Pochodne cz ¾astkowe i ich zastosowanie.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pochodne cz ¾astkowe i ich zastosowanie."

Transkrypt

1 Pochodne cz ¾astkowe i ich zastosowanie. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

2 Zanim przejdziemy do omawiania pochodnych funkcji wielu zmiennych musimy przez chwil ¾e zatrzymać si ¾e nad problem wyznaczania granic funkcji wielu zmiennych. W naszych rozwa zaniach ograniczymy si ¾e tylko do funkcji dwóch zmiennych, bowiem w przypadku wi ¾ekszej liczby zmiennych post ¾epuje si ¾e analogicznie. W pierwszym kroku musimy przypomnieć sobie w jaki sposób mierzy si ¾e odleg ość dwóch punktów w przestrzeni R 2 (lub ogólnie R n ). Do wyznaczania odleg ości dwóch punktów P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) od siebie wykorzystuje si ¾e zazwyczaj metryk ¾e euklidesow ¾a określon ¾a wzorem q d e (P 1, P 2 ) = (x 1 x 2 ) 2 + (y 1 y 2 ) 2. Adam Kiersztyn (KUL) Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

3 W powy zszym zdaniu istotne jest s owo zazwyczaj. Rozwa za si ¾e bowiem inne metryki wśród których nale zy wymienić mi ¾edzy innymi: metryk ¾e taksówkow ¾a (metryk ¾e miasta) d t (P 1, P 2 ) = jx 1 x 2 j + jy 1 y 2 j metryk ¾e maksimum d m (P 1, P 2 ) = max fjx 1 x 2 j, jy 1 y 2 jg Adam Kiersztyn (KUL) Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

4 metryk ¾e kolejow ¾a 8 d e (P 1, P 2 ), jeśli punkty P 1 i P 2 le z ¾a na >< jednej prostej d k (P 1, P 2 ) = przechodz ¾acej przez punkt (0, 0) d >: e (P 1, (0, 0)) + d e ((0, 0, P 2 )) jeśli punkty nie le z ¾a na jednej prostej Wszystkie te metryki maj ¾a pewn ¾a cech ¾e wspóln ¾a, a mianowicie jeśli x n! x 0 oraz y n! y 0 to d ((x n, y n ) ; (x 0, y 0 ))! 0.W zwi ¾azku z t ¾a uwag ¾a przyjmujemy nast ¾epuj ¾ac ¾a de nicj ¾e. Mówimy, ze ci ¾ag punktów P n = (x n, y n ) d ¾a zy do punktu P 0 = (x 0, y 0 ) jeśli x n! x 0 oraz y n! y 0. Adam Kiersztyn (KUL) Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

5 Powy zsze przyk ady nie wyczerpuj ¾a bardzo zbioru metryk w przestrzeni R 2. Aby lepiej zrozumieć dzia anie tych metryk zobaczmy jak wygl ¾adaj ¾a w tych metrykach kule (tzn. ko a) o środkach powiedzmy w punktach (0, 0) oraz (2, 3) i promieniach 2 oraz 5. Przez kul ¾e domkni ¾et ¾a o środku w punkcie (x 0, y 0 ) i promieniu rozumiemy zbiór punktów spe niaj ¾acych w asność (x, y) 2 R 2 : d ((x, y), (x 0, y 0 )) r. W przypadku kuli otwrtej nie równość agodna w powy zszej de nicji jest zast ¾apiona nierówności ¾a ostr ¾a. Adam Kiersztyn (KUL) Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

6 1 Rozwa zmy nast ¾epuj ¾acy przyk ad: niech P n = n, n + 1 n + 3 wspólrz ¾edna tego ci ¾agu d ¾a zy do 0, zaś druga do 1, bowiem St ¾ad P n = 1 lim n! n = 0 oraz 1 n, n + 1! (0, 1). n + 3 lim n + 1 n! n + 3 = 1.. Pierwsza Adam Kiersztyn (KUL) Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

7 Dysponuj ¾ac ju z poj ¾eciem zbie zności punktów w przestrzeni R n mo zemy przejść do badania granicy funkcji dwóch zmiennych. Libzb ¾e g nazywamy granic ¾a funkcji f : R 2! R w punkcie (x 0, y 0 ), je zeli dla ka zdego ci ¾agu punktów (x n, y n ) takich, ze (x n, y n ) 2 D, (x 0, y 0 ) 6= (x n, y n )! (x 0, y 0 ) odpowiadaj ¾acy mu ci ¾ag wartości funkcji f (x n, y n ) jest zbie zny do g, co zapisujemy lim (x n,y n )!(x 0,y 0 ) f (x n, y n ) = g. Dla przyk adu zbadajmy 3x + 2y lim x!1 x + 5y = = 5 6 y!2 Adam Kiersztyn (KUL) Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

8 W tym miejscu granic ¾e jest bardzo atwo wyznaczyć poniewa z w punkcie (1, 2) funkcja jest dobrze określona i jako granic ¾e nale zy obrać jej wartość. Zastanówmy co si ¾e stanie z t ¾a sam ¾a funkcj ¾a w punkcie (0, 0). Punkt ten nie nale zy do naturalnej dziedziny naszej funkcji w zwi ¾azku z tym nie wystarczy obliczyć wartości funkcji w tym punkcie. Obierzmy ci ¾ag punktów (x n, y n )! (0, 0) i przyjmijmy, ze x n = 0, zaś y n = 1 n. Jest oczywiste, ze ci ¾ag 0, 1 n! (0, 0) oraz, ze dla ka zdego n 1 punkt 0, 1 n 6= (0, 0). Dla danego ci ¾agu punktów obliczmy granic ¾e funkcji wstawiaj ¾ac zamiast x = 0, y = 1 n. Mamy wówczas n lim n! n = lim n! 2 n 5 n 2 = lim n! n n 5 = 2 5. Adam Kiersztyn (KUL) Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

9 Niech teraz x n = 1 n zaś y n = 0. W tym przypadku ci ¾ag punktów równie z d ¾a zy do punktu (0, 0) natomiast granica wynosi 3 1 n lim n! 1 n = lim n! n 3 n 1 n = 3. W tym przypadku wybór ci ¾agu punktów ma znaczenie przy obliczaniu granicy w zwi ¾azku z tym granica funkcji f (x, y) = 3x + 2y x + 5y w punkcie (0, 0) nie istnieje. Adam Kiersztyn (KUL) Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

10 Mówimy, ze funkcja f (x, y) jest ci ¾ag a w punkcie P 0 = (x 0, y 0 ) 2 D je zeli ma granic ¾e w punkcie (x 0, y 0 ), która jest równa wartości funkcji w tym punkcie, tzn lim (x,y )!(x 0,y 0 ) f (x, y) = f (x 0, y 0 ). Otoczeniem punktu P 0 = (x 0, y 0 ) o promieniu R > 0 nazywamy zbiór punktów p aszczyzny, których wspó rz ¾edne (x, y) spe niaj ¾a nierówność (x x 0 ) 2 + (y y 0 ) 2 < R 2. Adam Kiersztyn (KUL) Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

11 Niech f b ¾edzie funkcj ¾a określon ¾a w pewnym otoczeniu punktu (x 0, y 0 ).Je zeli we wzorze f (x, y) jednej zmiennej przypiszemy konkretn ¾awartość liczbow ¾a, np. w miejsce y wstawimy liczb ¾e y 0, to otrzymamy funkcj ¾e jednej zmiennej f (x, y 0 ). Jeśli tak utworzona funkcja ma pochodn ¾a w punkcie x 0, tzn. je zeli istniej granica f (x 0 + x, y 0 ) f (x 0, y 0 ) lim x!0 x to nazywamy j ¾a pochodn ¾a cz ¾astkow ¾a pierwszego rz ¾edu funkcji f (x, y) wzgl ¾edem zmiennej x w punkcie (x 0, y 0 ) i oznaczamy f x lub f 0 x. Adam Kiersztyn (KUL) Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

12 Pochodn ¾a cz ¾astkow ¾a funkcji f (x, y) wzgl ¾edem zmiennej y w punkcie (x 0, y 0 ) de niujemy analogicznie f (x 0, y 0 + y) f (x 0, y 0 ) lim y!0 y i oznaczamy f y lub f 0 y. Adam Kiersztyn (KUL) Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

13 Podobnie jak w przypadku funkcji jednej zmiennej mozna badać pochodne wy zszych rz ¾edów. Pochodne cz ¾astkowe pochodnych f x, f y nazywamy pochodnymi cz ¾astkowymi drugiego rz ¾edu i oznaczamy f = 2 f x x x 2 = f xx 00 f y y f x y y f x = 2 f y 2 = f 00 yy = 2 f x y = f 00 xy = 2 f y x = f 00 yx Pierwsze dwie z nich określa si ¾a mianem pochodnych jednorodnych, zaś dwie ostatnie mianem pochodnych mieszanych drugiego rz ¾edu. Ponadto zachodz nast ¾epuj ¾ace twierdzenie. Adam Kiersztyn (KUL) Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

14 Theorem (Schwarza) Je zeli funkcja f (x, y) ma w pewnym obszarze D ciag e ¾ pochodne mieszane rzedu ¾ drugiego, to pochodne te sa¾ sobie równe w ka zdym punkcie (x, y) 2 D. 2 f x y = 2 f y x Adam Kiersztyn (KUL) Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

15 Pochodne cz ¾astkowe pierwszego rz ¾edu tworz ¾a wektor zwany gradientem. Zaś pochodne cz ¾astkowe drugiego rz ¾edu tworz ¾a macierz kwadratow ¾a zwan ¾a Hesjanem. Macierz ta z uwagi na powy zsze twierdzenie w przypadku ci ¾ag ych pochodnych drugiego rz ¾edu w otoczeniu pewnego punktu jest macierz ¾a symetryczn ¾a. Dla przyk adu rozwa zmy funkcj ¾e f (x, y) = e x +y + x 2 + y 3 + 5x 2 y 3. Dla tej funkcji wyznaczmy (na tablicy) gradient oraz Hesjan. Jako utrwalenie przeanalizujmy jeszcze jeden przyk ad. Adam Kiersztyn (KUL) Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

16 Dla przyk adu rozwa zmy funkcj ¾e f (x, y) = x 2 + 4xy + 7y 3 2x 2 y 2. Obliczmy dla niej wszystkie pochodne cz ¾astkowe pierwszego i drugiego rz ¾edu. Mamy wówczas f x = 2x + 4y + 0 4xy 2 traktujemy w powy zszym wzorze y jako pewn ¾a sta ¾a. W analogiczny sposób wyznaczamy f y = 0 + 4x + 21y 2 4x 2 y. Adam Kiersztyn (KUL) Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

17 W nast ¾epnym kroku obliczmy pochodne cz ¾astkowe drugiego rz ¾edu. Najpierw pochodn ¾a jednorodn ¾a po xx, tzn. nast ¾epnie dwa razy po y,tj. 2 f x 2 = 2x + 4y 4xy 2 0 x = 2 4y 2 2 f y 2 = 4x + 21y 2 4x 2 y 0 y = 42y 4x 2. Nast ¾epnie obliczmy pochodne mieszane2 oraz 2 f y x = 4x + 21y 2 4x 2 y 0 x = 4 2 f x y = 2x + 4y 4xy 2 0 y = 4 8xy 8xy. Na tym obrazowym przyk ¾adzie widzimy, ze twierdzenie Schwarza pozwla nam zminejszyć nieco ilość obliczeń. Adam Kiersztyn (KUL) Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

18 Dzi ¾ekuj ¾e za uwag ¾e Adam Kiersztyn (KUL) Pochodne cz ¾astkowe i ich zastosowanie. maj / 18

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy

Bardziej szczegółowo

Ekstrema funkcji wielu zmiennych.

Ekstrema funkcji wielu zmiennych. Ekstrema funkcji wielu zmiennych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Ekstrema funkcji wielu zmiennych. kwiecień 2013 1 / 13 Niech dana b ¾edzie funkcja f (x, y) określona w pewnym otoczeniu punktu

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Je zeli ka zdemu punktowi P o wspó rzednych x; y) z pewnego obszaru D na p aszczyźnie R 2 przyporzadkujemy w sposób jednoznaczny liczb e rzeczywista z, to przyporzadkowanie to nazywamy

Bardziej szczegółowo

Wyznaczniki, macierz odwrotna, równania macierzowe

Wyznaczniki, macierz odwrotna, równania macierzowe Wyznaczniki, macierz odwrotna, równania macierzowe Adam Kiersztyn Katolicki Uniwersytet Lubelski Jana Paw a II Lublin 013 Adam Kiersztyn (KUL) Wyznaczniki, macierz odwrotna, równania macierzowe marzec

Bardziej szczegółowo

Wprowadzenie do równań ró znicowych i ró zniczkowych.

Wprowadzenie do równań ró znicowych i ró zniczkowych. Wprowadzenie do równań ró znicowych i ró zniczkowych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Wprowadzenie do równań ró znicowych i ró zniczkowych. maj 2013 1 / 11 Przyjmijmy nast ¾epuj ¾ace oznaczenia:

Bardziej szczegółowo

1 Rozk ad normalny. Szczególnym przypadkiem jest standardowy rozk ad normalny N (0; 1), wartości

1 Rozk ad normalny. Szczególnym przypadkiem jest standardowy rozk ad normalny N (0; 1), wartości Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Podstawy statystyki matematycznej Adam Kiersztyn 2 godziny lekcyjne 2011-10-23 8.20-9.50 1 Rozk ad normalny Jednym z najwa

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych 13 Zbiory w przestrzeni Definicja Przestrzeni a trójwymiarow a (przestrzeni a) nazywamy zbiór wszystkich trójek uporz adkowanych (x y z) gdzie x y z R. Przestrzeń tȩ oznaczamy symbolem

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Zbiory na p laszczyźnie Przestrzeni a dwuwymiarow a (p laszczyzn a) nazywamy zbiór wszystkich par uporz adkowanych (x, y), gdzie x, y R. Przestrzeń tȩ oznaczamy symbolem R 2 : R

Bardziej szczegółowo

1 Praktyczne metody wyznaczania podstawowych miar bez zastosowania komputerów

1 Praktyczne metody wyznaczania podstawowych miar bez zastosowania komputerów Kurs w zakresie zaawansowanych metod komputerowej analizy danych Podstawy statystycznej analizy danych 8.03.014 - godziny ćwiczeń autor: Adam Kiersztyn 1 Praktyczne metody wyznaczania podstawowych miar

Bardziej szczegółowo

1 Praktyczne metody wyznaczania podstawowych miar przy zastosowaniu programu EXCEL

1 Praktyczne metody wyznaczania podstawowych miar przy zastosowaniu programu EXCEL Kurs w zakresie zaawansowanych metod komputerowej analizy danych Podstawy statystycznej analizy danych 9.03.2014-3 godziny ćwiczeń autor: Adam Kiersztyn 1 Praktyczne metody wyznaczania podstawowych miar

Bardziej szczegółowo

1 Miary asymetrii i koncentracji

1 Miary asymetrii i koncentracji Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Podstawy statystyki opisowej Adam Kiersztyn 3 godziny lekcyjne 2011-10-22 10.10-12.30 1 Miary asymetrii i koncentracji

Bardziej szczegółowo

Równania ró znicowe wg A. Ostoja - Ostaszewski "Matematyka w ekonomii. Modele i metody".

Równania ró znicowe wg A. Ostoja - Ostaszewski Matematyka w ekonomii. Modele i metody. Równania ró znicowe wg A. Ostoja - Ostaszewski "Matematyka w ekonomii. Modele i metody". Przyk ad. Za ó zmy, ze w chwili t = 0 populacja liczy P 0 osób. Roczny wskaźnik urodzeń wynosi b = 00, a roczna

Bardziej szczegółowo

1 Rekodowanie w podgrupach i obliczanie wartości w podgrupach

1 Rekodowanie w podgrupach i obliczanie wartości w podgrupach 1 Rekodowanie w podgrupach i obliczanie wartości w podgrupach Czasami chcemy rekodować jedynie cz ¾eść danych zawartych w pewnym zbiorze. W takim przypadku stosujemy rekodowanie z zastosowaniem warunku

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych 8 Pochodna kierunkowa funkcji Definicja Niech funkcja f określona bȩdzie w otoczeniu punktu P 0 = (x 0, y 0 ) oraz niech v = [v x, v y ] bȩdzie wektorem. Pochodn a kierunkow a funkcji

Bardziej szczegółowo

Wyk ad II. Stacjonarne szeregi czasowe.

Wyk ad II. Stacjonarne szeregi czasowe. Wyk ad II. Stacjonarne szeregi czasowe. W wi ekszości przypadków poszukiwanie modelu, który dok adnie by opisywa zachowanie sk adnika losowego " t, polega na analizie pewnej klasy losowych ciagów czasowych

Bardziej szczegółowo

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym. Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa

Bardziej szczegółowo

Matematyka II. De nicje, twierdzenia 21 czerwca 2011

Matematyka II. De nicje, twierdzenia 21 czerwca 2011 Matematyka II De nicje, twierdzenia 2 czerwca 20 K. Dobrowolska, W. Dyczka, H. Jakuszenkow, Matematyka dla studentów studiów technicznych, cz. 2, HELPMATH, ódź 2007 M. Gewert, Z. Skoczylas, Analiza matematyczna

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym

O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym Konrad Furmańczyk Katedra Zastosowań Matematyki SGGW Wis a 2010 Plan referatu 1. Modele liniowe

Bardziej szczegółowo

Normy wektorów i macierzy

Normy wektorów i macierzy Rozdzia l 3 Normy wektorów i macierzy W tym rozdziale zak ladamy, że K C. 3.1 Ogólna definicja normy Niech ψ : K m,n [0, + ) b edzie przekszta lceniem spe lniaj acym warunki: (i) A K m,n ψ(a) = 0 A = 0,

Bardziej szczegółowo

1 Wieloczynnikowa analiza wariancji

1 Wieloczynnikowa analiza wariancji Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Statystyczna analiza danych Adam Kiersztyn 5 godzin lekcyjnych 2012-02-04 13.00-17.00 1 Wieloczynnikowa analiza wariancji

Bardziej szczegółowo

Ocena ryzyka kredytowego

Ocena ryzyka kredytowego Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ocena ryzyka kredytowego (semestr letni 2013/14) 1 Informacje wst epne Celem tego rozdzia u jest powtórzenie pewnych wiadomości

Bardziej szczegółowo

1 Analiza wariancji H 1 : 1 6= 2 _ 1 6= 3 _ 1 6= 4 _ 2 6= 3 _ 2 6= 4 _ 3 6= 4

1 Analiza wariancji H 1 : 1 6= 2 _ 1 6= 3 _ 1 6= 4 _ 2 6= 3 _ 2 6= 4 _ 3 6= 4 Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Statystyczna analiza danych Adam Kiersztyn 5 godzin lekcyjnych 2012-02-04 13.00-17.00 1 Analiza wariancji Na wst¾epie zapoznamy

Bardziej szczegółowo

1 Poj ¾ecie szeregu czasowego

1 Poj ¾ecie szeregu czasowego Studia podyplomowe w zakresie przetwarzania, zarz¾adzania i statystycznej analizy danych Analiza szeregów czasowych 24.11.2013-2 godziny konwersatorium autor: Adam Kiersztyn 1 Poj ¾ecie szeregu czasowego

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

Konkurs Matematyczny, KUL, 30 marca 2012 r.

Konkurs Matematyczny, KUL, 30 marca 2012 r. Konkurs Matematyczny, KUL, 30 marca 01 r. W pustych kratkach obok liter A) B) C) D) nale zy wpisać s owo TAK lub NIE. Zadanie zostanie uznane za rozwiazane, jeśli wszystkie cztery odpowiedzi sa poprawne.

Bardziej szczegółowo

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych Zadania z analizy matematycznej - sem II Rachunek ró»niczkowy funkcji wielu zmiennych Denicja (Pochodne cz stkowe dla funkcji trzech zmiennych) Niech D R 3 b dzie obszarem oraz f : D R f = f y z) P 0 =

Bardziej szczegółowo

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la?

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? Ci ag lość i norma Ćwiczenie. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? f (x, y) = x2 y 2 x 2 + y 2, f 2(x, y) = x2 y x 2 + y 2 f 3 (x, y) = x2 y

Bardziej szczegółowo

1 Próba a populacja. Nasze rozwa zania zaczniemy od przedyskutowania podstawowych poj ¾eć statystycznych,

1 Próba a populacja. Nasze rozwa zania zaczniemy od przedyskutowania podstawowych poj ¾eć statystycznych, Kurs w zakresie zaawansowanych metod komputerowej analizy danych Podstawy statystycznej analizy danych 9.03.04 - godziny konwersatorium autor Adam Kiersztyn Próba a populacja Nasze rozwa zania zaczniemy

Bardziej szczegółowo

II semestr. Jan Kubarski

II semestr. Jan Kubarski II semestr Jan Kubarski 0. Funkcje wielu zmiennych, granice De nition 0.. Ka zd a funkcje f : A! R określona na podzbiorze A R n nazywamy funkcja n-zmiennych. Np. Funkcja f (x; y) xy jest funkcja zmiennych,

Bardziej szczegółowo

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA Metody kolejnych przybli e Twierdzenie. (Bolzano Cauchy ego) Metody kolejnych przybli e Je eli funkcja F(x) jest ci g a w przedziale domkni tym [a,b] i F(a) F(b)

Bardziej szczegółowo

ZASADA SZUFLADKOWA DIRICHLETA

ZASADA SZUFLADKOWA DIRICHLETA ZASADA SZUFLADKOWA DIRICHLETA Andrzej FRYSZKOWSKI SZCZECIN, 27 MARCA 2014 Andrzej FRYSZKOWSKI () ZASADA SZUFLADKOWA DIRICHLETA SZCZECIN, 27 MARCA 2014 1 / 25 BROSZURA OMG I (2005/2006) (opracowanie: Joanna

Bardziej szczegółowo

1 Testy statystyczne. 2 Rodzaje testów

1 Testy statystyczne. 2 Rodzaje testów 1 Testy statystyczne Podczas sprawdzania hipotez statystycznych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ na odrzuceniu hipotezy zerowej (H 0 ), gdy jest ona prawdziwa,

Bardziej szczegółowo

1 Wieloczynnikowa analiza wariancji ciag ¾ dalszy

1 Wieloczynnikowa analiza wariancji ciag ¾ dalszy Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Wielowymiarowa analiza danych Adam Kiersztyn 5 godzin lekcyjnych 2012-03-18 08.20-12.30 1 Wieloczynnikowa analiza wariancji

Bardziej szczegółowo

2.1. Ruch, gradient pr dko ci, tensor pr dko ci odkszta cenia, Ruchem cia a B nazywamy dostatecznie g adko zale ne od czasu t jego odkszta cenie

2.1. Ruch, gradient pr dko ci, tensor pr dko ci odkszta cenia, Ruchem cia a B nazywamy dostatecznie g adko zale ne od czasu t jego odkszta cenie Rozdzia 2 Ruch i kinematyka 2.. Ruch, gradient pr dko ci, tensor pr dko ci odkszta cenia, wirowo Ruchem cia a B nazywamy dostatecznie g adko zale ne od czasu t jego odkszta cenie t, tzn. B X! t (X) =x

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Bardzo silnie z poj ¾eciem populacji statystycznej zwiazane ¾ jest poj ¾ecie próby statystycznej.

Bardzo silnie z poj ¾eciem populacji statystycznej zwiazane ¾ jest poj ¾ecie próby statystycznej. Próba a populacja Nasze rozwa zania zaczniemy od przedyskutowania podstawowych poj eć statystycznych, poszczególne de nicje zostana wzbogacone o obrazowe przyk ady. Jednym z najistotniejszych poj eć jest

Bardziej szczegółowo

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y

Bardziej szczegółowo

(wymiar macierzy trójk¹tnej jest równy liczbie elementów na g³ównej przek¹tnej). Z twierdzen 1 > 0. Zatem dla zale noœci

(wymiar macierzy trójk¹tnej jest równy liczbie elementów na g³ównej przek¹tnej). Z twierdzen 1 > 0. Zatem dla zale noœci 56 Za³ó my, e twierdzenie jest prawdziwe dla macierzy dodatnio okreœlonej stopnia n 1. Macierz A dodatnio okreœlon¹ stopnia n mo na zapisaæ w postaci n 1 gdzie A n 1 oznacza macierz dodatnio okreœlon¹

Bardziej szczegółowo

Marcin Studniarski. Wyk ady z analizy portfelowej, cz ¾eść I. semestr letni 2018/19.

Marcin Studniarski. Wyk ady z analizy portfelowej, cz ¾eść I. semestr letni 2018/19. Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I semestr letni 2018/19 http://math.uni.lodz.pl/~marstud/dydaktyka.htm 1 Co to jest analiza portfelowa? Analiza portfelowa zajmuje si ¾e optymalnym

Bardziej szczegółowo

Proste Procesy Stochastyczne i ich zastosowania.

Proste Procesy Stochastyczne i ich zastosowania. Proste Procesy Stochastyczne i ich zastosowania. Pawe J. Szab owski March 27 Pawe J. Szab owski () Wyk ad 1 March 27 1 / 17 Plan wyk adu: 1-3. Wst ¾ep i preliminaria- przyk ady szeregów czasowych.. Zagadnienie

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Analiza Matematyczna 2. Ćwiczenia

Analiza Matematyczna 2. Ćwiczenia Analiza Matematyczna. Ćwiczenia Bogdan Balcerzak 4 Spis treści RACHUNEK CA KOWY JEGO ASTOSOWANA. Ca ka oznaczona................................... Geometryczne zastosowania ca ki oznaczonej....................3

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Pierwiastki aproksymatywne. niecharakterystyczne. S. Brzostowski

Pierwiastki aproksymatywne. niecharakterystyczne. S. Brzostowski 1 Pierwiastki aproksymatywne niecharakterystyczne S. Brzostowski Denicja pierwiastka aproksymatywnego. 2 2 Denicja pierwiastka aproksymatywnego. Denicja 1. R - pierscien przemienny z 1, f 2 R[Y ] - wielomian

Bardziej szczegółowo

1 Regresja liniowa cz. I

1 Regresja liniowa cz. I Regresja liniowa cz. I. Model statystyczny Model statystyczny to zbiór za o zeń. Wprowadzamy model, który mo zliwie najlepiej opisuje ineresujacy ¾ nas fragment rzeczywistość. B ¾edy modelu wynikaja¾ z

Bardziej szczegółowo

Funkcje dwóch zmiennych, pochodne cząstkowe

Funkcje dwóch zmiennych, pochodne cząstkowe Wykłady z matematyki inżynierskiej Funkcje dwóch zmiennych, pochodne cząstkowe JJ, IMiF UTP 17 f (x, y) DEFINICJA. Funkcja dwóch zmiennych określona w zbiorze D R 2, to przyporządkowanie każdemu punktowi

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x, y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0, y 0 ) Pochodn cz stkow pierwszego rz du funkcji dwóch zmiennych wzgl

Bardziej szczegółowo

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 1. Wprowadzenie. Dotąd rozważaliśmy funkcje działające z podzbioru liczb rzeczywistych w zbiór liczb rzeczywistych, zatem funkcje

Bardziej szczegółowo

AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium

AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium AM II.1 2018/2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium Normy w R n, iloczyn skalarny sprawd¹ czy dana funkcja jest norm sprawd¹, czy dany zbiór jest kul w jakiej± normie i oblicz norm wybranego

Bardziej szczegółowo

pobrano z (A1) Czas GRUDZIE

pobrano z  (A1) Czas GRUDZIE EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla

Bardziej szczegółowo

MATEMATYKA EiT. (studia drugiego stopnia, drugi semestr) 3 2i, 2i44 i i )12, (cos 15 + i sin 15 ) 15, ( p 3 i) i)17, (i 1) 9, ( 1 i

MATEMATYKA EiT. (studia drugiego stopnia, drugi semestr) 3 2i, 2i44 i i )12, (cos 15 + i sin 15 ) 15, ( p 3 i) i)17, (i 1) 9, ( 1 i MATEMATYKA EiT (studia drugiego stopnia, drugi semestr) ) Wyznaczyć Re z; Im z; jzj ; z dla z = ( + i)(3 i), ( + i)( i) + (3 5i), (+i) 3 i, i44 i 45 i 46 +3i, 47 (cos 33 + i sin 33 ), ( + p 3 i)7, (i )

Bardziej szczegółowo

1 Przygotowanie ankiety

1 Przygotowanie ankiety 1 Przygotowanie ankiety Na dzisiejszych zaj ¾eciach skupimy si ¾e na zasadach tworzenia, wprowadzania oraz wst ¾epnej analizie danych zawartych w ankietach. Za ó zmy, ze ankieta sk ada si ¾e nast¾epujacych

Bardziej szczegółowo

gdy wielomian p(x) jest podzielny bez reszty przez trójmian kwadratowy x rx q. W takim przypadku (5.10)

gdy wielomian p(x) jest podzielny bez reszty przez trójmian kwadratowy x rx q. W takim przypadku (5.10) 5.5. Wyznaczanie zer wielomianów 79 gdy wielomian p(x) jest podzielny bez reszty przez trójmian kwadratowy x rx q. W takim przypadku (5.10) gdzie stopieñ wielomianu p 1(x) jest mniejszy lub równy n, przy

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5. Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie

Bardziej szczegółowo

Twierdzenie Stolza i metryki Javier de Lucas. a n = (2n + 1) 1 4 n 5 4

Twierdzenie Stolza i metryki Javier de Lucas. a n = (2n + 1) 1 4 n 5 4 Twierdzenie Stolza i metryki Javier de Lucas Zadanie Zbadać zbieżność ci agu i znaleźć granicȩ: a n 4 + 3 4 + + (2n + ) 4 n 5 4 Rozwi azanie: Żeby obliczyć tak a granicȩ korzystamy z twierdzenia Stolza,

Bardziej szczegółowo

Wyk ady z algorytmów genetycznych Cz¾eść 2: Model algorytmu genetycznego przy dowolnej reprezentacji rozwi azań ¾

Wyk ady z algorytmów genetycznych Cz¾eść 2: Model algorytmu genetycznego przy dowolnej reprezentacji rozwi azań ¾ Wyk ady z algorytmów genetycznych Cz¾eść 2: Model algorytmu genetycznego przy dowolnej reprezentacji rozwi azań ¾ Marcin Studniarski Wydzia Matematyki i Informatyki Uniwersytetu ódzkiego Algorytm RHS i

Bardziej szczegółowo

2.Prawo zachowania masy

2.Prawo zachowania masy 2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco

Bardziej szczegółowo

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac:

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac: SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ Ewa Madalińska na podstawie prac: [1] Lukaszewicz,W. (1988) Considerations on Default Logic: An Alternative Approach. Computational Intelligence, 44[1],

Bardziej szczegółowo

w ramach Europejskiego Funduszu Spo ecznego Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I

w ramach Europejskiego Funduszu Spo ecznego Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I Prezentacja wspó nansowana przez Uni ¾e Europejsk ¾a w ramach Europejskiego Funduszu Spo ecznego Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I 1 Co to jest analiza portfelowa? Analiza portfelowa

Bardziej szczegółowo

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a

Bardziej szczegółowo

Wyk lad 3 Wyznaczniki

Wyk lad 3 Wyznaczniki 1 Określenie wyznacznika Wyk lad 3 Wyznaczniki Niech A bedzie macierza kwadratowa stopnia n > 1 i niech i, j bed a liczbami naturalnymi n Symbolem A ij oznaczać bedziemy macierz kwadratowa stopnia n 1

Bardziej szczegółowo

3. Funkcje wielu zmiennych

3. Funkcje wielu zmiennych 3 Funkcje wielu zmiennych 31 Ciagłość Zanim podamy definicję ciagłości dla funkcji wielu zmiennych wprowadzimy bardzo ogólne i abstrakcyjne pojęcie przestrzeni metrycznej Przestrzeń metryczna Metryka w

Bardziej szczegółowo

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

IV. UK ADY RÓWNAÑ LINIOWYCH

IV. UK ADY RÓWNAÑ LINIOWYCH IV. UK ADY RÓWNAÑ LINIOWYCH 4.1. Wprowadzenie Uk³ad równañ liniowych gdzie A oznacza dan¹ macierz o wymiarze n n, a b dany n-elementowy wektor, mo e byæ rozwi¹zany w skoñczonej liczbie kroków za pomoc¹

Bardziej szczegółowo

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne

Bardziej szczegółowo

Podstawowe działania w rachunku macierzowym

Podstawowe działania w rachunku macierzowym Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:

Bardziej szczegółowo

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =

Bardziej szczegółowo

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi

Bardziej szczegółowo

Teoretyczne podstawy algorytmów komputerowego modelowania procesów Markowa

Teoretyczne podstawy algorytmów komputerowego modelowania procesów Markowa Teoretyczne podstawy algorytmów komputerowego modelowania procesów Markowa Adam Kiersztyn 28 czerwca 20 Streszczenie W tej pracy przedstawimy najwa zniejsze rezultaty zawarte w przygotowywanej rozprawie

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH

OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH Strona 1 z 9 SPIS ZAJĘĆ WRAZ Z NAZWISKAMI WYKŁADOWCÓW dr hab. Mieczysław Kula Poznaj swój

Bardziej szczegółowo

Zadania. SiOD Cwiczenie 1 ;

Zadania. SiOD Cwiczenie 1 ; 1. Niech A będzie zbiorem liczb naturalnych podzielnych przez 6 B zbiorem liczb naturalnych podzielnych przez 2 C będzie zbiorem liczb naturalnych podzielnych przez 5 Wyznaczyć zbiory A B, A C, C B, A

Bardziej szczegółowo

Ocena ryzyka kredytowego

Ocena ryzyka kredytowego Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ocena ryzyka kredytowego (semestr zimowy 2017/18) Uwaga Niniejszy materia nie stanowi ca ości wyk adu i nie wystarcza do przygotowania

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach

Bardziej szczegółowo

x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n )

x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n ) *** Elementy teorii popytu *** II. Funkcja popytu konsumenta x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n ) p, x = p 1 x 1 + p 2 x 2 + + p n x n cena koszyka x Zbiór wszystkich koszyków, na jakie sta

Bardziej szczegółowo

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n GAL II 2013-2014 A. Strojnowski str.45 Wykªad 20 Denicja 20.1 Przeksztaªcenie aniczne f : H H anicznej przestrzeni euklidesowej nazywamy izometri gdy przeksztaªcenie pochodne f : T (H) T (H) jest izometri

Bardziej szczegółowo

Ogólna charakterystyka kontraktów terminowych

Ogólna charakterystyka kontraktów terminowych Jesteś tu: Bossa.pl Kurs giełdowy - Część 10 Ogólna charakterystyka kontraktów terminowych Kontrakt terminowy jest umową pomiędzy dwiema stronami, z których jedna zobowiązuje się do nabycia a druga do

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-062 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 14

Bardziej szczegółowo

Elementy cyfrowe i układy logiczne

Elementy cyfrowe i układy logiczne Elementy cyfrowe i układy logiczne Wykład Legenda Zezwolenie Dekoder, koder Demultiplekser, multiplekser 2 Operacja zezwolenia Przykład: zamodelować podsystem elektroniczny samochodu do sterowania urządzeniami:

Bardziej szczegółowo

Matematyka A kolokwium, 27 maja 2015, godz. 18:15 20:10

Matematyka A kolokwium, 27 maja 2015, godz. 18:15 20:10 Matematyka A kolokwium, 7 maja, godz 8: : Poprawiłem: godz :, 4 września r 3 p Rozwiazać x t x t xt = x t x t xt = 6 + t cos3t + 36te 3t 7e 3t Pierwiastkami równania charakterystycznego = λ λ = λ + 3λ

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Rys Mo liwe postacie funkcji w metodzie regula falsi

Rys Mo liwe postacie funkcji w metodzie regula falsi 5.3. Regula falsi i metoda siecznych 73 Rys. 5.1. Mo liwe postacie funkcji w metodzie regula falsi Rys. 5.2. Przypadek f (x), f (x) > w metodzie regula falsi 74 V. Równania nieliniowe i uk³ady równañ liniowych

Bardziej szczegółowo

Marcin Studniarski. Wyk ady z analizy portfelowej, cz ¾eść I. semestr letni 2011/12.

Marcin Studniarski. Wyk ady z analizy portfelowej, cz ¾eść I. semestr letni 2011/12. Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I semestr letni 2011/12 http://math.uni.lodz.pl/~marstud/dydaktyka.htm 1 Co to jest analiza portfelowa? Analiza portfelowa zajmuje si ¾e optymalnym

Bardziej szczegółowo

O pewnym modelu cyklu koniunkturalnego z oczekiwaniami

O pewnym modelu cyklu koniunkturalnego z oczekiwaniami O pewnym modelu cyklu koniunkturalnego z oczekiwaniami Katedra Matematyki i Ekonomii Matematycznej Szko a G ówna Handlowa w Warszawie Zakopane, 12 września 2016 Plan 1 Cel 2 Model Kaldora 3 Funkcja konsumpcji

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 16 stron (zadania

Bardziej szczegółowo

Ryzyko inwestycji nansowych

Ryzyko inwestycji nansowych Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ryzyko inwestycji nansowych (semestr letni 2015/16) 1 Koncepcje i rodzaje ryzyka 1.1 Dwie koncepcje ryzyka 1. Negatywna koncepcja

Bardziej szczegółowo

1. Rozwiązać układ równań { x 2 = 2y 1

1. Rozwiązać układ równań { x 2 = 2y 1 Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,

Bardziej szczegółowo

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję

Bardziej szczegółowo

WSTEP ¾ DO ANALIZY MATEMATYCZNEJ

WSTEP ¾ DO ANALIZY MATEMATYCZNEJ st ep do analizy matematycznej STEP DO ANALIZY MATEMATYCZNEJ Rachunek zdań, funkcja zdaniowa, kwanty katory Zad. Udowodnić nastepujace prawa rachunku zdań (tautologie): a) p _ (s q) b) p, s (s p) c) (

Bardziej szczegółowo