonormalne Szukamy rozwi azań dla stanu podstawowego,

Bardziej szczegółowo

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc Liczby zespolone, liniowa zależność i bazy Javier de Lucas Ćwiczenie. Dowieść, że jeśli µ := c d d c, to homografia h(x) = (ax+b)/(cx+d), a, b, c, d C, ad bc, odwzorowuje oś rzeczywist a R C na okr ag

Bardziej szczegółowo

Metody kierunków poprawy dla nieliniowych problemów sterowania optymalnego

Metody kierunków poprawy dla nieliniowych problemów sterowania optymalnego Metody kierunków poprawy dla nieliniowych problemów sterowania optymalnego Problem optymalnego sterowania procesem dynamicznym może polegać na polega na minimalizacji wskaźnika jakości obejmuj acego koszty

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych 8 Pochodna kierunkowa funkcji Definicja Niech funkcja f określona bȩdzie w otoczeniu punktu P 0 = (x 0, y 0 ) oraz niech v = [v x, v y ] bȩdzie wektorem. Pochodn a kierunkow a funkcji

Bardziej szczegółowo

Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeń suma prosta przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1 W zależności od wartości parametru p podaj wymiar przestrzeni W = v 1 v v 3 gdzie p 0 v 1 = 1 + p 3 v = 5 3

Bardziej szczegółowo

Równania różniczkowe cz astkowe rzȩdu pierwszego

Równania różniczkowe cz astkowe rzȩdu pierwszego Równania różniczkowe cz astkowe rzȩd pierwszego 1 Równania liniowe jednorodne Rozważmy równanie a 1 ( 1,..., n ) 1 +... + a n ( 1,..., n ) n = 0, (1) gdzie a i, i = 1,..., n s a dane, a fnkcja = ( 1,...,

Bardziej szczegółowo

na p laszczyźnie kartezjaṅskiej prowadzimy prost a o rȯwnaniu s 1. (1.1) s 0 + t 1 t 0

na p laszczyźnie kartezjaṅskiej prowadzimy prost a o rȯwnaniu s 1. (1.1) s 0 + t 1 t 0 Chapter 1 Interpolacja 1.1 Interpolacja liniowa Zacznijmy opis pojȩcia inter-polacji od prostego przyk ladu. Przyk lad 1.1 Oblicz ile kilometrȯw przejecha l samochȯd po 3 godzinach jazdy, jeżeli po jednej

Bardziej szczegółowo

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA Ćwiczenia Zwi azki organiczne zawieraj ace uk lady π-elektronowe Sprzȩżony uk lad wi azań podwójnych: -C=C-C=C-C=C-C=C- Skumulowany uk lad wi azań podwójnych:

Bardziej szczegółowo

Wprowadzenie do teorii sterowania. Procesy sterowania o parametrach skupionych.

Wprowadzenie do teorii sterowania. Procesy sterowania o parametrach skupionych. Dr hab. inż. Krystyn Styczeń, prof. PWr Wprowadzenie do teorii sterowania. Procesy sterowania o parametrach skupionych. http://staff.iiar.pwr.wroc.pl/krystyn.styczen/ http://krystyn.styczen.staff.iiar.pwr.wroc.pl/

Bardziej szczegółowo

SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA

SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 z y 0 x Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA Prof. dr. Tadeusz STYŠ Warszawa 2018 1 1 Projekt trzynasty

Bardziej szczegółowo

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila

Bardziej szczegółowo

Wprowadzenie do teorii sterowania. Procesy o parametrach skupionych

Wprowadzenie do teorii sterowania. Procesy o parametrach skupionych Politechnika Wroc lawska Wydzia l Elektroniki Katedra K8 Prof. dr hab. inż. Krystyn Styczeń http://staff.iiar.pwr.wroc.pl/krystyn.styczen/ Wprowadzenie do teorii sterowania. Procesy o parametrach skupionych

Bardziej szczegółowo

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej:

ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: A Kasperski, M Kulej Badania Operacyjne- programowanie liniowe 1 ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: max z = c 1 x 1 + c 2 x 2 + +

Bardziej szczegółowo

Wprowadzenie z dynamicznej optymalizacji

Wprowadzenie z dynamicznej optymalizacji Wprowadzenie z dynamicznej optymalizacji Lukasz Woźny 29 kwietnia 2007 Spis treści 1 Optymalizacja statyczna a optymalizacja dynamiczna 2 1.1 Ekstrema lokalne funkcji wielu zmiennych - statyka...... 2

Bardziej szczegółowo

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym. Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa

Bardziej szczegółowo

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa Sformułowanie zadania interpolacji Metody Numeryczne Wykład 4 Wykład 5 Interpolacja wielomianowa Niech D R i niech F bȩdzie pewnym zbiorem funkcji f : D R. Niech x 0, x 1,..., x n bȩdzie ustalonym zbiorem

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la?

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? Ci ag lość i norma Ćwiczenie. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? f (x, y) = x2 y 2 x 2 + y 2, f 2(x, y) = x2 y x 2 + y 2 f 3 (x, y) = x2 y

Bardziej szczegółowo

Geometria odwzorowań inżynierskich. 1. Perspektywa odbić w zwierciad lach p laskich 06F

Geometria odwzorowań inżynierskich. 1. Perspektywa odbić w zwierciad lach p laskich 06F Scriptiones Geometrica Volumen I (2014), No. 6F, 1 10. Geometria odwzorowań inżynierskich Perspektywa odbić w zwierciad lach p laskich 06F Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa

Bardziej szczegółowo

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,

Bardziej szczegółowo

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 11 1 Wektory i wartości w lasne Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V

Bardziej szczegółowo

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy

Bardziej szczegółowo

w = w i ξ i. (1) i=1 w 1 w 2 :

w = w i ξ i. (1) i=1 w 1 w 2 : S. D. G lazek, www.fuw.edu.pl/ stglazek, 11.III.2005 1 I. MACIERZ LINIOWEGO ODWZOROWANIA PRZESTRZENI WEKTOROWYCH Wyobraźmy sobie, że przestrzeń wektorowa W jest zbudowana z kombinacji liniowych n liniowo

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Asymptota pozioma: oṡ x, gdy y = 0 Asymptota pionowa: oṡ y, gdy x = 0. Hyperbola 1 x

Asymptota pozioma: oṡ x, gdy y = 0 Asymptota pionowa: oṡ y, gdy x = 0. Hyperbola 1 x 1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 Asymptota pozioma: oṡ x, gdy y = 0 Asymptota pionowa: oṡ y, gdy x = 0 2 1 0 3 1 2 x Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE

Bardziej szczegółowo

Pierwiastki arytmetyczne n a

Pierwiastki arytmetyczne n a Chapter 1 Pierwiastki arytmetyczne n a Operacja wyci aganie pierwiastka stopnia n z liczby a jest odwrotn a operacj a do potȩgowania, jeżeli operacja odwrotna jest wykonalna w liczbach rzeczywistych. Zacznijmy

Bardziej szczegółowo

Projektowanie uk ladów sterowania z wykorzystaniem ich postaci kanonicznych

Projektowanie uk ladów sterowania z wykorzystaniem ich postaci kanonicznych Projektowanie uk ladów sterowania z wykorzystaniem ich postaci kanonicznych Niech bȩdzie dany uk lad sterowania taki, że nie wszystkie jego zmienne stanu s a bezpośrednio dostȩpne (mierzalne. Uk lad pozwalaj

Bardziej szczegółowo

Monika Musia l. METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe)

Monika Musia l. METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe) Monika Musia l METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe) ĤΨ i = E i Ψ i W metodzie mieszania konfiguracji wariacyjna funkcja falowa, jest liniow a kombinacj a

Bardziej szczegółowo

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty November 20, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Znajdź równanie asymptot funkcji f jeśli: a) f(x)

Bardziej szczegółowo

Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala

Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala November 12, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Oblicz pochodne nastȩpuj

Bardziej szczegółowo

SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE.

SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE. 1 SZKO LA PODSTAWOWA HELIANTUS 0-89 WARSZAWA ul. BAŻANCIA 16 1 0 3 1 x Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE Prof. dr. Tadeusz STYŠ Warszawa 018 1 1 Projekt dziesi aty Contents

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Zasada optymalności Bellmana. Uogólniony optymalny regulator stanu.

Zasada optymalności Bellmana. Uogólniony optymalny regulator stanu. Zasada optymalności Bellmana. Uogólniony optymalny regulator stanu. Podstawowy problem sterowania optymalnego dla uk ladów nieliniowych z czasem ci ag lym W podstawowym problemie sterowania optymalnego

Bardziej szczegółowo

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

Zadania o liczbach zespolonych

Zadania o liczbach zespolonych Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i

Bardziej szczegółowo

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Niech K = R lub K = C oraz X - dowolny zbiór. Określmy dwa dzia lania: dodawanie + : X X X i mnożenie przez liczbȩ : K X X, spe lniaj ace nastȩpuj ace

Bardziej szczegółowo

Wykład z modelowania matematycznego.

Wykład z modelowania matematycznego. Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Rodzina funkcji

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,

Bardziej szczegółowo

1. Podstawowe pojęcia

1. Podstawowe pojęcia 1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany

Bardziej szczegółowo

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych [ ] e Zadanie 1 Pokazać, że X(t) = 2t cos t sin t e 2t jest specjalną macierzą fundamentalną w sin t cos t [ 2 cos chwili τ = 0 układu

Bardziej szczegółowo

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie

Bardziej szczegółowo

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - matematyczne modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Niezb. ednik matematyczny. Niezb. ednik matematyczny

Niezb. ednik matematyczny. Niezb. ednik matematyczny Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )

Bardziej szczegółowo

P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja

P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja 19. O ca lkach pierwszych W paragrafie 6 przy badaniu rozwia zań równania P (x, y) + Q(x, y)y = 0 wprowadzono poje cie ca lki równania, podano pewne kryteria na wyznaczanie ca lek równania. Znajomość ca

Bardziej szczegółowo

II. Równania autonomiczne. 1. Podstawowe pojęcia.

II. Równania autonomiczne. 1. Podstawowe pojęcia. II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

Inżynieria Systemów Dynamicznych (4)

Inżynieria Systemów Dynamicznych (4) Inżynieria Systemów Dynamicznych (4) liniowych (układów) Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 2 WE OKREŚLO 3 ASYMPTO 4 DYNAMICZ

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka

Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka Niesimpleksowe metody rozwia zywania zadań PL Seminarium Szkoleniowe Metoda Simplex: wady i zalety Algorytm SIMPLEX jest szeroko znany i stosowany do rozwi azywania zadań programowania liniowego w praktyce.

Bardziej szczegółowo

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n 123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia

Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia Matematyka A, klasówka, 4 maja 5 Na prośbe jednej ze studentek podaje zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le dów Podać definicje wektora w lasnego i wartości w lasnej

Bardziej szczegółowo

MATEMATYKA REPREZENTACJA LICZB W KOMPUTERZE

MATEMATYKA REPREZENTACJA LICZB W KOMPUTERZE 1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 B l ad bezwzglȩdny zaokr aglenia liczby ɛ = fl() B l ad wzglȩdny zaokr aglenia liczby 0 δ = fl() B l ad procentowy zaokr aglenia liczby 0

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

stosunek przyrostu funkcji y do odpowiadajacego dy dx = lim y wielkości fizycznej x, y = f(x), to pochodna dy v = ds edkości wzgl edem czasu, a = dv

stosunek przyrostu funkcji y do odpowiadajacego dy dx = lim y wielkości fizycznej x, y = f(x), to pochodna dy v = ds edkości wzgl edem czasu, a = dv Matematyka Pochodna Pochodna funkcji y = f(x) w punkcie x nazywamy granice, do której daży stosunek przyrostu funkcji y do odpowiadajacego mu przyrostu zmiennej niezaleźnej x, g przyrost zmiennej daży

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

Rozdzia l 3. Relacje binarne

Rozdzia l 3. Relacje binarne Rozdzia l 3. Relacje binarne 1. Para uporz adkowana. Produkt kartezjański dwóch zbiorów Dla pary zbiorów {x, y} zachodzi, jak latwo sprawdzić, równość {x, y} = {y, x}. To znaczy, kolejność wymienienia

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

Rys Mo liwe postacie funkcji w metodzie regula falsi

Rys Mo liwe postacie funkcji w metodzie regula falsi 5.3. Regula falsi i metoda siecznych 73 Rys. 5.1. Mo liwe postacie funkcji w metodzie regula falsi Rys. 5.2. Przypadek f (x), f (x) > w metodzie regula falsi 74 V. Równania nieliniowe i uk³ady równañ liniowych

Bardziej szczegółowo

Tematyka egzaminu z Podstaw sterowania

Tematyka egzaminu z Podstaw sterowania Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................

Bardziej szczegółowo

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r

Bardziej szczegółowo

0.1 Reprezentacja liczb w komputerze

0.1 Reprezentacja liczb w komputerze 1 0.1 Reprezentacja liczb w komputerze Zapis liczb w zmiennym przecinku. U lamki dziesiȩtne w laṡciwe i niew laṡciwe piszemy oddzielaj ac czȩṡċ ca lkowit a od czȩṡci u lamkowej w laṡciwej przecinkiem w

Bardziej szczegółowo

Geometria odwzorowań inżynierskich. Zadania 10

Geometria odwzorowań inżynierskich. Zadania 10 Scriptiones Geometrica Volumen I (2014), No. Z10, 1 12. Geometria odwzorowań inżynierskich. Zadania 10 Edwin Koźniewski Zak lad Infoemacji Przestrzennej 1. Cień sfery na p lszczyznȩ 1.1. Jeszcze o kolineacji

Bardziej szczegółowo

Rozdzia l 2. Najważniejsze typy algebr stosowane w logice

Rozdzia l 2. Najważniejsze typy algebr stosowane w logice Rozdzia l 2. Najważniejsze typy algebr stosowane w logice 1. Algebry Boole a Definicja. Kratȩ dystrybutywn a z zerem i jedynk a, w której dla każdego elementu istnieje jego uzupe lnienie nazywamy algebr

Bardziej szczegółowo

RACHUNEK OPERATOROWY MIKUSIŃSKIEGO I JEGO ZASTOSOWANIE DO RÓWNAŃ

RACHUNEK OPERATOROWY MIKUSIŃSKIEGO I JEGO ZASTOSOWANIE DO RÓWNAŃ RACHUNEK OPERATOROWY MIKUSIŃSKIEGO I JEGO ZASTOSOWANIE DO RÓWNAŃ RÓŻNICZKOWYCH Tomasz Kochanek 1 Twierdzenie Titchmarsha Symbolem C[, ) oznaczać bedziemy przestrzeń wszystkich zespolonych funkcji ciag

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Zadania 02

Geometria odwzorowań inżynierskich Zadania 02 Scriptiones Geometrica Volumen I (2007), No. Z2, 1 3. Geometria odwzorowań inżynierskich Zadania 02 1. Odwzorowania w rzucie równoleg lym. Przekroje cd. Konstrukcje p laskie 1.1. Przekszat lcenia na p

Bardziej szczegółowo

Równania różniczkowe. Notatki z wykładu.

Równania różniczkowe. Notatki z wykładu. Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo