Systemy ekspertowe - wiedza niepewna
|
|
- Urszula Szulc
- 9 lat temu
- Przeglądów:
Transkrypt
1 Instytut Informatyki Uniwersytetu Śląskiego lab 8
2 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach, co może wywołać niedotlenienie mięśnia sercowego, zwłaszcza przy wysiłku fizycznym. Które fragmenty wskazują na niepewność wnioskowania? Jak przekształcić powyższy tekst w taki sposób, aby można było do niego zastosować jedną z poznanych dotychczas reprezentacji wiedzy. Czy do tak przekształconego tekstu można zadać pytania: jaki ma wpływ wysiłek fizyczny na niedotlenienie mięśnia sercowego u ludzi z jednakowo posuniętą miażdżycą, wykonujących wysiłek fizyczny o różnym natężeniu? w jakim stopniu człowiek, u którego nie występuje niedotlenienie z powodu wysiłku, narażony jest na zwężenie tętnic z powodu miażdżycy?
3 Podejście probabilistyczne: Mająć dany zbiór hipotez: dla których: Mając zbiór pewnych obserwacji: H = {h 1,..., h n } P(h i ) > 0 dla każdego i E = {e 1,..., e m } każdy fragment obserwacji e j jest niezależny warunkowo względem każdej hipotezy.
4 Rysunek: Przesłanka a hipoteza Obserwacja e oraz hipoteza h są reprezentowane przez wierzchołki grafu, natomiast natomiast wnioskowanie przez krawędź. Rozpatrywana reguła może być rozpatrywana w modelu Bayesa następująco: P(h e) = P(e h) P(h) P(e)
5 Rysunek: Sieć wnioskowania
6 Sieć Bayesowska: B = {N, E, CP} gdzie dwójka {N, E} jest skierowanym grafem acyklicznym zbudowanym na podstawie zadanych prawdopodobieństw warunkowych zawartych w zbiorze CP. Przykład: Dany jest zbiór pewnych zmiennych identyfikujących obserwacje i hipotezy. P Niech zbiór tych zmiennych ma następującą postać: Z = A, B, C, D, E, F, G, H
7 Dane są również informacje opisujące związki przyczynowo-skutkowe pomiędzy tymi zmiennymi w postaci zbiory prawdopodobieństw warunkowych CP: CP = {P(A), P(B A), P(C B), P(C F ), P(D C), P(E CH), P(F G), P(G), P(H G)}
8 Rysunek: Wynikowa sieć Bayesa
9 Współczynniki pewności CF: gdzie: Jeżeli e(&e2&...&e n ) To h ze stopniem pewności CF e(, e2,..., e n ) to przesłanki reguły a h to konkluzja, & to operator logiczny And.
10 Współczynnik CF: CF nie jest interpretowany jako klasyczne prawdopodobieństwo Współczynnik pewności CF jest połączeniem stopnia wiedzy, oraz niewiedzy. Stopień wiedzy - inaczej miara wiarygodności - MB. Stopień niewiedzy - miara niewiarygodności - MD. Załóżmy istnienie prostej reguły: Jeżeli e to h
11 Współczynniki dla powyższej reguły określone są następująco: MB(h,e) MD(h,e) CF(h,e) Sam współczynnik CF definiowany jest jako: CF (h, e) = MB(h, e) MD(h, e)
12 Interpretacja powyższych miar może być następująca: jeżeli P(h e) = 1 to h jest prawdziwe na pewno, wtedy MB(h, e) = 1, MD(h, e) = 0, oraz CF (h, e) = 1, jeżeli P( h e) = 1 to h jest fałszywe na pewno, wtedy MB(h, e) = 0, MD(h, e) = 1, oraz CF (h, e) = 1, jeżeli P(h e) = P(h) to h co znaczy, że h i e są niezależne, wtedy MB(h, e) = 0, oraz MD(h, e) = 0, CF (h, e) = 0.
13 Rysunek: Wartości CF
14 Propagacja współczynników niepewności: Mając daną regułę R: Jeżeli e to h ze stopniem pewności CF przesłanka reguły e ma pewien współczynnik CF konkluzja reguły h również ma współczynnik CF Końcowy współczynnik pewności wyznaczany jest w następujący sposób: CF (h, e) = CF (e) CF (h)
15 W przypadku gdy przesłanka reguły zawiera wyrażenie zawierające operator AND (&) : Jeżeli e1&e2 to h ze stopniem pewności CF to współczynnik pewności konkluzji h wyznaczany jest w następujący sposób: CF (h, e1&e2) = Minimum {CF (e1), CF (e2)} CF (h) W przypadku gdy przesłanka reguły zawiera wyrażenie zawierajace funktor OR ( ) : Jeżeli e1 e2 to h ze stopniem pewności CF to współczynnik pewności konkluzji h wyznaczany jest w następujący sposób: CF (h, e1 e2) = Maksimum {CF (e1), CF (e2)} CF (h)
16 W przypadku, gdy jedna hipoteza h jest konkluzją więcej niż jednej reguły: Jeżeli e1 to h Jeżeli e2 to h Rysunek: Obliczanie CF Rysunek: Obliczanie CF
17 Połączenie szeregowe reguł: Jeżeli e1 to e2 Jeżeli e2 to h Rysunek: Szeregowe połączenie reguł CF (h, e1) = CF (e2, e1) CF (h, e2)
18 Rysunek: Propagacja CF CF (e4, e1e2) = CF (e2, e1) CF (e4, e2)
19 CF (e4, e1e2e3) = Rysunek: Propagacja CF CF (e4,e1e2)+cf (e4,e3) 1 min( CF (e4,e1e2), CF (e4,e3) ) CF (e4, e1e2e3) = = =
20 Rysunek: Propagacja CF CF (h, e1e2e3e4) = CF (e4, e1e2e3) CF (h, e4)
21 Rysunek: Propagacja CF CF (h, e1e2e3e4e5) = CF (h, e1e2e3e4) + CF (h, e5) CF (h, e1e2e3e4) CF (h, e5)
22 CF (h, e1e2e3e4e5) = Rysunek: Propagacja CF
23 Mając dane obserwacje O, hipotezy H, oraz prawdopodobieństwa warunkowe CP - narysować graf stanowiący graficzną reprezentację sieci Bayes a. O = {A, B, C, D, E} H = {X, Y, Z} CP = {P(A), P(B), P(C), P(D), P(E), P(C A, B), P(X C, D), P(Y C, D), P(Z E)}
24 O = {A, B, C, D, E} H = {X, Y, Z} CP = {P(A), P(B), P(C), P(D), P(E), P(X A, B), P(C X ), P(Y C, D, E), P(Z C, E), P(B Z)}
25 Obliczyć wynikowy współczynnik pewności CF dla hipotezy h. Narysować kolejne etapy redukowania grafu. Rysunek: Propagacja CF
26 Rysunek: Propagacja CF
27 Dla podanej poniżej bazy wiedzy obliczyć współczynnik pewności dla hipotezy ciepła odzież tak zakładając, że wszystkie przesłanki poniższych reguł są spełnione. if pogoda = mróz then łyżwy= tak with 0.5 if pogoda = oenieg then narty tak with 0.5 if pogoda = mróz then narty tak with 0.5 if pogoda = śnieg then łyżwy= tak with 0.5 if łyżwy tak then ciepla odziez tak with 0.7 if narty = tak then ciepla odziez = tak with 0.7
28 if pogoda = ładna then wycieczka rowerowa = tak with 0.6 if pogoda = kiepska then wycieczka piesza = tak with 0.6 if wycieczka piesza = tak then kurtka przeciwdeszczowa = tak with -0.8 if wycieczka rowerowa = tak then kurtka przeciwdeszczowa = tak with -0.8
29 W podanym niżej tekśecie występują pewne zależności opisane liczbowo prawdopodobieństwami warunkowymi. Proszę podać zbiór CP oraz narysować graf przyczynowo skutkowy. Czy otrzymany graf jest siecią Bayes a proszę uzasadnić odpowiedź. Wyjazd na narty jest pewny, gdy jest dużo śniegu, jest mróz i dysponujemy wolnym czasem. Wyjazd na snowboard jest również pewny, gdy jest dużo śniegu, jest mróz i dysponujemy wolnym czasem. W przypadku wyjazdu na narty, na 50% pojedziemy na polskie trasy, jeżeli wolnego czasu jest mało, na 30% pojedziemy na Słowację, na 20% pojedziemy gdzieś dalej. W przypadku wyjazdu na snowboard na 50% pojedziemy na gdzieś dalej. Jeżeli pojedziemy gdzieś dalej to na 50% jest dużo śniegu i dysponujemy wolnym czasem.
30 Prawdopodobieństwo wystąpienia anginy w przypadku objawów takich jak ból gardła i gorączka jest wysokie i wynosić może 0.8. Jednak wystąpienie gorączki i bólu głowy może świadczyć o grypie, co jest hipotezą prawdopodobną na 0.6. W przypadku, gdy pacjent cierpiący na grypę nie wyleczył się całkowicie może dojść do zapalenia oskrzeli z prawdopodobieństwem 0.4. Zapalenie oskrzeli może spowodować ból gardła z prawdopodobieństwem 0.3.
Reprezentacja niepewności w wiedzy w systemach ekspertowych
Reprezentacja niepewności w wiedzy w systemach ekspertowych Agnieszka Nowak- Brzezińska 24 stycznia 2014 1 Niepewność w wiedzy - reprezentacja wiedzy niepewnej w bazach wiedzy Niepewność może występować
Bardziej szczegółowoGdzie: N zbiór wierzchołków grafu, E zbiór krawędzi grafu, Cp zbiór prawdopodobieostw warunkowych.
Laboratorium z przedmiotu Sztuczna inteligencja Temat: Sieci Bayesa, Wnioskowanie probabilistyczne, GeNIe Laboratorium nr 1 Sied Bayesowska służy do przedstawiania zależności pomiędzy zdarzeniami bazując
Bardziej szczegółowoSieci Bayesa mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Sosnowiec, 2011
Sieci Bayesa mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Sosnowiec, 2011 Sieć Bayesowska służy do przedstawiania zależności pomiędzy zdarzeniami bazując na rachunku prawdopodobieństwa.
Bardziej szczegółowoSztuczna inteligencja : Tworzenie sieci Bayesa
Instytut Informatyki Uniwersytetu Śląskiego 13 kwiecień 2011 Rysunek: Sieć Bayesa Rysunek: Sieć Bayesa Matura z matematyki na 60 %. Matura z matematyki na 100 %. Rozpatrzmy następujące przypadki: Uczeń
Bardziej szczegółowoInżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Współczynniki pewności (ang. Certainty
Bardziej szczegółowoSystemy ekspertowe. Reprezentacja wiedzy niepewnej i wnioskowanie w warunkach niepewności. Model współczynników pewności.
Część siódma Reprezentacja wiedzy niepewnej i wnioskowanie w warunkach niepewności Autor Roman Simiński Model współczynników pewności Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie
Bardziej szczegółowoAlgorytmy stochastyczne, wykład 08 Sieci bayesowskie
Algorytmy stochastyczne, wykład 08 Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-04-10 Prawdopodobieństwo Prawdopodobieństwo Prawdopodobieństwo warunkowe Zmienne
Bardziej szczegółowoP(F=1) F P(C1 = 1 F = 1) P(C1 = 1 F = 0) P(C2 = 1 F = 1) P(C2 = 1 F = 0) P(R = 1 C2 = 1) P(R = 1 C2 = 0)
Sieci bayesowskie P(F=) F P(C = F = ) P(C = F = 0) C C P(C = F = ) P(C = F = 0) M P(M = C =, C = ) P(M = C =, C = 0) P(M = C = 0, C = ) P(M = C = 0, C = 0) R P(R = C = ) P(R = C = 0) F pali papierosy C
Bardziej szczegółowoInżynieria wiedzy Wnioskowanie oparte na wiedzy niepewnej Opracowane na podstawie materiałów dra Michała Berety
mgr Adam Marszałek Zakład Inteligencji Obliczeniowej Instytut Informatyki PK Inżynieria wiedzy Wnioskowanie oparte na wiedzy niepewnej Opracowane na podstawie materiałów dra Michała Berety Wstępnie na
Bardziej szczegółowoWnioskowanie bayesowskie
Wnioskowanie bayesowskie W podejściu klasycznym wnioskowanie statystyczne oparte jest wyłącznie na podstawie pobranej próby losowej. Możemy np. estymować punktowo lub przedziałowo nieznane parametry rozkładów,
Bardziej szczegółowoModelowanie Niepewności
Na podstawie: AIMA, ch13 Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 21 marca 2014 Na podstawie: AIMA, ch13 Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 21 marca
Bardziej szczegółowoKlasyfikacja metodą Bayesa
Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo
Bardziej szczegółowoNa podstawie: AIMA, ch13. Wojciech Jaśkowski. 15 marca 2013
Na podstawie: AIMA, ch13 Instytut Informatyki, Politechnika Poznańska 15 marca 2013 Źródła niepewności Świat częściowo obserwowalny Świat niedeterministyczny Także: Lenistwo i ignorancja (niewiedza) Cel:
Bardziej szczegółowoKlasyfikacja bayesowska
Wykład14,26V2010,str.1 Przykład: (Bishop) M Jabłka i pomarańcze: Wyciągnięto pomarańczę; jakie jest prawdopodobieństwo, że naczynie było niebieskie? Wykład14,26V2010,str.2 TWIERDZENIE: (Bayes) M Wykład14,26V2010,str.2
Bardziej szczegółowoŁ Ś ź ź ź ć ć ć Ń ć ź ź ć ć Ń Ń ź Ą ź ć ć Ę ć Ń ź ć ć ć ć ź ć ć ć ć ć Ę ć ć ć ć ć ć Ą ć ć ć ć Ń ć ć ć ć Ę Ą ć ć ć ć ć Ń ć ć ć Ę ć ć ź ć ć ć ć ć ć ć Ż ć Ź ć ć Ź ć ć Ż ć Ą ć Ą ć Ź Ę Ę ĘĘĘ ć ć ć ć ć ć ć ć
Bardziej szczegółowoZadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
Bardziej szczegółowoAgnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo przynależności obiektu do klasy. Opiera się na twierdzeniu Bayesa. Twierdzenia
Bardziej szczegółowoJeśli X jest przestrzenią o nieskończonej liczbie elementów:
Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów
Bardziej szczegółowoNiepewność Belief Networks SE. Zarządzanie wiedzą. Wykład 9 Reprezentacja niepewności w systemach inteligentnych Probabilistyka. Joanna Kołodziejczyk
Zarządzanie wiedzą Wykład 9 Reprezentacja niepewności w systemach inteligentnych Probabilistyka Joanna Kołodziejczyk 13 maj 2011 Plan wykładu 1 Niepewność 2 Belief Networks 3 SE Pochodzenie niepewności
Bardziej szczegółowoWstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy
Bardziej szczegółowoLekcja 3: Elementy logiki - Rachunek zdań
Lekcja 3: Elementy logiki - Rachunek zdań S. Hoa Nguyen 1 Materiał a) Zdanie proste, złożone b) Spójniki logiczne (funktory zdaniotwórcze):,,,,, (alternatywa wykluczająca - XOR). c) Tautologia, zdanie
Bardziej szczegółowoSystemy ekspertowe : program PCShell
Instytut Informatyki Uniwersytetu Śląskiego lab 1 Opis sytemu ekspertowego Metody wnioskowania System PcShell Projekt System ekspertowy - system ekspertowy to system komputerowy zawierający w sobie wyspecjalizowaną
Bardziej szczegółowoNiepewność w wiedzy. Agnieszka Nowak - Brzezińska
Realizacja niepewności wiedzy w systemach ekspertowych Instytut Informatyki, Uniwersytet Śląski, ul. Będzinska 39, Sosnowiec, Polska Tel (32) 2 918 381, Fax (32) 2 918 283 21 czerwca 2010 Table of contents
Bardziej szczegółowoPrawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym
Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród
Bardziej szczegółowoIII. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta
Bardziej szczegółowoEksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Bardziej szczegółowoSztuczna inteligencja: zbiory rozmyte
Instytut Informatyki Uniwersytetu Śląskiego lab 1 1 Klasyczna teoria zbiorów 2 Teoria zbiorów rozmytych 3 Zmienne lingwistyczne i funkcje przynależności 4 System rozmyty 5 Preprocesing danych Każdy element
Bardziej szczegółowo1. Logika, funkcje logiczne, preceptron.
Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję
Bardziej szczegółowoAgnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Bardziej szczegółowoSystemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski
Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do
Bardziej szczegółowoW narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco.
Zadanie 0 Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad wartośd funkcji przynależności
Bardziej szczegółowoMetody probabilistyczne
Metody probabilistyczne Prawdopodobieństwo warunkowe Jędrzej Potoniec Część I Podstawy interpretacji wyników badań medycznych Badanie raka Grupa kobiet w wieku 40 lat bierze udział w przesiewowej mammografi,
Bardziej szczegółowoSystemy ekspertowe. Wnioskowanie w systemach regułowych. Część piąta. Autor Roman Simiński.
Część piąta Autor Roman Simiński Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.
Bardziej szczegółowoAgnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Bardziej szczegółowoAlgorytmy uczenia maszynowego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 1 wykład 10 godzin (stary tryb - 20 godzin); laborki 20 godzin; Tematyka - laborki Szczegółowe przygotowanie studentów do rozwiązywania zadań ze wskazaniem
Bardziej szczegółowoInstytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 3 Generacja realizacji zmiennych losowych Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia: Generowanie
Bardziej szczegółowoMetody wnioskowania. Wnioskowanie w przód (ang. forward chaining) Wnioskowanie w tył (ang. Backward chaining) Od przesłanki do konkluzji Np..
Systemy regułowe Metody wnioskowania Wnioskowanie w przód (ang. forward chaining) Od przesłanki do konkluzji Np.. CLIPS Wnioskowanie w tył (ang. Backward chaining) Czyli od konkluzji do przesłanki Np..
Bardziej szczegółowoInstytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 4 Modelowanie niezawodności prostych struktur sprzętowych Prowadzący: mgr inż. Marcel Luzar Cel
Bardziej szczegółowoSztuczna inteligencja : Zbiory rozmyte cz. III
Instytut Informatyki Uniwersytetu Śląskiego lab 3 Notacja Zadeha: symboliczny zapis zbioru rozmytego dla przestrzeni dyskretnej. Dla X jest przestrzenią o skończonej liczbie elementów X = {x 1, x 2,...,
Bardziej szczegółowoFuzja sygnałów i filtry bayesowskie
Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna
Bardziej szczegółowoPRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ. z. 104 Transport Marek Stawowy. Politechnika Warszawska, Streszczenie: lepsza. [4].
PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 104 Transport 2014 Marek Stawowy Politechnika Warszawska, : g 2013 Streszczenie:.. 1. ation lepsza. e [4]. 104 Marek Stawowy hipotezy. tego M MB MD s s s Gdzie:
Bardziej szczegółowoCel projektu: Wymogi dotyczące sprawozdania:
W ramach zajęć proszę wykonać sprawozdanie z logiki rozmytej. Sprawozdanie powinno realizować zadanie wnioskowania rozmytego. Cel projektu: Student projektuje bazę wiedzy wnioskowania rozmytego (kilka,
Bardziej szczegółowoLogika intuicjonistyczna
Logika intuicjonistyczna Logika klasyczna oparta jest na pojęciu wartości logicznej zdania. Poprawnie zbudowane i jednoznaczne stwierdzenie jest w tej logice klasyfikowane jako prawdziwe lub fałszywe.
Bardziej szczegółowoSztuczna inteligencja : Zbiory rozmyte cz. 2
Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012 Funkcja trójkątna: Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek:
Bardziej szczegółowoSystemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
Bardziej szczegółowoMechanika kwantowa Schrödingera
Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Bardziej szczegółowoMetody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba Cel zadania Celem zadania jest implementacja klasyfikatorów
Bardziej szczegółowoModelowanie niezawodności prostych struktur sprzętowych
Modelowanie niezawodności prostych struktur sprzętowych W ćwiczeniu tym przedstawione zostaną proste struktury sprzętowe oraz sposób obliczania ich niezawodności przy założeniu, że funkcja niezawodności
Bardziej szczegółowoPodstawy metod probabilistycznych. dr Adam Kiersztyn
Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku
Bardziej szczegółowoPDM 3. Zakres podstawowy i rozszerzony. Plan wynikowy. STEREOMETRIA (22 godz.) W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi:
PDM 3 Zakres podstawowy i rozszerzony Plan wynikowy STEREOMETRIA ( godz.) Proste i płaszczyzny w przestrzeni Kąt nachylenia prostej do płaszczyzny wskazać płaszczyzny równoległe i płaszczyzny prostopadłe
Bardziej szczegółowoPodstawy sztucznej inteligencji
wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru
Bardziej szczegółowoKatalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Bardziej szczegółowoIndukowane Reguły Decyzyjne I. Wykład 3
Indukowane Reguły Decyzyjne I Wykład 3 IRD Wykład 3 Plan Powtórka Grafy Drzewa klasyfikacyjne Testy wstęp Klasyfikacja obiektów z wykorzystaniem drzewa Reguły decyzyjne generowane przez drzewo 2 Powtórzenie
Bardziej szczegółowoSieci Bayesowskie. Agnieszka Nowak Brzezińska
Sieci Bayesowskie Agnieszka Nowak Brzezińska Rodzaje niepewności Niepewność stochastyczna np. nieszczęśliwy wypadek, ryzyko ubezpieczenia, wygrana w lotto metody rachunku prawdopodobieństwa Niepewność
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Rozważmy eksperymenty 1 gra Bolka w ruletkę w kasynie;
Bardziej szczegółowoSztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm F-LEM1 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm F LEM 1. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu F LEM1
Bardziej szczegółowoPrzykłady do zadania 6.1 :
Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 28/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 6: Zmienna losowa. Rozkład zmiennej losowej. Dystrybuanta. Przykłady
Bardziej szczegółowoMATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY
ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych
Bardziej szczegółowoPROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ
PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE Metody programowania sieciowego wprowadzono pod koniec lat pięćdziesiatych Ze względu na strukturę
Bardziej szczegółowoInstytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:
Bardziej szczegółowoRozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba, J. Kaczmar Cel zadania Celem zadania jest implementacja klasyfikatorów
Bardziej szczegółowoDefinicja pochodnej cząstkowej
1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem
Bardziej szczegółowoSpacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Bardziej szczegółowoElementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)
Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,
Bardziej szczegółowoRozmyte systemy doradcze
Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu
Bardziej szczegółowo10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta,
10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta, liczba przekątnych wielokąta, porównywanie pól wielokątów w oparciu o proste zależności geometryczne jak np. przystawanie i zawieranie, rozpoznawanie
Bardziej szczegółowoWymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury
STEREOMETRIA Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny
Bardziej szczegółowoWnioskowanie statystyczne i oparte na współczynnikach wiarygodności. Wprowadzenie teoretyczne Wnioskowanie probabilistyczne Przykłady
Zarządzanie wiedzą Wnioskowanie statystyczne i oparte na współczynnikach wiarygodności 1 Plan wykładu Niepewność Wnioskowanie statystyczne: Wprowadzenie teoretyczne Wnioskowanie probabilistyczne Przykłady
Bardziej szczegółowo6. Zagadnienie parkowania ciężarówki.
6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
Bardziej szczegółowoKlasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Bardziej szczegółowoSTATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta
Bardziej szczegółowoRachunek Prawdopodobieństwa i Statystyka
Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne
Bardziej szczegółowoZadanie 0 gdy nie mamy logiki rozmytej
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
Bardziej szczegółowoKształcenie w zakresie rozszerzonym. Klasa IV
Kształcenie w zakresie rozszerzonym. Klasa IV Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Bardziej szczegółowoWYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę
Bardziej szczegółowoInżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość
Bardziej szczegółowoWYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska
Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):
Bardziej szczegółowoOWO-MODELOWE SKORUPOWE SYSTEMY EKSPERTOWE
REGUŁOWO OWO-MODELOWE SKORUPOWE SYSTEMY EKSPERTOWE Część 3: Systemy elementarne i rozwinięte z ocenami Antoni Niederliński Uniwersytet Ekonomiczny w Katowicach antoni.niederlinski@ue.katowice. pl Koniec
Bardziej szczegółowoRozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Bardziej szczegółowoUniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Bardziej szczegółowoModelowanie komputerowe
Modelowanie komputerowe wykład 5- Klasyczne systemy kolejkowe i ich analiza dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 16,23listopada2015r. Analiza
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę
Bardziej szczegółowoInteligencja obliczeniowa
Ćwiczenie nr 3 Zbiory rozmyte logika rozmyta Sterowniki wielowejściowe i wielowyjściowe, relacje rozmyte, sposoby zapisu reguł, aproksymacja funkcji przy użyciu reguł rozmytych, charakterystyki przejściowe
Bardziej szczegółowo3. Instrukcje warunkowe
. Instrukcje warunkowe Przykłady.1. Napisz program, który pobierze od użytkownika liczbę i wypisze na ekran słowo ujemna lub nieujemna, w zależności od tego czy dana liczba jest ujemna czy nie. 1 #include
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Bardziej szczegółowoPrawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo
Bardziej szczegółowoWnioskowanie rozmyte. Krzysztof Patan
Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne
Bardziej szczegółowoWprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych. Data Mining Wykład 2
Data Mining Wykład 2 Odkrywanie asocjacji Plan wykładu Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych Geneza problemu Geneza problemu odkrywania reguł
Bardziej szczegółowoElementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń
Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest
Bardziej szczegółowoMetoda Tablic Semantycznych
Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,
Bardziej szczegółowoREGUŁOWO-MODELOWE SKORUPOWE SYSTEMY EKSPERTOWE
REGUŁOWO-MODELOWE SKORUPOWE SYSTEMY EKSPERTOWE Część 3: Systemy elementarne i rozwinięte z ocenami Antoni Niederliński Uniwersytet Ekonomiczny w Katowicach antoni.niederlinski@ue.katowice. pl Koniec pewnego
Bardziej szczegółowoTechnologie baz danych
Plan wykładu Technologie baz danych Wykład 2: Relacyjny model danych - zależności funkcyjne. SQL - podstawy Definicja zależności funkcyjnych Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów
Bardziej szczegółowoWykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów
Bardziej szczegółowoSTANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.
METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI
Bardziej szczegółowoUczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10
Bardziej szczegółowoWYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Bardziej szczegółowoMaksymalne powtórzenia w tekstach i zerowa intensywność entropii
Maksymalne powtórzenia w tekstach i zerowa intensywność entropii Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN Warszawa 1 Wprowadzenie 2 Ograniczenia górne i dolne 3 Przykłady
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 176405 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM ROZSZERZONY CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Granica lim x 2
Bardziej szczegółowo