Wyk lad 7 Baza i wymiar przestrzeni liniowej
|
|
- Emilia Szewczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem liniowo niezależnym oraz dla każdego zbioru liniowo niezależnego Y V takiego, że X Y jest X = Y. Definicja 7.1. Każdy maksymalny liniowo niezależny podzbiór X wektorów przestrzeni liniowej V nazywamy baza tej przestrzeni. Twierdzenie 7.2. Każdy liniowo niezależny zbiór wektorów X 0 przestrzeni liniowej V można rozszerzyć do bazy X X 0 tej przestrzeni. Dowód. Niech A bedzie rodzina wszystkich podzbiorów liniowo niezależnych przestrzeni V zawierajacych zbiór X 0. Wtedy A =, bo X 0 A. Ponadto zbiór A jest cześciowo uporzadkowany przez inkluzje zbiorów. Jeżeli B jest lańcuchem w A, tzn. dla dowolnych Y, Z B jest Y Z lub Z Y, to Y 0 = Y B Y też jest zbiorem liniowo niezależnym, gdyż dla dowolnych α 1,..., α n Y 0 istnieja Y 1,..., Y n B takie, że α i Y i dla i = 1,..., n. Wtedy istnieje k n takie, że Y i Y k dla każdego i = 1,..., n, skad α 1,..., α n Y k. Ale zbiór Y k jest liniowo niezależny, wiec zbiór {α 1,..., α n } też jest liniowo niezależny. Zatem w A każdy lańcuch ma ograniczenie górne, wiec z lematu Kuratowskiego-Zorna istnieje w A element maksymalny X, który jest szukana baza przestrzeni V zawierajac a X 0. Ponieważ zbiór pusty jest liniowo niezależny, wiec z twierdzenia 7.2 mamy natychmiast nastepuj ace Twierdzenie 7.3. Każda przestrzeń liniowa posiada baz e. Twierdzenie 7.4. Niech V bedzie przestrzenia liniowa. Zbiór X V jest baza przestrzeni V wtedy i tylko wtedy, gdy X jest zbiorem liniowo niezależnym oraz V = lin(x) (tzn. X generuje V ). Dowód. Za lóżmy, że X jest baza przestrzeni V. Wówczas X jest zbiorem liniowo niezależnym. Weźmy dowolne α V i za lóżmy, że α lin(x). Wtedy z twierdzenia 6.30 wynika, że α X oraz zbiór X {α} jest liniowo niezależny. Zatem X nie jest maksymalnym zbiorem liniowo niezależnym i mamy sprzeczność. Na odwrót, za lóżmy, że zbiór X jest liniowo niezależny oraz V = lin(x). Weźmy dowolny liniowo niezależny zbiór Y V taki, że X Y. Gdyby X Y, to dla pewnego α Y by loby, że α X i zbiór X {α} Y jest liniowo niezależny. Zatem z twierdzenia 6.30 mielibyśmy, że α lin(x) = V, co prowadzi do sprzeczności. Zatem X = Y i zbiór X jest baza przestrzeni V. Przyk lad 7.5. Ponieważ zbiór {1, x, x 2,... } generuje przestrzeń R[x] i jest liniowo niezależny, wiec na mocy twierdzenia 7.4 jest on baza tej przestrzeni. 1
2 Przyk lad 7.6. Niech n N. Wówczas z twierdzenia 7.4 oraz z przyk ladów 6.16 i 6.23 wynika od razu, że zbiór {ε 1,..., ε n } jest baza przestrzeni R n. Nazywamy ja baza kanoniczna. Z twierdzeń 6.17, 7.11 i 7.16 wynika od razu nastepuj ace Twierdzenie 7.7. Niech α 1,..., α n bed a parami różnymi wektorami i niech β 1,..., β n bed a parami różnymi wektorami przestrzeni liniowej V. Za lóżmy, że uk lad wektorów (β 1,..., β n ) powstaje z uk ladu (α 1,..., α n ) przez kolejne zastosowanie skończonej liczby operacji elementarnych. Wówczas zbiór {β 1,..., β n } jest baza przestrzeni V wtedy i tylko wtedy, gdy zbiór {α 1,..., α n } jest baza tej przestrzeni. Twierdzenie 7.8. Niech α 1,..., α n bed a wektorami przestrzeni liniowej V. Wówczas każdy maksymalny (wzgledem liczby elementów) podzbiór liniowo niezależny A {α 1,..., α n } jest baza podprzestrzeni lin(α 1,..., α n ). Dowód. Niech A {α 1,..., α n } bedzie maksymalnym (wzgledem liczby elementów) podzbiorem liniowo niezależnym. Wówczas oczywiście lin(a) lin(α 1,..., α n ) = W. Niech i = 1,..., n. Jeśli α i A, to α i lin(a); jeśli zaś α i A, to z maksymalności A wynika, że zbiór A {α i } jest liniowo zależny. Zatem z twierdzenia 6.30 α i lin(a). Stad {α 1,..., α n } lin(a), czyli W lin(a) i ostatecznie lin(a) = W. Zatem z twierdzenia 7.4 zbiór A jest baza podprzestrzeni W. Twierdzenie 7.9. Niech α 1,..., α n bed a parami różnymi wektorami przestrzeni liniowej V. Wówczas zbiór {α 1,..., α n } jest baza przestrzeni V wtedy i tylko wtedy, gdy każdy wektor α V można jednoznacznie zapisać w postaci α = a 1 α a n α n dla pewnych a 1,..., a n R. Dowód. Za lóżmy, że zbiór {α 1,..., α n } jest baza przestrzeni V. Wówczas z twierdzenia 7.4 mamy, że V = lin(α 1,..., α n ) oraz zbiór {α 1,..., α n } jest liniowo niezależny. Zatem dla dowolnego α V istnieja a 1,..., a n R takie, że α = a 1 α a n α n. Jeśli b 1,..., b n R sa takie, że α = b 1 α b n α n, to a 1 α a n α n = b 1 α b n α n, czyli (a 1 b 1 ) α (a n b n ) α n = θ, wiec z liniowej niezależności zbioru {α 1,..., α n } mamy, że a i b i = 0, czyli a i = b i dla i = 1,..., n. Na odwrót, jeżeli a 1,..., a n R sa takie, że a 1 α a n α n = θ, to a 1 α a n α n = 0 α α n, skad z jednoznaczności zapisu wektora a i = 0 dla i = 1,..., n, czyli zbiór {α 1,..., α n } jest liniowo niezależny. Ponadto z za lożenia V = lin(α 1,..., α n ), wiec z twierdzenia 7.4 zbiór {α 1,..., α n } jest baza przestrzeni V. Definicja Niech {α 1,..., α n } bedzie baza przestrzeni liniowej V. Wówczas ciag (α 1,..., α n ) nazywamy baza uporzadkowan a przestrzeni V. Niech α V. Wtedy na mocy twierdzenia 7.9 istnieje dok ladnie jeden ciag (a 1,..., a n ) R n taki, że α = a 1 α a n α n. Ciag (a 1,..., a n ) nazywamy ciagiem wspó lrzednych wektora α w bazie (α 1,..., α n ), a element a i, dla każdego i = 1,..., n, nazywa sie i-ta wspó lrz edn a wektora α w tej bazie. 2
3 Wniosek Niech V bedzie przestrzenia liniowa i niech, dla pewnej liczby naturalnej n, (α 1,..., α n ) bedzie baza uporzadkowan a tej przestrzeni. Przyporzadkujmy każdemu wektorowi α V, ciag jego wspó lrzednych w bazie (α 1,..., α n ). Otrzymane w ten sposób odwzorowanie φ jest bijekcja zbioru V na zbiór R n. Przy tym φ(α i ) = ε i dla i = 1,..., n. Definicja Odwzorowanie φ określone w powyższym wniosku nazywamy uk ladem wspó lrz ednych wyznaczonym przez baze (α 1,..., α n ). 2 Wymiar przestrzeni liniowej Lemat Niech wektory α 1,..., α n tworza baze przestrzeni V i niech α = a 1 α a n α n, przy czym a j 0. Wówczas wektory α 1,..., α j 1, α, α j+1,..., α n (1) też tworza baze przestrzeni V. Dowód. Zauważmy, że wektory (1) powstaja z wektorów α 1,..., α n przez kolejne wykonanie nastepuj acych operacji elementarnych: a j w j, w j + a 1 w 1,..., w j + a j 1 w j 1, w j + a j+1 w j+1,..., w j + a n w n. Zatem na mocy twierdzenia 7.18, wektory (1) tworza baze przestrzeni V. Twierdzenie 7.14 (Steinitza o wymianie). Jeśli wektory α 1,..., α n tworza baze przestrzeni liniowej V, a wektory β 1,..., β s sa liniowo niezależne, to (i) s n oraz (ii) spośród wektorów α 1,..., α n można wybrać n s wektorów, które l acznie z wektorami β 1,..., β s tworza baze przestrzeni V. Dowód. Zastosujemy indukcje wzgledem s. Dla s = 0 teza jest oczywista. Za lóżmy, że teza zachodzi dla liczb mniejszych od pewnej liczby naturalnej s i rozpatrzmy s wektorów liniowo niezależnych β 1,..., β s. Wektory β 1,..., β s 1 sa liniowo niezależne, a wiec z za lożenia indukcyjnego s 1 n i istnieje n s+1 = n (s 1) wektorów spośród wektorów α 1,..., α n, które l acznie z β 1,..., β s 1 tworza baze przestrzeni V. Dla uproszczenia znakowania przyjmiemy, że tymi wektorami sa α 1,..., α n s+1. Wykażemy najpierw, że s 1 < n. W przeciwnym razie by loby n = s 1 (bo s 1 n), a zatem już wektory β 1,..., β s 1 tworzy lyby baze przestrzeni V, a stad wynika loby, że β s lin(β 1,..., β s 1 ), co na mocy twierdzenia 6.30 prowadzi do sprzeczności (gdyż wektory β 1,..., β s sa liniowo niezależne). Wobec tego s 1 < n, a stad s n. To dowodzi (i). Ponieważ wektory β 1,..., β s 1, α 1,..., α n s+1 tworza baze przestrzeni V, wiec β s jest ich kombinacja liniowa. Wobec liniowej niezależności wektorów β 1,..., β s i twierdzenia 6.30, w kombinacji liniowej przedstawiajacej β s, co najmniej jeden z wektorów α 1,..., α n s+1 wystepuje ze wspó lczynnikiem różnym od zera. Bez zmniejszania ogólności rozważań możemy przyjać, że a n s+1 0. Wtedy z lematu 7.13 wektory β 1,..., β s 1, α 1,..., α n s, β s tworza baze przestrzeni V, czyli wektory β 1,..., β s, α 1,..., α n s tworza baze przestrzeni V, co kończy dowód twierdzenia. 3
4 Wniosek Jeśli n-elementowy zbiór jest baza przestrzeni liniowej V, to każda baza tej przestrzeni sk lada sie z dok ladnie n wektorów. Dowód. Niech wektory α 1,..., α n tworza baze przestrzeni liniowej V. Niech X bedzie inna baza tej przestrzeni. Gdyby zbiór X mia l wiecej niż n elementów, to by lyby one liniowo niezależne i otrzymalibyśmy sprzeczność z twierdzeniem Steinitza o wymianie. Zatem X n. Ale wektory α 1,..., α n sa liniowo niezależne i zbiór skończony X jest baza przestrzeni V, wiec znowu z twierdzenia Steinitza o wymianie n X, czyli ostatecznie X = n. Definicja Liczb e elementów dowolnej skończonej bazy przestrzeni liniowej V nazywamy wymiarem przestrzeni V i oznaczamy przez dim V. W ten sposób wymiar jest określony dla wszystkich takich przestrzeni, które maja skończona baze. Jeśli dana przestrzeń liniowa V nie ma skończonej bazy, to mówimy, że jej wymiar jest nieskończony i piszemy dim V =. Można udowodnić, że wszystkie bazy dowolnej przestrzeni liniowej V maja te sama moc. Wobec tego można określić wymiar dowolnej przestrzeni liniowej V jako moc dowolnej bazy przestrzeni V. Przyk lad Ponieważ przestrzeń R n posiada baze n-elementowa (np. baze kanoniczna), wiec dim R n = n. Przyk lad Ponieważ zbiór pusty jest baza przestrzeni zerowej {θ}, wiec dim{θ} = 0. Przyk lad Ponieważ zbiór {1, x, x 2,... } jest baza przestrzeni R[x], wiec dim R[x] =. Przyk lad W przestrzeni liniowej R wektory ɛ 1 = [1, 0, 0,... ], ɛ 2 = [0, 1, 0,... ],... a liniowo niezależne. Zatem z twierdzenia Steinitza o wymianie dim R =. s Twierdzenie Jeśli przestrzeń liniowa V ma wymiar n, to każda jej podprzestrzeń W ma wymiar nie wiekszy niż n. Dowód. Niech X bedzie baza podprzestrzeni W. Wtedy zbiór X jest liniowo niezależny, wiec na mocy twierdzenia Steinitza o wymianie X n. Twierdzenie Dla dowolnej podprzestrzeni W przestrzeni liniowej V wymiaru skończonego równoważne sa warunki: (i) dim W = dim V, (ii) W = V. Dowód. (ii) (i). Oczywiste. (i) (ii). Oznaczmy n = dim V. Wtedy istnieje baza {α 1,..., α n } przestrzeni V. Ale dim W = n, wiec istnieje baza {β 1,..., β n } podprzestrzeni W. Zatem wektory β 1,..., β n sa liniowo niezależne i na mocy twierdzenia Steinitza o wymianie można je uzupe lnić do bazy przestrzeni V, n n = 0 wektorami wybranymi spośród wektorów α 1,..., α n. Zatem wektory β 1,..., β n tworza baze przestrzeni V, skad V = lin(β 1,..., β n ) = W. Z twierdzenia 7.8 wynika od razu nastepuj ace Twierdzenie Niech α 1,..., α n bed a wektorami przestrzeni liniowej V. Wówczas 4
5 dim lin(α 1,..., α n ) n. Ponadto dim lin(α 1,..., α n ) = n wtedy i tylko wtedy, gdy wektory α 1,..., α n sa liniowo niezależne. Twierdzenie Niech α 1,..., α n bed a wektorami przestrzeni liniowej V wymiaru n. Wówczas równoważne sa warunki: (i) zbiór {α 1,..., α n } jest baza przestrzeni V, (ii) zbiór {α 1,..., α n } jest liniowo niezależny, (iii) zbiór {α 1,..., α n } generuje przestrzeń V. Dowód. (i) (ii). Oczywiste. (ii) (iii). Wynika od razu z twierdzenia Steinitza o wymianie. (iii) (i). Z za lożenia wynika, że V = lin(α 1,..., α n ). Zatem dim lin(α 1,..., α n ) = n i na mocy twierdzenia 7.23 zbiór {α 1,..., α n } jest liniowo niezależny. Zatem ostatecznie ten zbiór jest baza przestrzeni V. Twierdzenie Niech V 1 i V 2 bed a skończenie wymiarowymi podprzestrzeniami przestrzeni liniowej V. Wówczas podprzestrzenie V 1 V 2 i V 1 +V 2 sa również skończenie wymiarowe i zachodzi wzór: dim(v 1 + V 2 ) = dim V 1 + dim V 2 dim(v 1 V 2 ). (2) Dowód. Ponieważ V 1 V 2 jest podprzestrzenia przestrzeni skończenie wymiarowej V 1, wiec z twierdzenia 7.21 przestrzeń V 1 V 2 jest skończenie wymiarowa. Niech {α 1,..., α k } bedzie baza przestrzeni V 1 V 2. Wtedy z twierdzenia Steinitza o wymianie ten zbiór można uzupe lnić do bazy {α 1,..., α n, β 1,..., β s } przestrzeni V 1 i można go też uzupe lnić do bazy {α 1,..., α k, γ 1,..., γ r } przestrzeni V 2. Wtedy dim(v 1 V 2 ) = k, dim V 1 = k+s i dim V 2 = k+r, wiec pozostaje wykazać, że dim(v 1 +V 2 ) = k+s+r. Ale V 1 +V 2 = lin(α 1,..., α k, β 1,..., β s )+lin(α 1,..., α k, γ 1,..., γ r ) = lin(α 1,..., α k, β 1,..., β s, γ 1,..., γ r ), wiec wystarczy wykazać, że wektory α 1,..., α k, β 1,..., β s, γ 1,..., γ r sa liniowo niezależne. W tym celu weźmy dowolne skalary a 1,..., a k, b 1,..., b s, c 1,..., c r R takie, że a 1 α a k α k + b 1 β b s β s + c 1 γ c r γ r = θ. Oznaczmy: α = a 1 α a k α k, β = b 1 β b s β s, γ = c 1 γ c r γ r. Wtedy γ = (α + β) V 1 V 2. Zatem istnieja d 1,..., d k R takie, że γ = d 1 α d k α k, skad c 1 γ c r γ r + ( d 1 ) α ( d k ) α k = θ. Zatem z liniowej niezależności wektorów α 1,..., α k, γ 1,..., γ r mamy, że c 1 =... = c r = d 1 =... = d k = 0, czyli γ = θ oraz θ = α + γ. Zatem z liniowej niezależności wektorów α 1,..., α k, β 1,..., β s otrzymamy, że a 1 =... = a k = b 1 =... = b s = 0 i ostatecznie wektory α 1,..., α k, β 1,..., β s, γ 1,..., γ r sa liniowo niezależne. Wniosek Niech V 1, V 2 bed a podprzestrzeniami przestrzeni liniowej V wymiaru n. Wtedy dim(v 1 V 2 ) dim V 1 + dim V 2 n. Dowód. Ponieważ dim(v 1 + V 2 ) n, wiec z twierdzenia 7.25 uzyskujemy, że dim V 1 + dim V 2 dim(v 1 V 2 ) n, skad mamy teze. 5
6 3 Suma prosta podprzestrzeni Lemat Niech V 1 i V 2 bed a podprzestrzeniami przestrzeni liniowej V. Nastepuj ace warunki sa równoważne: (i) V i V 2 = {θ}; (ii) Dla dowolnych α 1, β 1 V 1, α 2, β 2 V 2 z tego, że α 1 + α 2 = β 1 + β 2 wynika, że α 1 = β 1 i α 2 = β 2. Dowód. (i) (ii). Weźmy dowolne α i, β i V i dla i = 1, 2 takie, że α 1 + α 2 = β 1 + β 2. Wtedy α 1 β 1 = α 2 β 2 V 1 V 2. Ale V 1 V 2 = {θ}, wiec α 1 β 1 = α 2 β 2 = θ, skad α 1 = β 1 i α 2 = β 2. (ii) (i). Weźmy dowolne α V 1 V 2. Ponieważ α + θ = θ + α oraz α, θ V 1 i θ, α V 2, wiec α = θ i θ = α, skad V 1 V 2 = {θ}. Definicja Mówimy, że przestrzeń liniowa V jest suma prosta swoich podprzestrzeni V 1 i V 2, gdy V = V 1 +V 2 oraz spe lniony jest którykolwiek warunek (a wiec oba warunki) powyższego lematu. Piszemy wtedy V = V 1 V 2. Mówimy też, że podprzestrzeń V 2 jest dope lnieniem liniowym podprzestrzeni V 1 (w przestrzeni V ). Twierdzenie Dla dowolnej podprzestrzeni V 1 przestrzeni liniowej V istnieje podprzestrzeń W V taka, że V = V 1 W. Dowód. Z twierdzenia 7.3 podprzestrzeń V 1 posiada baze X. Zatem z twierdzenia 7.2 istnieje podzbiór Y V roz l aczny z X i taki, że zbiór X Y jest baza przestrzeni V. Ponadto V 1 = lin(x) oraz V = lin(x Y ). Niech W = lin(y ). Wtedy z twierdzenia 6.9 mamy, że lin(x Y ) = lin(x) + lin(y ), czyli V = V 1 + W. Niech α V 1 W. Wtedy istnieja α 1,..., α n X, β 1,..., β k Y, a 1,..., a n, b 1,..., b k R takie, że α = a 1 α a n α n = b 1 β b k β k, skad a 1 α a n α n + ( b 1 ) β ( b k ) β k = θ. Zatem z liniowej niezależności zbioru X Y mamy, że a 1 =... = a n = b 1 =... = b k = 0, czyli α = θ i V 1 W = {θ}. Zatem V = V 1 W. 4 Hiperp laszczyzny liniowe Definicja Niech V bedzie n-wymiarowa przestrzenia liniowa. Hiperp laszczyzna liniowa przestrzeni V nazywamy każda podprzestrzeń przestrzeni V o wymiarze n 1. Twierdzenie Niech V bedzie przestrzenia liniowa wymiaru n i niech V 1 bedzie podprzestrzenia wymiaru k. Wówczas V 1 jest cześci a wspólna n k hiperp laszczyzn liniowych przestrzeni V. Dowód. Niech {α 1,..., α k } bedzie baza podprzestrzeni V 1. Z twierdzenia Steinitza o wymianie możemy ja uzupe lnić do bazy {α 1,..., α k, α k+1,..., α n } przestrzeni V. Niech W i = lin(α 1,..., α k,..., α k+i 1, α k+i+1,..., α n ) dla i = 1,..., n k. Wówczas W 1,..., W n k sa hiperp laszczyznami zawierajacymi V 1, skad V 1 W 1... W n k. Niech α W 1... W n k. Wtedy istnieja a 1,..., a n R takie, że α = a 1 α a n α n. Dla liczb naturalnych i n k mamy, że α W i, wiec wektor α można przedstawić w postaci α = a i1 α
7 a i k+i 1 α k+i 1 +a i k+i+1 α k+i a in α n. Z jednoznaczności przedstawienia wektora α w postaci kombinacji liniowej wektorów bazy (α 1,..., α n ) wynika, że a k+i = 0 dla wszystkich i = 1,..., n k. Wobec tego α = a 1 α a k α k V 1. Zatem W 1... W n k V 1 i ostatecznie V 1 = W 1... W n k. Twierdzenie Niech l bedzie liczba naturalna. Niech V 1,..., V l bed a hiperp laszczyznami n-wymiarowej przestrzeni liniowej V. Wówczas dim(v 1... V l ) n l. Dowód. Dla l = 1 teza jest oczywiście prawdziwa. Za lóżmy, że teza zachodzi dla pewnego naturalnego l = k i niech V 1,..., V k+1 bed a hiperp laszczyznami przestrzeni V. Z za lożenia indukcyjnego wynika, że dim(v 1... V k ) n k, a z wniosku 7.26 otrzymujemy dim(v 1... V k V k+1 ) dim(v 1... V k ) + n 1 n. Zatem dim(v 1... V k V k+1 ) n k + n 1 n = n (k + 1). Z zasady indukcji wynika zatem, że nasze twierdzenie jest prawdziwe dla każdej liczby naturalnej l. Z twierdzeń 7.32 i 7.33 wynika od razu nastepuj acy Wniosek Każda k-wymiarowa podprzestrzeń W n-wymiarowej przestrzeni liniowej V daje si e przedstawić jako przeci ecie n k, ale nie mniejszej liczby hiperp laszczyzn liniowych. 5 Podprzestrzenie przestrzeni wspó lrz ednych Twierdzenie Podprzestrzeń W przestrzeni R n wyznaczona przez równanie a 1 x a n x n = 0, gdzie a 1,..., a n R i co najmniej jeden ze wspó lczynników a 1,..., a n jest różny od zera, jest hiperp laszczyzna liniowa. Dowód. Za lóżmy, że wspó lczynnik a i 0 dla pewnego i = 1,..., n. Podprzestrzeń W jest różna od R n, gdyż wektor ε i nie jest rozwiazaniem rozpatrywanego równania, a stad dim W n 1. Dla dowodu równości dim W = n 1 wystarczy wiec wskazać n 1 liniowo niezależnych rozwiazań równania a 1 x a n x n = 0. Latwo sprawdzić, że wektory ε 1 a 1 a i ε i,..., ε i 1 a i 1 a i ε i, ε i+1 a i+1 a i ε i,..., ε n an a i ε i czynia zadość temu żadaniu. Z twierdzeń 7.26 i 7.35 wynika od razu nastepuj acy Wniosek Podprzestrzeń przestrzeni R n wyznaczona przez uk lad m równań jednorodnych liniowych ma wymiar nie mniejszy niż n m. Twierdzenie Każda hiperp laszczyzna liniowa W przestrzeni liniowej R n jest wyznaczona przez pewne równanie a 1 x a n x n = 0, gdzie a 1,..., a n K. Dowód. Niech wektory α i = [a i1,..., a in ] dla i = 1,..., n 1 tworza baze hiperp laszczyzny W i niech V bedzie podprzestrzenia opisana przez uk lad równań a 11 x a 1n x n = 0 a 21 x a 2n x n = 0.. (3) a n 1 1 x a n 1 n x n = 0 7
8 Z wniosku 7.36 wynika, że dim V n (n 1) = 1, a wiec podprzestrzeń V zawiera niezerowy wektor. Niech [b 1,..., b n ] bedzie niezerowym wektorem podprzestrzeni V. Przestrzeń V 1 wyznaczona przez równanie b 1 x b n x n = 0 jest na mocy twierdzenia 7.35 hiperp laszczyzna liniowa. Ponadto z określenia wektora [b 1,..., b n ] wynika, że wektory α j dla j = 1,..., n 1 należa do hiperp laszczyzny V 1, a zatem W = lin(α 1,..., α n 1 ) V 1. Ponieważ dim W = dim V 1 = n 1, wiec z twierdzenia 7.22, W = V 1. Z twierdzenia 7.37 i z wniosku 7.34 mamy natychmiast nastepuj acy Wniosek Każda k-wymiarowa podprzestrzeń przestrzeni liniowej R n jest wyznaczona przez uk lad z lożony z n k, ale nie mniej, równań liniowych jednorodnych. 8
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
Wyk lad 6 Podprzestrzenie przestrzeni liniowych
Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)
Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego
Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,
Wyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
Układy liniowo niezależne
Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1
Wyk lad 13 Funkcjona ly dwuliniowe
1 Izomorfizmy kanoniczne Wyk lad 13 Funkcjona ly dwuliniowe Definicja 13.1. Niech V i W bed przestrzeniami liniowymi. Funkcje ξ : V W R nazywamy funkcjona lem dwuliniowym, jeżeli i a,b R α,β V γ W ξa α
Wyk lad 10 Przestrzeń przekszta lceń liniowych
Wyk lad 10 Przestrzeń przekszta lceń liniowych 1 Określenie przestrzeni przekszta lceń liniowych Niech V i W bed a przestrzeniami liniowymi Oznaczmy przez L(V ; W ) zbór wszystkich przekszta lceń liniowych
Wyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Wyk lad 11 Przekszta lcenia liniowe a macierze
Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β
Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
Wyk lad 2 Podgrupa grupy
Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.
Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.
Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa
(α + β) a = α a + β a α (a + b) = α a + α b (α β) a = α (β a). Definicja 4.1 Zbiór X z dzia laniami o wyżej wymienionych w lasnościach
Rozdzia l 4 Przestrzenie liniowe 4.1 Przestrzenie i podprzestrzenie 4.1.1 Definicja i podstawowe w lasności Niech X z dzia laniem dodawania + b edzie grupa przemienna (abelowa). Oznaczmy przez 0 element
Wyk lad 4 Warstwy, dzielniki normalne
Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b
14. Przestrzenie liniowe
14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest
Wyk lad 3 Wielomiany i u lamki proste
Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich
ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH
ALGEBRA Z GEOMETRIĄ 1/10 BAZY PRZESTRZENI WEKTOROWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 11, 18.12.2013 Typeset by Jakub Szczepanik. Istnienie bazy Tak jak wśród wszystkich pierścieni wyróżniamy
Wyk lad 14 Cia la i ich w lasności
Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
3 Przestrzenie liniowe
MIMUW 3 Przestrzenie liniowe 8 3 Przestrzenie liniowe 31 Przestrzenie liniowe Dla dowolnego ciała K, analogicznie jak to robiliśmy dla R, wprowadza się operację dodawania wektorów kolumn z K n i mnożenia
Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.
Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,
Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013
Iloczyn skalarny Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 10. wykład z algebry liniowej Warszawa, grudzień 2013 Mirosław Sobolewski (UW) Warszawa, grudzień 2013 1 / 14 Standardowy
R k v = 0}. k N. V 0 = ker R k 0
Definicja 1 Niech R End(V ). Podprzestrzeń W przestrzeni V nazywamy podprzestrzenią niezmienniczą odwzorowania R jeśli Rw W, dla każdego w W ; równoważnie: R(W ) W. Jeśli W jest różna od przestrzeni {0}
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Rozwiązania, seria 5.
Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,
Praca domowa - seria 6
Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
Kombinacje liniowe wektorów.
Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Wykład 5. Ker(f) = {v V ; f(v) = 0}
Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro
R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
Wyk lad 1 Podstawowe struktury algebraiczne
Wyk lad 1 Podstawowe struktury algebraiczne 1 Dzia lanie w zbiorze Majac dane dowolne dwa przedmioty a b możemy z nich utworzyć pare uporzadkowan a (a b) o poprzedniku a i nastepniku b. Warunek na równość
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
Analiza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera
Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas
Suma i przeciȩcie podprzestrzeń suma prosta przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1 W zależności od wartości parametru p podaj wymiar przestrzeni W = v 1 v v 3 gdzie p 0 v 1 = 1 + p 3 v = 5 3
Przestrzenie liniowe
Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie
Rozdzia l 2. Najważniejsze typy algebr stosowane w logice
Rozdzia l 2. Najważniejsze typy algebr stosowane w logice 1. Algebry Boole a Definicja. Kratȩ dystrybutywn a z zerem i jedynk a, w której dla każdego elementu istnieje jego uzupe lnienie nazywamy algebr
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
Sterowalność liniowych uk ladów sterowania
Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,
9 Przekształcenia liniowe
9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2
Przestrzeń liniowa. Algebra. Aleksander Denisiuk
Algebra Przestrzeń liniowa Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p.
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Wyk lad 5 W lasności wyznaczników. Macierz odwrotna
Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy
Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe
Grzegorz Bobiński Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2012 Spis treści Notacja 1 1 Podstawowe pojęcia
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Egzamin z algebry liniowej 2003 r.
Egzamin z algebry linioej 003 r. Cześć I na ocene dostateczna Zadanie. Wyznacz szystkie liczby zespolone z takie, że a) z = 8 + 6i, b) ( + 3i) z = i. Zadanie. Wykonaj podane dzia lania macierzoe: [ 3 0
Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas
Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,
Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka
Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa,listopad
13. Cia la. Rozszerzenia cia l.
59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:
Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Algebra i jej zastosowania ćwiczenia
Algebra i jej zastosowania ćwiczenia 13 stycznia 013 1 Reprezentacje liniowe grup skończonych 1. Pokazać, że zbiór wszystkich pierwiastków stopnia n z jedności jest grupa abelowa wzgle dem mnożenia.. Pokazać,
Przestrzenie liniowe w zadaniach
Przestrzenie linioe zadaniach Zadanie 1. Cz ektor [3, 4, 4 jest kombinacja linioa ektoró [1, 1, 1, [1, 0, 1, [1, 3, 5 przestrzeni R 3? Roziazanie. Szukam x,, z R takich, że [3, 4, 4 x [1, 1, 1 + [1, 0,
Rozdzia l 10. Najważniejsze normalne logiki modalne
Rozdzia l 10. Najważniejsze normalne logiki modalne 1. Logiki modalne normalne Definicja. Inwariantny zbiór formu l X jȩzyka modalnego L = (L,,,,, ) nazywamy logik a modaln a zbazowan a na logice klasycznej
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
1 Podobieństwo macierzy
GAL (Informatyka) Wykład - zagadnienie własne Wersja z dnia 6 lutego 2014 Paweł Bechler 1 Podobieństwo macierzy Definicja 1 Powiemy, że macierze A, B K n,n są podobne, jeżeli istnieje macierz nieosobliwa
Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej
Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej
Endomorfizmy liniowe
Endomorfizmy liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 8. wykład z algebry liniowej Warszawa, listopad 2011 Mirosław Sobolewski (UW) Warszawa, listopad 2011 1 / 16 Endomorfizmy
Pierścienie grupowe wyk lad 3. lewych podmodu lów prostych. Ogólniej, aby roz lożyć dany pierścień na sume. prosta
Pierścienie rupowe wyk lad 3 Już wiemy, że alebre rupowa CG skończonej rupy G można roz lożyć na sume lewych podmodu lów prostych Oólniej, aby roz lożyć dany pierścień na sume prosta jeo dwóch podmodu
KOLOKWIUM Z ALGEBRY I R
Instrucje: Każde zadanie jest za 4 puntów. Rozwi azanie ażdego zadania musi znajdować siȩ na osobnej artce oraz być napisane starannie i czytelnie. W nag lówu ażdego rozwi azania musz a znajdować siȩ dane
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).
Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich
Dziedziny Euklidesowe
Dziedziny Euklidesowe 1.1. Definicja. Dziedzina Euklidesowa nazywamy pare (R, v), gdzie R jest dziedzina ca lkowitości a v : R \ {0} N {0} funkcja zwana waluacja, która spe lnia naste ce warunki: 1. dla
Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc
Liczby zespolone, liniowa zależność i bazy Javier de Lucas Ćwiczenie. Dowieść, że jeśli µ := c d d c, to homografia h(x) = (ax+b)/(cx+d), a, b, c, d C, ad bc, odwzorowuje oś rzeczywist a R C na okr ag
ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY
ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
R n jako przestrzeń afiniczna
R n jako przestrzeń afiniczna Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 11. wykład z algebry liniowej Warszawa, grudzień 2014 Mirosław Sobolewski (UW) Warszawa, grudzień 2014 1
Układy równań liniowych
Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, grudzień 2011 Mirosław Sobolewski (UW) Warszawa, grudzień
Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska Wroc law Wroc law, kwiecień 2011
Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska 50-370 Wroc law Wroc law, kwiecień 2011 Analiza Funkcjonalna WPPT IIr. Wyk lady 4 i 5: Przestrzenie unitarne i Hilberta (rzeczywiste
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
1 Przestrzenie unitarne i przestrzenie Hilberta.
Przestrzenie unitarne i przestrzenie Hilberta.. Wykazać, że iloczyn skalarny w przestrzeni wektorowej X nad cia lem K ma nastepuj ace w lasności: (i) x, y + z = x, y + x, z, (ii) x, λy = λ x, y, (iii)
25 lutego 2013, godzina 23: 57 strona 1. P. Urzyczyn: Materia ly do wyk ladu z semantyki. Logika Hoare a
25 lutego 2013, godzina 23: 57 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Logika Hoare a Rozważamy najprostszy model imperatywnego jezyka programowania z jednym typem danych. Wartości tego
Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające
Przestrzenie wektorowe, liniowa niezależność wektorów, bazy przestrzeni wektorowych
Grupa, cia lo Zadanie 1. Jakie w lasności w zbiorze liczb naturalnych, ca lkowitych, wymiernych, rzeczywistych maj dzia lania a b = a b, a b = a 2 + b 2, a b = a+b, a b = b. 2 Zadanie 2. Pokazać, że (R
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
A. Strojnowski - Twierdzenie Jordana 1
A Strojnowski - Twierdzenie Jordana 1 Zadanie 1 Niech f b edzie endomorfizmem skończenie wymiarowej przestrzeni V nad cia lem charakterystyki różnej od 2 takim, że M(f) nie jest diagonalizowalna ale M(f
1 Rząd macierzy. 2 Liniowa niezależność. Algebra liniowa. V. Rząd macierzy. Baza podprzestrzeni wektorowej
1 Rząd macierzy Rozpatrzmy równanie jednorodne Ax = 0, gdzie A M(n, k). Wiemy, że posiada ono rozwiązanie. Jednakże wymiar macierzy A, a tym samym liczba równań w odpowiadającym jej układzie równań liniowych
1 Przestrzeń liniowa. α 1 x α k x k = 0
Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek
z = x + i y := e i ϕ z. cos ϕ sin ϕ = sin ϕ cos ϕ
Izometrie liniowe Przypomnijmy, że jeśli V jest przestrzenią euklidesową (skończonego wymiaru), to U End V jest izometrią wtedy i tylko wtedy, gdy U U = UU = E, to znaczy, gdy jest odwzorowaniem ortogonalnym.
Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie
Seria zadań z Algebry IIR nr 29 kwietnia 207 r Notacja: We wszystkich poniższych zadaniach K jest ciałem, V wektorow a nad K zaś jest przestrzeni a Zadanie Niechaj V = K 4 [t] Określmy podprzestrzenie
Rozdzia l 3. Elementy algebry uniwersalnej
Rozdzia l 3. Elementy algebry uniwersalnej 1. Podalgebry, homomorfizmy Definicja. Niech = B A oraz o bȩdzie n-argumentow a operacj a na zbiorze A. Mówimy, że zbiór B jest zamkniȩty na operacjȩ o, gdy dla