Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:
|
|
- Emilia Chrzanowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach: 1 x X x x, (zwrotność) 2 x, y, z X (x y y z) = x z (przechodniość) 3 x, y X (x y y x) = x = y (antysymetryczność) 4 x, y X x y y x (liniowość) 5 A X, A a A x A a x (każdy niepusty podzbiór X ma element najmniejszy) Element ten bȩdziemy oznaczać przez min(a) UWAGA: Bȩdziemy pisać x < y gdy x y x y Parȩ (X, ) nazywamy zbiorem dobrze uporz adkowanym Jeśli X jest zbiorem pustym, to nie można w nim zdefiniować porz adku, mimo to też nazwiemy zbiorem dobrze uporz adkowanym Definicja: Odcinkiem pocz atkowym w porz adku (X, ) nazywamy dowolny podzbiór A X spe lniaj acy warunek (a A x a) = x A (Zbiór pusty jest odcinkiem pocz atkowym, bo poprzednik tej implikacji jest zawsze fa lszywy) Ćwiczenie: Jeśli A jest odcinkiem pocz atkowym w (X, ), to albo A = X albo A = {x X : x < a} dla pewnego a X Ćwiczenie: Jeśli A jest odcinkiem pocz atkowym w (X, ), to A jest dobrze uporz adkowany (porz adkiem obciȩtym do A A) Ćwiczenie: Jeśli A jest odcinkiem pocz atkowym w (X, ) i B jest odcinkiem pocz atkowym w (A, ), to B jest odcinkiem pocz atkowym w (X, ) Definicja: Dwa dobrze uporz adkowane zbiory (X, ) i (Y, ) nazywamy izomorficznymi jeśli albo oba s a puste, albo oba s a niepuste i istnieje bijekcja (funkcja różnowartościowa i na ) f : X Y zachowuj aca porz adek, tzn spe lniaj aca dla dowolnych x, y X warunek x y = f(x) f(y) (Ćwiczenie: wtedy x y f(x) f(y)) Wiadomo, że (przy za lożeniu aksjomatu wyboru (AC)) każdy zbiór można dobrze uporz adkować
2 LICZBY PORZA DKOWE Liczby porz adkowe to pewne ustalone zbiory dobrze uporz adkowane (miȩdzy innymi jest też liczb a porz adkow a) Każdy zbiór dobrze uporz adkowany jest izomorficzny z jedyn a liczb a porz adkow a Liczby porz adkowe oznaczać bȩdziemy przez, (α, ), (β, ), itp Zazwyczaj jednak bȩdziemy pomijać znak porz adku i pisać tylko α, β, itp, a zamiast bȩdziemy pisać 0 W lasności liczb porz adkowych: 1 Dla dowolnych liczb porz adkowych α i β albo α jest izomorficzna z pewnym odcinkiem pocz atkowym w β albo odwrotnie Jeśli zachodz a oba warunki, to α = β Oznacza to, że w klasie liczb porz adkowych można wprowadzić porz adek liniowy α β α jest izomorficzna z pewnym odcinkiem pocz atkowym w β 2 Każda liczba porz adkowa α jest izomorficzna ze zbiorem wszystkich liczb porz adkowych ostro mniejszych od niej De facto, każda liczba porz adkowa JEST zbiorem wszystkich liczb porz adkowych ostro mniejszych od niej To zdanie definiuje liczby porz adkowe Liczbami porz adkowymi s a: oznaczany przez 0 {0} oznaczany przez 1 {0, 1} oznaczany przez 2 {0, 1, 2, } oznaczany przez ω (lub ω 0 ) (tożsamy ze zbiorem N 0 ) {0, 1, 2,, ω} oznaczany przez ω + 1 {0, 1, 2,, ω, ω + 1} oznaczany przez ω + 2 {0, 1, 2,, ω, ω + 1, ω + 2, } oznaczany przez 2ω {0, 1, 2,, ω, ω + 1, ω + 2,, 2ω} oznaczany przez 2ω + 1 {0, 1, 2,, ω, ω + 1, ω + 2,, 2ω, 2ω + 1, 2ω + 2, } oznaczany przez 3ω 3ω + 1 4ω 5ω ωω (oznaczany ω 2 ) ω 3 ω ω itd
3 Widać, że porz adek w klasie wszystkich liczb porz adkowych jest dobry: dowolny niepusty zbiór liczb porz adkowych ma element najmniejszy ich przekrój Każda liczba porz adkowa α ma swój nastȩpnik α + 1 zdefiniowany jako zbiór wszystkich liczb porz adkowych miejszych równych od α Jest to zarazem najmniejsza liczba porz adkowa ostro wiȩksza od α Niektóre liczby porz adkowe α maj a swój poprzednik (najwiȩksz a liczbȩ porz adkow a ostro mniejsz a od α) Jest tak jeśli α = β + 1 dla pewnego β Wtedy poprzednikiem α jest β Jednak nie wszystkie liczby porz adkowe maj a poprzednik Na przyk lad ω nie jest postaci β + 1 Liczby takie nazywamy liczbami porz adkowymi granicznymi Jeśli A jest zbiorem liczb porz adkowych, to β = A jest też liczb a porz adkow a i spe lnia α β dla wszystkich α A Jest to najmniejsza liczba spe lniaj aca taki warunek i dlatego bȩdziemy zamiast A pisać sup A Moc a liczby porz adkowej α nazywamy po prostu jej moc (liczbȩ kardynaln a) Dla nas istotny bȩdzie podzia l na liczby porz adkowe przeliczalne i nieprzeliczlne Wszystkie liczby wypisane na poprzedniej stronie s a przeliczalne 1 Najmniejsz a liczb a porz adkow a nieprzeliczaln a jest ω 1 zdefiniowana jako zbiór wszystkich liczb porz adkowych przeliczalnych Suma dowolnego ci agu (zbioru przeliczalnego) liczb przeliczalnych jest liczb a przeliczaln a (bo suma przeliczalnej rodziny zbiorów przeliczalnych jest przeliczalna) Liczby ω 1 nie można zatem osi agn ać (jako suremum) żadnym ci agiem liczb przeliczalnych Dlatego liczba ω 1 nie pojawi siȩ w diagramie z kropkami jak poprzedniej stronie, gdzie wiadomo co znacz a wszystkie kropki INDUKCJA POZASKOŃCZONA Indukcja pozaskończona pozwala na dwie rzeczy: 1 Definiowanie rodzin zbiorów indeksowanych liczbami porz adkowymi (jest to analogia definiowania ci agów wzorem rekurencyjnym), 2 Dowodzenie w lasności dla elementów zbioru dobrze uporz adkowanego (jest to analogia dowodu przez indukcjȩ) Definiowanie poprzez indukcjȩ pozaskończon a Chcemy zdefiniować rodzinȩ zbiorów A α gdzie α przebiega pewn a liczbȩ porz adkow a α 0 (Przypomnijmy, że elementami liczby porz adkowej s a liczby porz adkowe mniejsze od niej Inaczej można wiȩc powiedzieć,,gdzie α < α 0 ) Postȩpujemy nastȩpuj aco: 1 Najpierw definiujemy A 0 (czasem A 1 ) 2 Bierzemy α < α 0 i zak ladamy, że zdefiniowane zosta ly zbiory A β dla wszystkich β < α Teraz definiujemy A α pos luguj ac siȩ zbiorami A β gdzie β < α Po tych krokach A α jest zdefiniowane dla wszystkich α < α 0 W praktyce czȩsto w kroku 2 rozróżnia siȩ na dwa przypadki: jeśli α ma poprzednik (czyli jest postaci β + 1), to A α = A β+1 definiuje siȩ tylko przy użyciu jednego zbioru A β Jeśli α jest liczb a graniczn a to postȩpuje siȩ jak w pierwotnym opisie w punkcie 2 1 Uwaga: Moc a liczby porz adkowej ω jest ℵ 0, jednak moc a liczby ω ω nie jest ℵ ℵ 0 0 (czyli continuum) Liczba kardynalna ℵ ℵ 0 0 to moc zbioru wszytskich nieskończonych ci agów o wartościach naturalnych, natomiast ω ω to typ porz adkowy zbioru wszystkich skończonych ci agów o wartościach naturalnych (ale bez ograniczenia na ich d lugość)
4 Przyk lad: Niech A bȩdzie niepust a rodzin a zbiorów zawartych w pewnej przestrzeni X Dla liczb porz adkowych α < ω 1 zdefiniujemy rodziny A α podzbiorów X 1 Dla α = 0 k ladziemy A 0 = {A, A c : A A} 2 Weźmy α < ω 1 i za lóżmy, że zdefiniowaliśmy A β dla wszystkich β < α Teraz definiujemy A α nastȩpuj aco: najpierw bierzemy B α = β<α A β, a nastȩpnie niech A α bȩdzie rodzin a wszystkich zbiorów uzyskanych jako przeliczalne sumy zbiorów z B α i ich dope lnienia: A α = { n B n, ( n B n) c : n B n B α } W ten sposób zdefiniowaliśmy A α dla wszystkich α < ω 1 Dowody poprzez indukcjȩ pozaskończon a Dany jest zbiór dobrze uporz adkowany A = {a α : α < α 0 } (najczȩściej bȩdzie to raczej dobrze uporz adkowana rodzina zbiorów A = {A α : α < α 0 }) Dane jest pewne zdanie logiczne Φ(a) z jednym parametrem a, za który można podstawiać elementy zbioru A (czyli w lasność, która ma sens dla tych elementów, choć na razie nie wiadomo, czy i dla których elementów jest ona spe lniona) Chcemy udowodnić, że w lasność Φ jest spe lniona dla wszystkich elementów zbioru A: a A Φ(a) W tym celu wystarczy wykonać dwa kroki: 1 Wykazać Φ(a 0 ) oraz 2 dla dowolnego α < α 0 wykazać, implikacjȩ ( β < α Φ(a β )) = Φ(a α ) W praktyce czȩsto w kroku 2 rozróżnia siȩ na dwa przypadki: jeśli α ma poprzednik (czyli jest postaci β + 1), to sprawdza siȩ tylko implikacjȩ Φ(a β ) = Φ(a α ) Jeśli α jest liczb a graniczn a to postȩpuje siȩ jak w pierwotnym opisie w punkcie 2 Przyk lad: Wracamy do poprzedniego przyk ladu, w którym zdefiniowaliśmy rodziny A α dla wszystkich α < ω 1 Dodatkowo definiujemy B jako α<ω 1 A α Twierdzenie: W laśnie skonstruowaliśmy sigma-cia lo generowane przez rodzinȩ A: B = σ(a) Dowód: Oczywiście A B, bo A A 0, a A 0 jest sk ladnikiem sumy definiuj acej B Przy okazji widać, że rodzina B jest niepusta Teraz pokażemy, że B jest zamkniȩta na dope lnienia Niech B B Wtedy B A α dla pewnego α < ω 1 Rodzina A α jest z definicji zamkniȩta na dope lnienia Zatem B c A α B Teraz pokażemy, że B jest zamkniȩta na przeliczalne sumy Niech B n B (n = 1, 2, ) Wtedy istnieje ci ag α n liczb porz adkowych mniejszych od ω 1, takich, że B n A n Weźmy α = sup α n + 1 Wiemy, że α < ω 1 (do ω 1 nie można dojść ci agiem przeliczalnym) oraz, że dla każdego n, α n sup α n < α St ad B n B α (przypomnijmy, że B α = β<α A β), z czego wynika, że n B n A α B Pokazaliśmy, że B jest sigma-cia lem zawieraj acym A Zosta lo do pokazania, że jest najmniejszym takim sigma-cia lem Niech C bȩdzie sigma-cia lem zawieraj acym A Trzeba pokazać, że B C Wystarczy pokazać, że α < ω 1 A α C Do tego w laśnie użyjemy indukcji pozaskończonej
5 1 A 0 C bowiem z za lożenia C zawiera wszystkie zbiory z A, a jako sigma-cia lo, również ich dope lnienia 2 Dla α < ω 1 za lóżmy, że wiemy już, że A β C o ile β < α Mamy wywnioskować, że A α C Nasze za lożenie jest równoważne temu, że B α C Niech A A α Wtedy A = n B n, gdzie n B n B α lub A jest dope lnieniem takiej sumy W pierwszym przypadku wszystkie zbiory B n s a elementami C, a wiȩc A jako ich przeliczalna suma również (bo C jest sigma-cia lem) W drugim przypadku w laśnie pokazaliśmy, że n B n jest w C, zatem A, jako dope lnienie też
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar
Rozdzia l 2. Najważniejsze typy algebr stosowane w logice
Rozdzia l 2. Najważniejsze typy algebr stosowane w logice 1. Algebry Boole a Definicja. Kratȩ dystrybutywn a z zerem i jedynk a, w której dla każdego elementu istnieje jego uzupe lnienie nazywamy algebr
Rozdzia l 8. Pojȩcie liczby porz adkowej
Rozdzia l 8. Pojȩcie liczby porz adkowej 1. Liczby naturalne a liczby porz adkowe Oto cztery pierwsze liczby naturalne zapisane wed lug różnych czterech notacji w porz adku od najmniejszej do najwiȩkszej:,
Rozdzia l 9. Zbiory liczb porz adkowych. Liczby porz adkowe izolowane i graniczne
Rozdzia l 9. Zbiory liczb porz adkowych. Liczby porz adkowe izolowane i graniczne 1. Kresy wzglȩdem dowolnego zbioru liczb porz adkowych Poświȩcimy teraz uwagȩ przede wszystkich kratowym w lasnościom klasy
Wyk lad 6 Podprzestrzenie przestrzeni liniowych
Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)
Rozdzia l 1. Podstawowe elementy teorii krat
Rozdzia l 1. Podstawowe elementy teorii krat 1. Zbiory czȩściowo uporz adkowane Definicja. Relacjȩ binarn a określon a na zbiorze A nazywamy relacj a czȩściowo porz adkuj ac a, gdy jest zwrotna, antysymetryczna
Matematyka dyskretna Oznaczenia
Matematyka dyskretna Oznaczenia Andrzej Szepietowski W tym rozdziale przedstawimy podstawowe oznacznia. oznacza kwantyfikator ogólny dla każdego. oznacza kwantyfikator szczegó lowy istnieje. 1 Sumy i iloczyny
Rozdzia l 10. Najważniejsze normalne logiki modalne
Rozdzia l 10. Najważniejsze normalne logiki modalne 1. Logiki modalne normalne Definicja. Inwariantny zbiór formu l X jȩzyka modalnego L = (L,,,,, ) nazywamy logik a modaln a zbazowan a na logice klasycznej
Rozdzia l 3. Relacje binarne
Rozdzia l 3. Relacje binarne 1. Para uporz adkowana. Produkt kartezjański dwóch zbiorów Dla pary zbiorów {x, y} zachodzi, jak latwo sprawdzić, równość {x, y} = {y, x}. To znaczy, kolejność wymienienia
Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań
Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Micha l Ziembowski m.ziembowski@mini.pw.edu.pl www.mini.pw.edu.pl/ ziembowskim/ October 2, 2016 M. Ziembowski (WUoT) Elementy logiki i teorii
Rozdzia l 3. Elementy algebry uniwersalnej
Rozdzia l 3. Elementy algebry uniwersalnej 1. Podalgebry, homomorfizmy Definicja. Niech = B A oraz o bȩdzie n-argumentow a operacj a na zbiorze A. Mówimy, że zbiór B jest zamkniȩty na operacjȩ o, gdy dla
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Wyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a.
T O P O L O G I A WPPT I, sem. letni WYK LAD 8 Zwartość D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. Wroc law, 1 kwietnia 008 Definicja 1. (X, d) jest ca lkowicie ograniczona jeśli dla
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:
MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie
1 MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś Wprowadzenie Istniej a dwa różne kryteria mówi ace, które narzȩdzia matematyczne należy zaliczyć do matematyki dyskretnej. Pierwsze definiuje matematykȩ
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,
Przestrzenie wektorowe, liniowa niezależność Javier de Lucas
Przestrzenie wektorowe, liniowa niezależność Javier de Lucas Ćwiczenie 1. W literaturze można znaleźć pojȩcia przestrzeni liniowej i przestrzeni wektorowej. Obie rzeczy maj a tak a sam a znaczenie. Nastȩpuj
OSOBNO ANALITYCZNYCH
Uniwersytet Jagielloński Instytut Matematyki Zbigniew B locki ZBIORY OSOBLIWOŚCI FUNKCJI OSOBNO ANALITYCZNYCH Praca magisterska Promotor: Prof. dr hab. Józef Siciak Kraków 99 .Wstȩp. Jeśli Ω jest zbiorem
Wyk lad 14 Cia la i ich w lasności
Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,
Rozdzia l 11. Liczby kardynalne
Rozdzia l 11. Liczby kardynalne 1. Równoliczność zbiorów Definicja. Dla dowolnych zbiorów x, y : x jest równoliczny z y, gdy istnieje funkcja f : x y, która jest bijekcj a. Zauważmy, że funkcja f : y,
Cia la i wielomiany Javier de Lucas
Cia la i wielomiany Javier de Lucas Ćwiczenie 1. Za lóż, że (F, +,, 1, 0) jest cia lem i α, β F. w laściwości s a prawd a? Które z nastȩpuj acych 1. 0 α = 0. 2. ( 1) α = α. 3. Każdy element zbioru F ma
Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska Wroc law Wroc law, kwiecień 2011
Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska 50-370 Wroc law Wroc law, kwiecień 2011 Analiza Funkcjonalna WPPT IIr. Wyk lady 4 i 5: Przestrzenie unitarne i Hilberta (rzeczywiste
Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu
Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 4 1. Zbiory otwarte i domkniȩte Pojȩcia które teraz wprowadzimy można rozpatrywać w każdej przestrzeni metrycznej
Szymon G l ab. Struktury losowe II Graf losowy. Instytut Matematyki, Politechnika Lódzka
Instytut Matematyki, Politechnika Lódzka Graf losowy jako granica Fraisse Przez K graf oznaczmy rodzinȩ wszystkich skończonych grafów (np. na N). Niech G bȩdzie granic a Fraisse rodziny K graf. Strukturȩ
LOGIKA ALGORYTMICZNA
LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R
T O P O L O G I A O G Ó L N A. WPPT WYK LAD 13 Ci agi uogólnione, topologie w przestrzeniach produktowych
T O P O L O G I A O G Ó L N A WPPT WYK LAD 13 Ci agi uogólnione, topologie w przestrzeniach produktowych Definicja. Przez rodzinȩ skierowan a rozumiemy dowolny zbiór z porz adkiem czȩściowym (K, ), taki
Wyk lad 4 Warstwy, dzielniki normalne
Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b
Wyk lad 5. Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu. 1. Granice niew laściwe
Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Granice niew laściwe Definicja 1 Ci ag (x n ) d aży do (jest rozbieżny do) + jeśli c R N n > N x n > c a do
Wstęp do Matematyki (4)
Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie
Wyk lad 2 Podgrupa grupy
Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.
Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010
R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy
Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc
Liczby zespolone, liniowa zależność i bazy Javier de Lucas Ćwiczenie. Dowieść, że jeśli µ := c d d c, to homografia h(x) = (ax+b)/(cx+d), a, b, c, d C, ad bc, odwzorowuje oś rzeczywist a R C na okr ag
ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1. Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji nx 2 + x
ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1 Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji f n : [, [ x nx + x nx + 1, Rozwi azanie: Mówi siȩ, że ci ag funkcji f n zd aży punktowo
STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA
1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.
Struktury formalne, czyli elementy Teorii Modeli
Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j
STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1
1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy
TOPOLOGIA PRZESTRZENI METRYCZNYCH, ZWARTOŚĆ,
TOPOLOGIA PRZESTRZENI METRYCZNYCH, ZWARTOŚĆ, SPÓJNOŚĆ I POJȨCIA BLISKIE (DO UŻYTKU WEWNȨTRZNEGO, I DO SPRAWDZENIA) R R Abstract. Poniższe notatki do ćwiczeń zbieraj a podstawowe pojȩcia i stwierdzenia
Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
Logika matematyczna i teoria mnogości (I) J. de Lucas
Logika matematyczna i teoria mnogości (I) J. de Lucas Ćwiczenie 1. (Zad. L. Newelskiego) Niech p oznacza zdanie Ala je, zaś q zdanie As wyje. Zapisz jako formu ly rachunku zdań nastȩpuj ace zdania: 1.1.
(α + β) a = α a + β a α (a + b) = α a + α b (α β) a = α (β a). Definicja 4.1 Zbiór X z dzia laniami o wyżej wymienionych w lasnościach
Rozdzia l 4 Przestrzenie liniowe 4.1 Przestrzenie i podprzestrzenie 4.1.1 Definicja i podstawowe w lasności Niech X z dzia laniem dodawania + b edzie grupa przemienna (abelowa). Oznaczmy przez 0 element
Wyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas
Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
Sterowalność liniowych uk ladów sterowania
Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,
Gry Nieskończone. Krzysztof P lotka. Praca Magisterska. Instytut Matematyki Uniwersytet Gdański
Gry Nieskończone Krzysztof P lotka Praca Magisterska Instytut Matematyki Uniwersytet Gdański Gdańk 1997 Spis treści Wstȩp........................................................... ii Terminologia i oznaczenia........................................
Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE
Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Niech K = R lub K = C oraz X - dowolny zbiór. Określmy dwa dzia lania: dodawanie + : X X X i mnożenie przez liczbȩ : K X X, spe lniaj ace nastȩpuj ace
1 Przestrzenie metryczne
Topologia I Notatki do wyk ladu LITERATURA UZUPE LNIAJA CA R. Duda, Wprowadzenie do topologii, czȩść I. R. Engelking, Topologia ogólna. R. Engelking, K. Sieklucki, Wstȩp do topologii. W. Rudin, Podstawy
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF
29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Przeliczalność, kresy, bijekcje Javier de Lucas
Przeliczalność, kresy, bijekcje Javier de Lucas Zadanie 1. Wyliczyć: + [ 3 n=1, ] 4 n n. + ] n n=1, 5 + [ n n+1 n 10 t [,3] A t oraz t [,3] A t, gdzie: A t = [t, t] [ t, t]. Zadanie. Pokazać, że funkcja
Teoria miary. Matematyka, rok II. Wykład 1
Teoria miary Matematyka, rok II Wykład 1 NAJBLIŻSZY CEL: Nauczyć się mierzyć wielkość zbiorów. Pierwsze przymiarki: - liczność (moc) zbioru - słabo działa dla zbiorów nieskończonych: czy [0, 1] powinien
ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la?
Ci ag lość i norma Ćwiczenie. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? f (x, y) = x2 y 2 x 2 + y 2, f 2(x, y) = x2 y x 2 + y 2 f 3 (x, y) = x2 y
Piotr Zakrzewski. Teoria mnogości. (skrypt wykładu) (wersja z )
Piotr Zakrzewski Teoria mnogości (skrypt wykładu) (wersja z 22.01.2018) WSTĘP Skrypt obejmuje aktualny program (dostępny na stronie https://usosweb.mimuw. edu.pl/kontroler.php?_action=actionx:katalog2/przedmioty/pokazprzedmiot(kod:
Wyk lad 1 Podstawowe struktury algebraiczne
Wyk lad 1 Podstawowe struktury algebraiczne 1 Dzia lanie w zbiorze Majac dane dowolne dwa przedmioty a b możemy z nich utworzyć pare uporzadkowan a (a b) o poprzedniku a i nastepniku b. Warunek na równość
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
Wyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
25 lutego 2013, godzina 23: 57 strona 1. P. Urzyczyn: Materia ly do wyk ladu z semantyki. Logika Hoare a
25 lutego 2013, godzina 23: 57 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Logika Hoare a Rozważamy najprostszy model imperatywnego jezyka programowania z jednym typem danych. Wartości tego
Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
Rozdzia l 7. Liczby naturalne
Rozdzia l 7. Liczby naturalne 1. Arytmetyka elementarna Arytmetyka elementarna jest najprostsz a z teorii liczb naturalnych. Ujmuje ona liczby naturalne bez uwzglȩdnienia dzia lań dodawania i mnożenia.
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.
3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X
Teoria miary. WPPT/Matematyka, rok II. Wykład 5
Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F
ZALICZENIE WYKŁADU: 30.I.2019
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI ZALICZENIE WYKŁADU: 30.I.2019 KOGNITYWISTYKA UAM, 2018 2019 Imię i nazwisko:.......... POGROMCY PTAKÓW STYMFALIJSKICH 1. [2 punkty] Podaj definicję warunku łączności
KOLOKWIUM Z ALGEBRY I R
Instrucje: Każde zadanie jest za 4 puntów. Rozwi azanie ażdego zadania musi znajdować siȩ na osobnej artce oraz być napisane starannie i czytelnie. W nag lówu ażdego rozwi azania musz a znajdować siȩ dane
POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy
POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji
1. Funkcje monotoniczne, wahanie funkcji.
1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka
Niesimpleksowe metody rozwia zywania zadań PL Seminarium Szkoleniowe Metoda Simplex: wady i zalety Algorytm SIMPLEX jest szeroko znany i stosowany do rozwi azywania zadań programowania liniowego w praktyce.
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
PODSTAWOWE W LASNOŚCI W ZBIORZE LICZB RZECZYWISTYCH
PODSTAWOWE W LASNOŚCI DZIA LAŃ I NIERÓWNOŚCI W ZBIORZE LICZB RZECZYWISTYCH W dalszym cia gu be dziemy zajmować sie g lównie w lasnościami liczb rzeczywistych, funkcjami określonymi na zbiorach z lożonych
Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski
Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową
Liczby naturalne i ca lkowite
Chapter 1 Liczby naturalne i ca lkowite Koncepcja liczb naturalnych i proste operacje arytmetyczne by ly znane już od oko lo 50000 tysiȩcy lat temu. To wiemy na podstawie archeologicznych i historycznych
Uproszczony dowod twierdzenia Fredricksona-Maiorany
Uproszczony dowod twierdzenia Fredricksona-Maiorany W. Rytter Dla uproszczenia rozważamy tylko teksty binarne. S lowa Lyndona sa zwartymi reprezentacjami liniowymi s lów cyklicznych. Dla s lowa x niech
ROZDZIA l 13. Zbiór Cantora
ROZDZIA l 3 Zbiór Cantora Jednym z najciekawszych i najcze ściej spotykanych w matematyce zbiorów jest zbiór Cantora W tym rozdziale opiszemy jego podstawowe w lasności topologiczne Najprościej można go
Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas
Suma i przeciȩcie podprzestrzeń suma prosta przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1 W zależności od wartości parametru p podaj wymiar przestrzeni W = v 1 v v 3 gdzie p 0 v 1 = 1 + p 3 v = 5 3
Wyk lad 11 Przekszta lcenia liniowe a macierze
Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β
MATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE
1 SZKO LA PODSTAWOWA HELIANTUS 0-89 WARSZAWA ul. BAŻANCIA 16 3 1 0 1 3 Oś liczbowa. Liczby ca lkowite x MATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE Prof. dr. Tadeusz STYŠ WARSZAWA 018 1
Wyk lad 13 Funkcjona ly dwuliniowe
1 Izomorfizmy kanoniczne Wyk lad 13 Funkcjona ly dwuliniowe Definicja 13.1. Niech V i W bed przestrzeniami liniowymi. Funkcje ξ : V W R nazywamy funkcjona lem dwuliniowym, jeżeli i a,b R α,β V γ W ξa α
Rozdzia l 6. Wstȩp do statystyki matematycznej. 6.1 Cecha populacji generalnej
Rozdzia l 6 Wstȩp do statystyki matematycznej 6.1 Cecha populacji generalnej W rozdziale tym zaprezentujemy metodȩ probabilistycznego opisu zaobserwowanego zjawiska. W takim razie (patrz rozdzia l 2.4)zjawiskotobȩdziemy
W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się
1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania
Prostota grup A n. Pokażemy, że grupy A n sa. proste dla n 5. Dowód jest indukcyjny i poprzedzimy go lematem.
Prostota grup A n. Pokażemy, że grupy A n sa proste dla n 5. Dowód jest indukcyjny i poprzedzimy go lematem. 1 2 0. Twierdzenie Schura Zassenhausa W tym rozdziale zajmiemy sie bardzo użytecznym twierdzeniem,
Analiza matematyczna 2, cze ść dziesia ta
Analiza matematyczna 2, cze ść dziesia ta Informacja ogólna dla tych, którzy jeszcze ze mna chca rozmawiać o stopniach: zdecydowana wie kszość twierdzeń w matematyce, w analizie w szczególności, sk lada
KOMBINATORYKA 1 WYK LAD 10 Zbiory cze
KOMBINATORYKA 1 WYK LAD 10 Zbiory cze ściowo uporza dkowane 17 maja 2012 W rozdziale tym omówimy jedno z fundamentalnych poje ć kombinatoryki, jakim jest zbiór cze ściowo uporza dkowany. Pokażemy w jaki
Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego
Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni
Normy wektorów i macierzy
Rozdzia l 3 Normy wektorów i macierzy W tym rozdziale zak ladamy, że K C. 3.1 Ogólna definicja normy Niech ψ : K m,n [0, + ) b edzie przekszta lceniem spe lniaj acym warunki: (i) A K m,n ψ(a) = 0 A = 0,
ep do teorii mnogości
Wst ep do teorii mnogości Materia ly do wyk ladu dla 1 roku informatyki http://www.mimuw.edu.pl/ urzy/wtm.html Pawe l Urzyczyn urzy@mimuw.edu.pl 2001 2006 Po co komu teoria mnogości Fryderyk Engels definiowa
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie
Geometria odwzorowań inżynierskich rzut środkowy 06A
Scriptiones Geometrica Volumen I (2014), No. 6A, 1 10. Geometria odwzorowań inżynierskich rzut środkowy 06A Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Rzut środkowy i jego niezmienniki Przyjmijmy
Indukcja matematyczna, zasada minimum i maksimum. 17 lutego 2017
Indukcja matematyczna, zasada minimum i maksimum 17 lutego 2017 Liczby naturalne - Aksjomatyka Peano (bez zera) Aksjomatyka liczb naturalnych N jest nazwą zbioru liczb naturalnych, 1 jest nazwą elementu
Wyk lad 3 Wielomiany i u lamki proste
Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich
Równoliczność zbiorów
Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność
Równania różniczkowe cz astkowe rzȩdu pierwszego
Równania różniczkowe cz astkowe rzȩd pierwszego 1 Równania liniowe jednorodne Rozważmy równanie a 1 ( 1,..., n ) 1 +... + a n ( 1,..., n ) n = 0, (1) gdzie a i, i = 1,..., n s a dane, a fnkcja = ( 1,...,
Rozdział 6. Ciągłość. 6.1 Granica funkcji
Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz