Modelowanie niepewności rzetwarzanie numerczne informacji niepewnej niepełnej nej i niepreczjnej lan władu Źródła a niepewności informacji odejście probabilistczne do modelowania niepewności - twierdzenie aesa Współcznni niepewności Teoria Dempstera-Shafera Zbior rozmte
3 Źródła a niepewności Niepewność samej wiedz zapisanej w bazie wiedz zasad zapisane np. w postaci reguł nie muszą bć uniwersalne Niedoładne/niepreczjne obserwacje Źródło o pochodzenia danch może e bć niepewne Uzsane sposobem tór nie jest pewn błą łąd metod sończona doładno adność przrządów w itp. Niepreczjne pojęcia Jęz opisu mało o preczjn niejednoznaczn 4 Źródła a niepewności - przład IF smptomxból_z l_zęba TN chorobaxpróchnica chnica Reguła a jest nieompletna bo nie wszsc pacjenci z objawami bólu b mają próchnic chnicę Istnieje wiele często nieograniczona liczba przczn z powodu tórch obserwujem ból b l np.: IF smptomxból_z l_zęba TN chorobaxpróchnica chnica chorobaxparadontoza chorobaxnowa_ósema
5 Źródła a niepewności - przład IF smptomxból_z l_zęba TN chorobaxpróchnica chnica Reguła a nie odzwierciedla fatcznego związu zu przcznowo-sutowego abducja więc c może: IF chorobaxpróchnica chnica TN smptomxból_z l_zęba Reguła a deducjna równier wnież nie jest ompletna mogą istnieć pacjenci tórz mimo próchnic nie będąb odczuwali bólub Kompletność reguł wmagałab ab podania wszstich szczegółowch warunów w w tórch próchnica powoduje ból. b 6 Źródła a niepewności - przład IF smptomxból_z l_zęba smptomxopuchlizna smptomzębina bina ubti rtgstan_zapaln TN chorobaxpróchnica chnica Doładno adność reguł wmagałab ab często ogromnej liczb warunów zdefiniowanie ich wszstich często jest niemożliwe ze względu na ograniczoną wiedzę w danej dziedzinie albo niepratczne nie wszstie waruni mogłb zawsze bć sprawdzone!
7 Źródła a niepewności - przład IF smptomxból_z l_zęba TN chorobaxpróchnica chnica Reguła a nie reprezentuje zatem onsewencji w sensie logicznm lecz jest wrazem przeonania esperta obarczonm zawsze pewną dozą niepewności rawdopodobieństwo jao pewna miara pozwala na opis niepewności tego co ma swoje źródło o w naszej ignorancji i niewiedz rzpisanie prawdopodobieństwa regule będzie b oznaczać w jaim procencie przpadów nierozróżnialnch nialnch od wsazanch w regule espert uznał to stwierdzenie za prawdziwe spet numercznego przetwarzania niepewności 8 Numerczne przetwarzanie niepewności obejmuje: Matematczn model reprezentacji informacji niepewnej pozwalając przdzielać niepewność fatom i regułom wniosowania Mechanizm łączenia niepewnch informacji pochodzącch cch z różnch r źródeł Mechanizm propagacji niepewności w tracie procesu wniosowania
9 odejście probabilistczne Sąd d się bierze prawdopodobieństwo? odejście tradcjne historczne naliza szans na uzsanie oreślonego wniu w grach losowch np. prawdopodobieństwo trafienia szósti w tota wnosi /3 983 86 odejście statstczne zęstotliwościowe prawdopodobieństwo zdarzenia jest często stością wstępowania tego zdarzenia w bardzo dużej liczbie identcznch prób odejście subietwne Miara racjonalnego przeonania obserwatora esperta że zdarzenie wstąpi
sjomat rachunu prawdopodobieństwa sjomat : Każde zdarzenie losowe charaterzuje pewna liczba zwana prawdopodobieństwem zdarzenia spełniaj niająca nierówno wność. sjomat : rawdopodobieństwo zdarzenia pewnego równa się zaś zdarzenia niemożliwego wnosi. sjomat 3: rawdopodobieństwo sum zdarzeń parami włą łączającch cch się równe sumie prawdopodobieństw tch zdarzeń sjomat sąs podstawą wznaczania miar niepewności jaą jest prawdopodobieństwo w podejściu subietwnm 3 Rodzaje prawdopodobieństwa rawdopodobieństwo bezwarunowe wraża a stopień niepewności w stuacji brau jaicholwie innch informacji oznaczane przez jao miara przeonania o prawdziwości prz zupełnm brau innch obserwacji nazwane prawdopodobieństwem a priori rawdopodobieństwo warunowe wraża a stopień niepewności po zaobserwowaniu fatów dotczącch cch zdarzenia oznaczane przez jao miara przeonania o prawdziwości prz założeniu że z pewności cią zaszło nazwane prawdopodobieństwem a posteriori
4 rawdopodobieństwo warunowe Jeżeli eli uzsano informacje odnośnie nie nieznanch wcześniej fatów prawdopodobieństwo a priori musim zastąpi pić prawdopodobieństwem a posteriori warunowm zapiswanm wg notacji: tóra oznacza prawdopodobieństwo gd zaszło o. Wartość prawdopodobieństwa warunowego wnosi: = / bo w zbiorze wszstich zdarzeń w tórch zaobserwowano jest tąt częś ęścią z nich w tórch zaobserwowano równier wnież 5 Twierdzenia aesa rawdopodobieństwo ażdej hipotez można zdefiniować opierając c się na dowodach za lub przeciw tej hipotezie: Reguła a powższa wnia z prawdopod.. warunowch: po porównaniu ich stronami i podzieleniu przez >
Twierdzenia aesa jao reguła wniosowania 6 Twierdzenie aesa: odnosi się do zależno ności międz obserwacją a hipotezą reprezentowanej w postaci reguł: IF TN Ocenianie szans potencjalnch wniosów w hipoteza na podstawie danch obserwacja jest zatem zależne od fatcznego związu zu przcznowo-suto suto- wego międz nimi wartość oraz naszej wiedz niewiedz przjętej a priori oraz. Twierdzenia aesa - normalizacja 7 Możem uninąć onieczności ci szacowania prawdo- podobieństwa a priori wstąpienia obserwacji orzstając c z normalizacji będącej b onsewencją asjomatów w rachunu prawdopodobieństwa: a z twierdzenia aesa wiem że: dodając c obustronnie i wstawiając c otrzmane do w mianowniu otrzmam:
Twierdzenia aesa - marginalizacja 8 W pratce mam zazwczaj nie jedną hipotezę lecz zbiór r hipotez m m i jeżeli eli spełniaj niają one waruni: i j False i True i i j i to normalizacja opiera się na regule tzw.marginalizacji marginalizacji: i i i i twierdzenie aesa przjmuje wted postać: j i j j i i i m i o w stuacji gd mam wiele obserwacji? 9 Załóżm że e mam dwie reguł: IF smptomxból TN chorobaxpróchnica chnica IF smptomxubti TN chorobaxpróchnica chnica Ja wznaczć prawdopodobieństwo próchnic jeśli wstąpi pił obdwa objaw? Załadaj adając że e znam wartość próchniaból oraz próchnicaubti cz możem sorzstać z tw.aesa i asjomatów w prawdopodobieństwa? ból ubti próchnica próchnica próchnica ból ubti ból ubti
roblem z łączeniem obserwacji orządowanie obserwacji Zazwczaj onieczne jest uwzględnianie więszej liczb równoczesnch obserwacji n n w celu ustalania prawdopodobieństwa hipotez: n n n Zastosowanie powższego równania r w pratce dla dużej liczb obserwacji jest jedna bardzo trudne niezbędna jest bowiem znajomość prawdo- podobieństw dla wszstich ombinacji par i j tróje i j czwóre i j m itd. Liczba potrzebnch wartości prawdopodobieństw rośnie zatem władniczo z liczbą obserwacji!!! W wielu dziedzinach równoczesne r przetwarzanie obserwacji n n prz ustalaniu prawdopodo- bieństwa hipotez nie jest onieczne dane mogą bć przetwarzanie sewencjnie np. zgodnie z olejności cią ich uzsiwania rzetwarzanie obserwacji jedna po drugiej jest możliwe o ile uwzględnim że e hipoteza i olejna obserwacja warunowane są bazową wcześniejsz niejszą obserwacją :
Uogólnienie twierdzenia aesa Międz uwarunowaniem od obserwacji a uwarunowaniem od istnieje ścisła a zależno ność: z tórej wnia uogólniona postać twierdzenia aesa: bo: = na podstawie = oraz zależno ności wprowadzonej powżej. Zastosowanie uogólnionego twierdzenie aesa 3 Opierając c sewencjną atualizację prawdopodo- bieństw na uogólnionm twierdzeniu aesa zauważm że e dotchczasowe prawdopodobieństwo jest zawsze salowane przez cznni zależn od olejnej obserwacji: 3 3 3 Duża a liczba obserwacji nadal jedna impliuje znaczną złożoność procesu atualizacji prawdopodobieństw
Założenie o warunowej niezależno ność obserwacji 4 Dalsze reduowanie wmagań dotczącch cch procesu atualizacja prawdopodobieństw możliwe jest jednie po przjęciu bardzo istotnego założenia o warunowej niezależno ności obserwacji n tórego spełnienie oznacza iż i : = oraz = a w onsewencji: = bo wiedząc że = z war. niezależno ności mam: = a po podzieleniu stronami przez i zastosowaniu tw.aesa otrzmam: = odobnie: = Twierdzenie aesa i założenie o warunowej niezależno ność 5 Założenie o warunowej niezależno ności obserwacji oznacza że e bez względu na liczbę obserwacji n spełnione sąs zależno ności: i n = i i j = i i j wówczas wczas tw.aesa przjmie postać: n n n Założenie o warunowej niezależno ności informacji jest luczowe bo dopiero wted możliwe jest efetwne worzstanie tw. aesa w pratce
Marginalizacja i założenie o warunowej niezależno ność 6 Wiem że e uwzględnienie zamiast jednej wielu hipotez m m wmaga użcia u reguł marginalizacji tóra wartości prawdopodobieństw pozwala wznaczć na podstawie łącznch rozład adów w hipotez i obserwacji: jej zastosowanie do wszstich obserwacji n pozwala wprowadzić najogólniejsz lniejszą postać tw. aesa: j i j i n i m n j j n i i i i i 8 Zalet podejścia baesowsiego Worzstuje technię opartą na ugruntowanej teorii prawdopodobieństwa Opiera się na danch deducjnch tóre uzsać dużo o prościej niż dane z abducji Worzstuje podejście subietwne do prawdopodobieństwa ale wsparte obecności cią danch rawdopodobieństwo hipotez zawsze może e zostać zatualizowane po zaobserwowaniu olejnch fatów Uzsane prawdopodobieństwa nie zależą od olejności napłwu informacji
9 Wad podejścia baesowsiego 3 Wad podejścia baesowsiego Założenia na tórch jest oparte asjomat rachunu prawdopodobieństwa sąs w pratce zazwczaj niespełnione nione Ignorancja niewiedza jest urta w prawdopodobieństwach a priori i nie jest przetwarzania bezpośrednio rawdopodobieństwa można oreśli lić jednie dla zdarzeń elementarnch a nie dla ich alternatw pod- zbiorów Informacje onflitowe nie sąs wrwane lecz propagowane przez reguł wniosowania Zawsze jest onieczna jest znajomość prawdopodo- bieństw a priori ojawienie się nowej hipotez wmaga zawsze atualizacji pozostałch prawdopodobieństw Założenie o warunowej niezależno ności w realnm świecie rzado jest spełnione ojedncze prawdopodobieństwo hipotez mówi m nam niewiele na temat jego preczji doładno adności
Wniosowanie w logice a wniosowanie baesowsie 3 MODULRNOŚĆ ŚĆ: W sstemach wniosowania logicznego do wprowadze- nia ze zdefiniowanej reguł IF TN wstarcz tlo ang.localit ang.localit Jeśli raz ważem prawdzi- wość jaiejś tez to można z niej sorzstać w olejnch dowodach bez potrzeb ponownego jej dowodzenia ang.detachment W logice prawdziwość zdań złożonch onch można wznaczć opierając c się na wartości logicznej ich sładowch NIMODULRNOŚĆ ŚĆ: W sstemach probabilist- cznch trzeba brać pod uwagę od razu wszstie dostępne przesłani Każda zmiana przesłane zmienia stopień przeonania o prawdziwość wprowadzonego twierdzenia Ogólnie w probabilistce nie jest spełniona ta własnow asność chba że e wprowadzim silne założenie o warunowej niezależno ności 3 Współcznni pewności
33 Model współcznnia pewności utorz: Shortliffe i uchanan 973 sstem MYIN Motwacją bła reducja danch potrzebna do wznaczania niepewności w stosunu do podejścia baesowsiego Uproszczenie obliczeń w stosunu do podejścia opartego na twierdzeniu aesa Interpretacja współcznnia pewności jao przrostu prawdopodobieństw warunowch Współcznni pewności F sojarzon jest z regułą postaci przesłana - hipoteza: IF TN Współcznni pewności ang.certaint factor 34 Współcznni pewności F to wielość liczbowa przpiswana regule o wartościach z przedziału [- ] reprezentująca zmianę wiargodności hipotez po zaobserwowaniu fatu. Współcznni oreśla zmianę ilościow ciową stopnia wiargodności hipotez jego atualizację po wstąpieniu obserwacji Dodatnie wartości F oznaczają wzrost wiargodności hipotez Ujemne wartości F oznaczają wzrost niewiargodności hipotez spade wiargodności
Reguł i współcznnii pewności 35 aza wiedz słada się z reguł tórm esperci przpisują współcznnii pewności postaci: Kluczowm elementem wniosowania w zbiorze reguł jest mechanizm propagacji niepewności przez sieć wniosowania na tór sładaj adają się funcje: Łączenia równolegr wnoległego ego informacji Łączenia szeregowego informacji ropagacja niepewności: połą łączenie równolegr wnoległe 36 Równoległe e połą łączenie: : dwie różne r obserwacje potwierdzają tę samą hipotezę F F F& & Wniow współcznni: F F F F & F F F F F min{ F F } F F F F F F
ropagacja niepewności: połą łączenie szeregowe 37 Szeregowe połą łączenie: : hipoteza jednej reguł staje się przesłan aną olejnej reguł F F F Wniow współcznni: F F F F F F F jeżeli eli nic nie wiadomo o F przjmujem że jest on równ r. Zmodfiowan model współcznnia pewności 38 W bazie wiedz oprócz reguł zazwczaj mam równier wnież fat tórm przpisujem tzw. miarę pewności ci: jest prawdziwe nic nie wiem o jest fałszwe rzpisanie miar pewności fatom wmaga zmian reprezentacji reguł: F Nowa postać reguł wmaga równier wnież zmian metod propagacji szeregowej i równolegr wnoległej ej
Zmodfiowana propagacja niepewności 39 ropagacja oreśla nową wartość miar pewności hipotez po ostatnio wonanej regule: F F F min{ F } gdzie F = F F F F prz czm jeśli jest negatwne to reguła a nie może bć odpalona co możem zapisać : F F ma{ } Miara pewności dla warunów w złożonchz onch 4 Jeżeli eli część warunowa reguł odwołuj uję się do więcej niż jednej obserwacji to onieczne jest wznaczenie miar pewności dla warunu złożonegoz onego wg zasad: min ma
odstawowe własnow asności współcznnia pewności 4 Funcja pewności jest odwzorowaniem ciągłm Nigd nie wchodzi poza zares [-;[ ] Gd albo albo F równe sąs to również wnosi Gd albo albo F równe sąs - to również wnosi - Gd mam sprzeczność reguł i hipotez czli F = to zawsze = Gd nic nie wiadomo o czli = to = F Gd obserwacja jest pewna czli = to F = F Współcznni pewności - przład 4 Rozważm przładow zbiór r fatów w o następuj pującch początowch miarach pewności: =.5 =.6 D= = = = F=. oraz zbiór r reguł: IF TN WIT F=.8 IF D TN WIT F=.7 IF TN F WIT F=.9
Współcznni pewności - przład 43 F F=. F=.9 = = F=.8 =.8 F=.7 D D= =.5 =.6 Współcznni pewności - przład 44 F F=. F=.9 = = F=.8 F=.7 =ma{.5.6}=.6 D D= =.5 =.6
45 Wsp Współcznni pewno cznni pewności ci - prz przład ad =.5 =.5 D F =.6 =.6 = = D= = = = F=. =. F F =.8*.6=.48 =.8*.6=.48 F F=.7 =.7 F F=.9 =.9 =.6 =.6 46 Wsp Współcznni pewno cznni pewności ci - prz przład ad =.5 =.5 D F =.6 =.6 =+ =+-*.48=.48 *.48=.48 D= = = = F=. =. F F =.48 =.48 F F=.7 =.7 F F=.9 =.9 =.6 =.6
47 Wsp Współcznni pewno cznni pewności ci - prz przład ad =.5 =.5 D F =.6 =.6 = = D= = =.48 =.48 F=. =. F F =.48 =.48 F F=F F =.7 =.7 F F=.9 =.9 =.6 =.6 48 Wsp Współcznni pewno cznni pewności ci - prz przład ad =.5 =.5 D F =.6 =.6 =+ =+-*.7=.7 *.7=.7 D= = F=. =. F F =.48 =.48 F F =.7 =.7 F F=.9 =.9 =.6 =.6 =.48 =.48
49 Wsp Współcznni pewno cznni pewności ci - prz przład ad =.5 =.5 D F =.6 =.6 =.7 =.7 D= = F=. =. F F =.48 =.48 F F =.7 =.7 F F=.9 =.9 =.6 =.6 =.48 =.48 =min{.48.7}=.48 =min{.48.7}=.48 5 Wsp Współcznni pewno cznni pewności ci - prz przład ad =.5 =.5 D F =.6 =.6 =.7 =.7 D= = F=. =. F F =.48 =.48 F F =.7 =.7 F F =.9*.48=.43 =.9*.48=.43 =.6 =.6 =.48 =.48 =.48 =.48
Współcznni pewności - przład 5 F F=.+-.*.43=.546.*.43=.546 F =.43 =.48 =.48 F =.48 =.6 D =.7 F =.7 D= =.5 =.6 Interpretacja probabilistczna współcznnia pewności ecerman 986 podał interpretację probabilistczną współcznnia pewności: F Wazał również że e orginalna interpretacja podana prze Shortliffe a i uchanana bła a błęb łędna Sformułowa ował asjomat dla współcznnia pewności i wazał iżi złożenie o modularności localit and detachment reguł ze współcznniiem pewności jest niezgodne z możliw liwą interpretacją probabilistczną 5
Słabości modelu opartego na współcznniach pewności 53 ecerman dowiódł że e gwarancja modularność reguł sprowadza się w gruncie rzecz do założenia o warunowej niezależno ności obserwacji i hipotez ja w podejściu baesowsim Wazał taże że e założenia sąs nawet mocniejsze warunowa niezależno ność obserwacji od hipotez ale również od negacji hipotez ecerman udowodnił również że e niezależnie od interpretacji nie można spełni nić wszstich asjomatów dotczącch cch propagacji współcznnia jeżeli eli sieć wniosowania nie ma strutur drzewa o z modelem współcznnia pewności? 54 omimo zarzutów ecermana współcznni pewności sprawdził się dobrze w pratcznch sstemach regułowch gdż wiedza w nich zawarta ma dużo więsz wpłw na jaość wniosowania niż sam mechanizm propagacji pewności rowadzono równier wnież prace zaończone sucesem w tórch wazano bra onieczności ci probabilistcznej interpretacji współcznnia pewności [maa ruz G.. eliaovg. 996]
55 Teoria Dempstera-Shafera 56 Teoria Dempstera-Shafera Model dopuszczając c częś ęściowe spełnienie asjomati probabilistcznej Wznacza prawdopodobieństwa z jaimi można udowodnić dane hipotez na podstawie posiadanch informacji ang. provabilit Wiedza jest reprezentowana w postaci funcji przeonania ang. belief oraz funcji wobrażalno alności ang. plausibilit
Teoria Dempstera-Shafera a probabilista 57 Teoria Dempstera-Shafera Shafera model częś ęściow bo: Zdarzenia nie muszą bć elementarne i wzajemnie wluczające ce się tlo taie o jaich posiadam informacje jest zbiór r tzw. elementów w ognisowch rzeonanie o prawdziwości hipotez i jej negacji nie muszą sumować się do Obie te wartości mogą wnosić zero ied bra dowodów zarówno za ja i przeciw hipotezie Teoria Dempstera-Shafera a twierdzenie aesa 59 Dla zbioru zdarzeń ={ ={... n } Twierdzenie aesa dotcz obserwacji wspierającch pojedncze hipotez ażda obserwacja ażdą hipotezę w zbiorze np.: Teoria Dempstera-Shafera dotcz obserwacji tóre wspierają podzbior hipotez np.: { 4 5 }
Funcja mas prawdopodobieństw 6 azow rozład prawdopodobieństwa dla tch zdarzeń dla tórch posiadam informację elementów ognisowch T musi spełnia niać waruni: m T : m [ ] m dla wszstich pozostałch T mam m=. Rozład ten reprezentuje częś ęściowe przeonania tórch nie musim bo bra wiedz! rozdzielać na elementarne zdarzenia 6 Funcja przeonania Funcja przeonania oznaczana w srócie el [ ] mierz siłę pozsanch informacji wspierającch przeonanie o prawdziwości rozważanego anego zbioru hipotez: el m Zależno ności dla el : el el el el el el
6 Funcja wobrażalno alności Funcja wobrażalno alności oznaczana w srócie l [] oreśla siłę informacji mającch jaiolwie związe ze ze zbiorem hipotez: l m Funcja l jest dualna względem el i można wazać że e zachodzi zależno ność: l el l oznacza zatem na ile przeonanie o prawdziwości jest ograniczone przez obserwacje wspierające Inne zależno ności: l l l l l l 63 rzeonanie i wobrażalno alność ewności niepewność ść oreślonej hipotez jest reprezentowana przez przedział: [el l ] el l Teoria Dempstera-Shafera pozwala wniosować o stopniu naszej pewności co do hipotez cz też pewności naszch przeonań co do hipotez Im szersz przedział tm więsza niepewność hipotez więsza ignorancja związana zana z hipotezą rzedział zerowej szeroości nie oznacza hipotez pewnej lecz preczjną wiedzę na temat prawdopodobieństwa hipotez
65 rzład Załóżm że e zmienna losowa może e przjmować wartości ze zbioru {abc}. Zbiór r wszstich możliwch podzbiorów w hipotez będzie zatem równ: r ={{ {{a} {b}{ {c}{ {ab}{ } {bc}{ {ac}{ {abc}}{ rzjmijm rozład bazow prawdopodobieństwa hipotez: m {a}. {b}. {c}. Zbiór r elementów w ognisowch: {ab} {ac} {bc} {abc}..3. T={{ {{a} {b}{ {c}{ {ab}{ } {bc}{ {abc}}{ 66 rzład Mając c rozład bazow prawdopodobieństwa: m {a}. {b}. {c}. {ab} {ac} {bc} {abc}..3. możem obliczć wartości funcji przeonania: el{b}= {b}=m{b}=.{b}=. el{ab}= {ab}=m{a}+m{b}+m{ab}=.+.+.=.5{ab}=.+.+.=.5 Rezultat: {a} m. el. {b}.. {c}.. {ab}..5 {ac}.3 {bc} {abc}.3..5
67 rzład Mając c rozład bazow prawdopodobieństwa: m {a}. {b}. {c}. {ab} {ac} {bc} {abc}..3. możem obliczć wartości funcji wobrażalno alności: l{a}= {a}=m{a}+m{ab}+m{abc}=.+.+.=.5{abc}=.+.+.=.5 Rezultat: m el l {a}...5 {b}...7 {c}...5 {ab}..5.9 {ac}.3.7 {bc} {abc}.3..5.8 Łączenie obserwacji z różnch źródeł 68 Łączenie niepewności z różnch r źródeł opiera się na znajomości rozład adów w bazowch ażdego źródła W przpadu dwóch źródeł o rozładach m oraz m połą łączenie obserwacji pozwala wznaczć nową wartość m 3 wg wzoru: m 3 m m F m m F Każda olejna obserwacja może e bć łączona z wpadowm rozładem poprzednich obserwacji i prowadzić do następnego nowego rozładu
69 rzład łączenia obserwacji Załóżm że e zmienna losowa może e przjmować wartości ze zbioru {abc}. Zbiór r wszstich możliwch podzbiorów w hipotez będzie zatem równ: r ={{ {{a} {b}{ {c}{ {ab}{ } {bc}{ {ac}{ {abc}}{ rzjmijm że e mam dwa alternatwne źródła a obserwacji: m m {a}.. {b}.. {c}.. {ab}..3 {bc}.3. {abc}.. m {ac}= Mechanizm łączenia obserwacji opiera się na poszuiwaniu elementów w wspólnch tch obserwacji 7 rzład łączenia obserwacji {abc}. {bc}. {ab}.3 {c}. {b}. {a}. m m {a}. {b}. {c}. {ab}. {bc}.3 {abc}. rostoąt reprezen- tuje przecięcie cie zb. hipotez {b} oraz {ab} więc sprowadza się do {b} Wiedza o hipotezie jest rozproszona międz obserwa- cjami musim uwzględni dnić wszelie dane wspierające {b}
7 rzład łączenia obserwacji {abc}. {bc}. Suma wszelich danch wspierają- cch hipotezę {b} : {ab}.3 m m { b} { b} m m {c}. {b}. {a}. m m {a}. {b}. {c}. {ab}. {bc}.3 {abc}. le łączna suma nowch wartości wpadowch wszstich hipotez nie jest równa r bo mam puste przecięcia cia 7 rzład łączenia obserwacji {abc}. {bc}. {ab}.3 {c}. {b}. Konieczna jest normalizacja dzielim ażdą nową wartość przez łączn czną sumę nowch wartości wpado- wch wszstich hipotez: m m {a}. m m {a}. {b}. {c}. {ab}. {bc}.3 {abc}. czli pomniejszone o obszar wszstich pustch przecięć
73 rzład łączenia obserwacji {abc}. {bc}. {ab}.3 {c}. {b}. {a}. m m {a}. {b}. {c}. {ab}. {bc}.3 {abc}. Obszar pustch przecięć ęć: m m............3.......3..3 obszar {b}: { b} m m..8..4.3.5...33 po normalizacji:.49 74 rzład łączenia obserwacji {abc}. {bc}. Każdej hipotezie odpowiada pewien sumarczn obszar: {ab}.3 m { m a}.3 m { m b}.33 {c}. m { m c}.8 m { m ab}. {b}. {a}. m m {a}. {b}. {c}. {ab}. {bc}.3 {abc}. m { m bc}. m { m abc}.
75 rzład Mając c wpadow rozład bazow : m m el l {a} {b} 3/77 33/77 {a} {b} 3/77 33/77 3/77 5/77 33/77 56/77 {c} 8/77 {c} 8/77 8/77 /77 {ab} {ac} {bc} {abc} /77 /77 /77 możem obliczć wartości funcji przeonania i wobrażalno alności: Rezultat: {ab} {ac} {bc} {abc} /77 /77 /77 57/77 69/77 /77 33/77 5/77 64/77 77/77 77/77 8 Teoria zbiorów w rozmtch
Teoria zbiorów w rozmtch ang. fuzz set tpu 8 Opracowana przez L.. Zadeha w 965 owstała a w celu reprezentacji niepreczjności ci jęza j naturalnego ang. vagueness i jego pojęć Nie ma związu zu z żadnmi miarami prawdopodobieństwa Nie jest pojednczą teorią lecz raczej rodziną teorii 8 Zbiór r lasczn W lascznej teorii mnogości zbiór r jest charaterzo- wan przez binarną funcję prznależno ności elementów: : : U { } Funcja ta pozwala wtczć wraźną granicę międz tmi elementami przestrzeni/uniwersum tóre ang. universe of discource do zbioru należą i nie należą żą: U =
83 Zbiór r rozmt W przpadu oreśle leń jęzowch i smbolicznch! postaci wsoi wzrost nisa temperatura itp. podział elementów w na te należą żące do zbioru oraz te tóre nie należą nie jest preczjn Naturalnm wdaje się zatem rozszerzenie wartości jaie może e przjąć funcja prznależno ności do przedziału: : U [ ] zatem zbiór r rozmt w przestrzeni U gdzie U to zbiór r par: = { /:: } inaczej: = / w tórm : U [ ] 84 rzład zbiorów w rozmtch rzład W przestrzeni cfr dziesiętnch U={ 8 9} zdefiniujem w postaci zbioru rozmtego pojęcie cfra mała : = = =.9 3=.6 4=.3 5= 6= 7= 8= 9= inn zapis zbioru rozmtego : = / + / +.9/ +.6/3 +.3/4 + + /5 + /6 + /7 + /8 + /9 prz czm zna / nie oznacza dzielenia a + nie oznacza sum algebraicznej lecz teoriomnogościow ciową
85 rzład zbiorów w rozmtch Funcja prznależno ności może e bć również zdefiniowana dla zbioru o niesończonej liczbie elementów wted stosujem notację: = U / rzład W przestrzeni liczb rzeczwistch zdefiniujem w postaci zbioru rozmtego pojęcie liczba blisa 7 : 7 = + -7 = [+-7 ] - / 3 4 5 6 7 8 9 86 Rozmte funcje prznależno ności Funcja singleton przjmuje postać: gd gd i reprezentuje ona doładnie jeden punt w przestrzeni rozważań tór w pełni należ do zbioru rozmtego; w pozostałch puntach przestrzeni jej wartość wnosi
87 Rozmte funcje prznależno ności Funcja las jest zdefiniowana przez funcję prznależno ności postaci: dla a a ; a b dla a b b a dla b gdzie a i b są parametrami funcji a b 88 Rozmte funcje prznależno ności Funcja las t jest zdefiniowana przez funcję prznależno ności postaci: dla a a dla a b t ; a b c b a c dla b c c b dla c a b c
89 Rozmte funcje prznależno ności Funcja las L jest zdefiniowana przez funcję prznależno ności postaci: b L ; a b c b a dla a dla a b dla b a b odstawowe pojęcia teorii zbiorów w rozmtch 9 Nośniiem zbioru rozmtego nazwam zbiór r tch elementów w przestrzeni U dla tórch > co zapisujem: supp = {{ U: > } Wsoość zbioru rozmtego oznaczam h i oreślam jao res górn g funcji : h sup U prz czm dla zbioru sończonego: h ma U
odstawowe pojęcia teorii zbiorów w rozmtch 9 Zbiór r rozmt nazwam normalnm jeżeli eli jego wsoość wnosi tzn. h = Zbiór r rozmt tór nie jest normaln możem zawsze znormalizować przez operację: norm h Zbiór r rozmt zawiera się w zbiorze rozmtm co zapisujem wted i tlo wted gd: UU 9 Operacje na zbiorach rozmtch Sumą zbiorów w rozmtch U nazwam zbiór rozmt o funcji prznależno ności = ma { { } rzecięciem ciem zbiorów w rozmtch U nazwam zbiór r rozmt o funcji prznależno ności = min { { } Uzupełnieniem dopełnieniem zbioru rozmtego U nazwam zbiór r rozmt ~ ~ o funcji prznależno ności ~ =
93 Operacje na zbiorach rozmtch Sumą zbiorów w rozmtch U nazwam zbiór rozmt o funcji prznależno ności = ma { { } - 3 4 5 6 7 8 9 94 Operacje na zbiorach rozmtch rzecięciem ciem zbiorów w rozmtch U nazwam zbiór r rozmt o funcji prznależno ności = min { { } - 3 4 5 6 7 8 9
95 Operacje na zbiorach rozmtch Uzupełnieniem dopełnieniem zbioru rozmtego U nazwam zbiór r rozmt ~ ~ o funcji prznależno ności ~ = - 3 4 5 6 7 8 9 rzład operacji na zbiorach rozmtch 96 rzład Załóżm że U={3456} oraz =.9/3 + /4 +.6/6 =.7/3 + /5 +.4/6 Zgodnie z definicją mam: =.9/3 + /4 + /5 +.6/6 =.7/3 +.4/6 ~ = / + / +./3 + /5 +.4/6 Należ zauważć że: ~ = / + / +.9/3 + /4 + /5 +.6/6 U ~ =./3 +.4/6
97 Operacje na zbiorach rozmtch Ilocznem artezjańsim zbiorów w rozmtch U nazwam zbiór r rozmt o funcji prznależno ności = min { { } rzład Załóżm że e mam: =.5/ +.9/4 =.3/ +.7/4 +./6 Zgodnie z definicją mam: =.3/ +.5/4 +./6 + +.3/4 +.7/44 +./46 98 Zasada rozszerzania Załóżm że e dane jest nierozmte odwzorowanie f przestrzeni U w przestrzeń Y : f : U Y oraz zbiór r rozmt U : = / Zbiór r rozmt induowan przez to odwzorowanie i oreślon w przestrzeni Y jest postaci: = f = f /f gdzie: sup gd f f f gd f
rzład zastosowania zasad rozszerzania 99 rzład Załóżm że =./3 +.4/ +.7/5 oraz f = + wted zgodnie z definicją mam: = f =./7 +.4/5 +.7/ rzład ied odwzorowanie f nie jest wzajemnie jednoznaczne! Załóżm że =.3/- +.5/3 +.7/ oraz f = wted zgodnie z definicją mam: = f =.5/9 + ma.3;.7/4 = =.5/9 +.7/4 rzład zastosowania zasad rozszerzania rzład Załóżm że e przestrzeń U jest postaci U U i zbiór r rozmt U reprezentuje liczb blisie liczbie =.7/ + / +.8/3 zaś zbiór U liczb blisie liczbie 3 3 =.8/ + /3 +.6/4 oraz = f = wted zbiór będzie zbiorem rozmtm liczb blisich liczbie 6 6 postaci: = f = min.7;.8/ + min.7;/3 + + mamin.7;.6;min;.8/4+ + mamin;;min.8;.8/6+ + min;.6/8 + min.8;/9 + min.8;.6/ = =.7/ +.7/3 +.8/4 + /6 +.6/8 +.8/9 +.6/
Liczb rozmte Zbiór r rozmt oreślon na zbiorze liczb rzeczwistch tai tórego funcja prznależno ności: : [; ] spełnia waruni: zbiór jest normaln tzn. h= zbiór jest wpuł 3 funcja jest przedziałami ami ciągła nazwam liczbą rozmtą Liczb rozmte Liczba rozmta jest dodatnia jeżeli eli = Liczba rozmta jest ujemna jeżeli eli = - - - -9-8 -7-6 -5-4 -3 - - 3 4 5 6 7 8 9 Liczba ujemna Liczba ani ujemna ani dodatnia Liczba dodatnia
odstawowe operacje na liczbach rozmtch 3 Definicja wszstich operacji na liczbach rozmtch jest onsewencją zastosowania zasad rozszerzania dla operatorów w unarnch mam: = / gdzie = a dla operatorów w binarnch: = z/ gdzie z sup min{ ; } z oraz oznacza operator np. +-/ / itp. rzład operacji na liczbach rozmtch 4 rzład Załóżm że e dane sąs dwie liczb rozmte =.7/ + /3 +.6/4 =.8/3 + /4 +.5/6 tóre należ dodać do siebie co oznaczm operatorem rozmtm. Zgodnie z definicją otrzmam: = min.7;.8/5 + mamin.7;;min;.8/6 + + mamin;;min.6;.8/7+ + mamin.7;.5;min.6;/8+ + min;.5/9 + min.6;.5/ = =.7/5 +.8/6 + /7 +.6/8 +.5/9 +.5/
5 Relacja rozmta Relacją rozmtą R międz dwoma niepustmi zbiorami nierozmtmi z przestrzeni X i Y nazwam dowoln zbiór r rozmt oreślon na ilocznie artezjańsim X Y tzn. R X Y = {: X Y} czli relacja rozmta jest zbiorem par: R = {: R } X Y gdzie R : X Y [; ] jest funcją prznależno ności Należ podreśli lić że e relacja rozmta jest zbiorem rozmtm więc c obowiązuj zują dla niej podane wcześniej definicje przecięcia cia sum i dopełnienia 7 rzład relacji rozmtej rzład Załóżm że X = Y = [; ] oznacza długod ugość żcia człowiea wówczas w wczas relacja R o funcji prznależno ności: R 3 dla dla 3 dla 3 może e bć uznana za reprezentację niepreczjnego porównania w postaci sformułowania owania osoba jest dużo o starsza od osob.
8 Złożenie zbioru i relacji rozmtej Złożenie relacji rozmtej R X Y i relacji rozmtej S Y Z tóre oznaczam RS jest relacją rozmtą RS X Z o funcji prznależno ności postaci: R S z sup min{ R ; S z } Złożenie zbioru rozmtego X i relacji rozmtej R X Y tóre oznaczam R jest zbiorem rozmtm Y o funcji prznależno ności postaci: sup min{ ; } Y X W teorii zbiorów w rozmtch znane sąs też inne alternatwne definicje złożenia z relacji rozmtej R 9 rzład relacji rozmtej rzład Załóżm że e dane sąs dwie relacje rozmte R i S reprezentowane przez macierze:..5.3.6.8 R S.6.7.9.4 złożenie Q tch relacji będzie b miało o postać:. Q R S.6 gdzie:.5.3.7.6.9.8 q.4 q q q q q 3 3
rzład relacji rozmtej ciąg g dalsz przładu zatem: q = mamin.;.3; min.5;.7 =.5 q = mamin.;.6; min.5;.9 =.5 q = mamin.;.8; min.5;.4 =.4 q = mamin.6;.3; min;.7 =.7 q = mamin.6;.6; min;.9 =.9 q = mamin.6;.8; min;.4 =.6.5 Q.7.5.9.4.6 Wniosowania rozmte Rozmtą regułą odrwania nazwam regułę o następuj pującm schemacie wniosowania is przesłana impliacja IF is TN is wniose is gdzie X oraz Y są zbiorami rozmtmi natomiast są tzw. zmiennmi lingwistcznmi Zmienne lingwistczne to taie zmienne tóre przjmują jao wartość słowa lub zdania z jęza j naturalnego tórm odpowiadają zbior rozmte np. zmienna hałas as może e przjmować wartości { mał średni średniowsoi wsoi }
Wniosowania rozmte W rozmtej regule odrwania w przeciwieństwie do tradcjnej reguł modus ponens przesłana nie odnosi się do zbioru tór wstępuje w warunu impliacji lecz do innego zbioru odobnie wniose nie odnosi się do wniu impliacji lecz do innego zbioru tór oreślon jest przez złożenie zbioru rozmtego i rozmtej impliacji tzn. = Impliacja rozmta jest zatem rodzajem relacji rozmtej R X Y o funcji prznależno ności R= więc c z definicji złożenia z relacji rozmtch mam: sup min{ ; } X 3 Impliacja jao relacja rozmta Funcja prznależno ności onluzji rozmtej reguł odrwania zależ od funcji prznależno ności impliacji tóra może e bć definiowana w różn r sposób Najczęś ęściej worzstwan jest tzw. model Mamdaniego w tórm wróżniam dwie definicje: reguła a tpu minimum = = min { { } reguła a tpu iloczn Larsena Larsena =
4 Impliacja jao relacja rozmta Należ podreśli lić że e reguł tpu Mamdaniego nie sąs impliacjami w sensie logicznm co ilustruje tabela: min { { } Istnieje szereg definicji impliacji rozmtej tóre w przeciwieństwie do reguł Mamdaniego są impliacjami logicznmi model logiczn ale nie znalazł one za- stosowania pratcznego np. impliacja Łuasiewicza: = min {; - + } rchitetura rozmtego sstemu wniosowania 5 aza reguł lo rozmwania X Mechanizm wniosowania Y lo wostrzania
6 Rozmta baza reguł aza reguł rozmtch oreślana równier wnież mianem modelu lingwistcznego słada się z reguł rozmtch następuj pującej postaci: IF is ND is ND ND n is n TN is gdzie i X oraz Y są zbiorami rozmtmi natomiast i zmiennmi wejściowmi modelu lingwistcznmi zmienną wjściow ciową modelu lingwistcznego Załadam adam że e reguł z bazie wiedz sąs powiązane operatorem logicznm dsjuncji oraz zmienne wjściowe sąs wzajemnie niezależne ne 7 Rozmta reguła Regułę rozmtą postaci: IF is ND is ND ND n is n TN is przjmując c oznaczenie: = n oraz odpowiednio X = X X X n możem przedstawić jao rozmtą impliację R: gdzie R jest rodzajem relacji rozmtej oreślonej na zbiorze X Y tzn. R X Y jest zbiorem rozmtm o funcji prznależno ności: R = gdzie = [[ n ] T
8 lo rozmwania lo rozmwania X Na wejściu rozmtego sstemu wniosującego podawan jest nierozmt sgnał: T... X tór podlega operacji rozmwania ang. fuzzifica- tion w celu odwzorowania na zbiór r rozmt X = X X X n Najczęś ęściej worzstwaną operacją rozmwania jest rozmwanie tpu singleton: gd gd n 9 lo wniosowania Na wejściu blou rozmtego wniosowania mam zbiór r rozmt X = X X X n Na wjściu blou wniosowania otrzmujem jeden zbiór r rozmt Y oreślon zależno nością: N N N R X Mechanizm wniosowania Y gdzie N jest liczbą reguł rozmtch oraz X Y zaś jego funcja prznależno ności przjmuje postać: ma sup min{ ; }... N X
rz rzład wniosowania ad wniosowania Niech dane b Niech dane będą dwie regu dwie reguł rozmte: rozmte: a sgna a sgnał wj wjściow blou wniosowania b ciow blou wniosowania będzie wnosi dzie wnosił: } ; ma{ } ; ma{ is is is : is is is : R R TN ND IF TN ND IF is is is : is is is : R R TN ND IF TN ND IF na wej na wejście sstemu podano sgna cie sstemu podano sgnał. Dla operacji rozmwania tpu Dla operacji rozmwania tpu singleton singleton wej wejście blou cie blou wniosowania to wniosowania to zb zb. rozmte z funcjami prznale. rozmte z funcjami prznależno ności: ci: T T gdzie: gdzie: }] ; [min{ sup X X }] ; [min{ sup X X rz rzład wniosowania ad wniosowania oniewa onieważ: } ; min{ } ; min{ } ; min{ } ; min{ } ; ; min{ sup X X } ; ; min{ sup X X to: to: Dla Dla regu reguł minimum minimum tpu tpu Mamdaniego Mamdaniego otrzmam: otrzmam: } ; ; min{ } }; ; min{min{ } ; min{ } ; ; min{ } }; ; min{min{ } ; min{ Ostatecznie: Ostatecznie: }} ; ; ma{min{ }} ; ; ma{min{
Graficzna interpretacja przładu dla reguł minimum min min ma 3 rzład wniosowania Jeżeli eli dla impliacji zastosujem regułę tpu iloczn Larsena otrzmam: min{ ; min{ Ostatecznie: } ; } ma{ min{ ; }}
Graficzna interpretacja przładu dla ilocznu Larsena Larsena 4 min min ma 5 rzład wniosowania Jeśli użjem u innej niż singleton operacji rozmwania na wejściu blou wniosowania pojawią się liczb rozmte oraz o funcjach prznależno ności oraz. W efecie: sup X X sup X X min X X min sup X sup X X [min{min[ [min{ sup [min{ min{ ; ; ; ; }] ; ; ; }] min{ ; } ; sup min{ ; } ma min sup X X ];min[ ; ; ; ; } ; ]}] ; min{ ; ; sup min{ ; ; X
Graficzna interpretacja przładu dla reguł minimum 6 sup ix i min{ i ; i i i min ma 7 lo wostrzania Y lo wostrzania Na wejściu blou wostrzania mam zbiór r rozmt Y z funcją prznależno ności tór trzeba odwzorować w jedną wartość Y Najczęś ęściej worzstwana jest metoda środa cięż ężości funcji prznależno ności postaci gdzie tzn. N N jest nazwane środiem zbioru rozmtego arg ma{ }
9 Interpretacja graficzna operacji Interpretacja graficzna operacji wostrzania wostrzania is is is : is is is : R R TN ND IF TN ND IF is is is : is is is : R R TN ND IF TN ND IF Dla prz Dla przładu z adu z dwoma regu dwoma regułami: ami: