w jednowymiarowym pudle potencja lu

Wielkość: px
Rozpocząć pokaz od strony:

Download "w jednowymiarowym pudle potencja lu"

Transkrypt

1 Do wyk ladu II czastka w pudle potencja lu oscylator harmoniczny rotator sztywny Ścis le rozwiazania równania Schrödingera: atom wodoru i jon wodoropodobny) Czastka w jednowymiarowym pudle potencja lu Poza pud lem o d lugości L - energia potencjalna nieskończenie wielka. m - masa czastki Należy rozwiazać równanie Schrödingera: Ĥψ = Eψ, 1) gdzie Ĥ = ˆT + ˆV to operator ca lkowitej energii uk ladu hamiltonian, operator Hamiltona) - suma operatorów: energii kinetycznej ˆT i potencjalnej ˆV, E to energia uk ladu, a ψ funkcja falowa. Postać Ĥ zależy od uk ladu. W klasycznym wyrażeniu na sum e energii kinetycznej i potencjalnej, trzeba zamienić ped na operator pedu i po lożenie na operator po lożenia. Dla obszaru II z rysunku V=0. Wystarczy zatem rozważyć energie kinetyczna E kin E kin = mv x = p x m gdzie v x oznacza predkość, a p x - ped czastki poruszajacej sie wzd luż osi x )

2 Podstawienie: p x ˆp x = i d dx = i d dx, 3) gdzie p x - sk ladowa x pedu, ˆp x - operator sk ladowej x pedu, = h - zredukowana π sta la Plancka, i = d 1 - jednostka urojona, - pochodna po zmiennej x. dx Wynik dzia lania operatora ˆp x na funkcje fx) to pochodna tej funkcji wzgledem x pomnożona przez liczbe i albo = = i = i ). i i i Operator energii kinetycznej ˆT dla tej czastki: ˆT = ˆp m = m d dx. 4) Operator Hamiltona dla czastki w jednowymiarowym pudle potencja lu jest równy ˆT, zatem należy rozwiazać równanie Schrödingera WAŻNE: poza pud lem funkcja falowa jest równa zero. Po pomnożeniu obu stron równania przez m : d ψ = Eψ 5) m dx d ψ dx = me ψ 6) me - liczba Jak wiadomo: Szukane: ψx) d sin kx dx = k sin kx 7) Podobnie: d cos kx = k cos kx 8) dx Rozwiazanie ogólne równania różniczkowego: ψx) = a sin kx + b cos kx 9) gdzie a i b sta le, których wartości należy ustalić k = me

3 Funkcja ψx) musi być porzadna klasy Q)! Musi być ciag la. Dla x < 0 ψx) = 0, czyli musi być ψ0) = 0 Dla x > L ψx) = 0, czyli musi być ψl) = 0 ψ0) = a sin k0 + b cos k0 = b 10) zatem b = 0, czyli ψx) = a sin kx ψl) = 0 ψl) = a sin kl sin kl = 0, gdy kl = n π i n to liczba ca lkowita Zatem k = nπ L ψx) = a sin nπx L 11) Prawdopodobieństwo znalezienia czastki miedzy x 1 a x x x 1 ψ x)ψx)dx = P x 1 < x < x ) 1) Zatem ψ x)ψx)dx = 1 13) 0 0dx + L 0 ψ x)dx = 1 14) a sin nπx L ) dx + L 0dx = 1 15) L a sin nπx 0 L ) dx = 1 16) a = 17) L Normalizacja funkcji falowej Ψ n x) = L nπx sin, n = 1,, 3,... 18) L 3

4 Uwaga: k = nπ L stad k = me m - masa czastki E n = n h, n = 1,, 3,... 19) 8mL Energia czastki w jednowymiarowym pudle potencja lu zależy od liczby kwantowej n. Ψ n x) = nπx sin L L 0) Funkcje falowe, opisujace stany czastki w jednowymiarowym pudle potencja lu, także zależa od liczby kwantowej n. Bariera potencja lu o skończonej wysokości i szerokości Czastka o masie m poruszajaca sie wzd luż osi x natrafia na bariere potencja lu o skończonej wysokości V x) = V 0 4

5 Przed bariera w obszarze I) V x) = 0 gdzie m - masa czastki, = h/π h - sta la Plancka) d ψ = Eψ 1) m dx d ψ dx = me ψ ) W obszarze II V x) = V 0, zatem: Ψ = A 1 e ikx + A e ikx, gdzie k = me 3) dla V 0 < E dla V 0 > E d ψ m dx + V 0ψ = Eψ 4) d ψ m dx = E V 0)ψ 5) d ψ dx = me V 0) ψ 6) me Ψ = B 1 e ik x + B e ik x, gdzie k V0 ) = 7) e k x dla x nie jest porzadna) d ψ dx = mv 0 E) ψ 8) Ψ = C e k x, gdzie k = mv0 E) 9) Poza bariera w obszarze III) ponownie V x) = 0: d ψ = Eψ 30) m dx Ψ = De ikx, gdzie k = me Efekt tunelowy - czastka może przedostać sie za bariere potencja lu o skończonej wysokości i szerokości, nawet jeśli jej energia jest mniejsza od wysokości bariery. Skaningowa mikroskopia tunelowa Scanning Tunnelling Microscopy STM) Binning i Rohrer - Nagroda Nobla ) 5

6 Czastka w trójwymiarowym pudle potencja lu. V x, y, z) = 0 dla 0 < x < L, 0 < y < L i 0 < z < L V x, y, z) =, jeśli x < 0, x > L, y < 0, y > L, z < 0 lub z > L Wewnatrz pud la potencja lu m - masa czastki): m Metoda rozdzielenia zmiennych Hamiltonian: Ĥ = x + y + z m x m y m z ) Ψ = EΨ 3) = Ĥx + Ĥy + Ĥz jest suma trzech operatorów, z których każdy zależy od innej zmiennej niezależnej: x, y albo z Można przyjać: Ψx, y, z) = ψ 1 x)ψ y)ψ 3 z), Wtedy: ĤΨx, y, z) = EΨx, y, z) Ĥx + Ĥy + Ĥz)ψ 1 x)ψ y)ψ 3 z) = εψ 1 x)ψ y)ψ 3 z) ψ y)ψ 3 z)ĥxψ 1 x) + ψ 1 x)ψ 3 z)ĥyψ y)+ +ψ 1 x)ψ y)ĥzψ 3 z) = Eψ 1 x)ψ y)ψ 3 z) Po podzieleniu obu stron równania przez ψ 1 x)ψ y)ψ 3 z) musi być: czyli Ĥ x ψ 1 x) ψ 1 x) + Ĥyψ y) ψ y) Ĥ x ψ 1 x) ψ 1 x) = E 1 Ĥ yψ y) ψ y) = E Ĥ z ψ 3 z) ψ 3 z) = E 3 + Ĥzψ 3 z) ψ 3 z) Ĥ x ψ 1 x) = E 1 ψ 1 x) Ĥ y ψ y) = E ψ y) Ĥ z ψ 3 z) = E 3 ψ 3 z) = E Trzy równania dla czastki w jednowymiarowym pudle potencja lu 6

7 Funkcja falowa: Ψ n1 n n 3 x, y, z) = 8 L sin n 1πx 3 L sin n πy L sin n 3πz L 33) Energia: E n1 n n 3 = n 1 +n +n 3 )h 8mL n 1 = 1,, 3,..., n = 1,, 3,..., n 3 = 1,, 3,... 7

8 Oscylator harmoniczny k - sta la si lowa d m dx Ψ + 1 kx Ψ = EΨ 34) si la: F = kx Dwa atomy: x 1 - po lożenie atomu 1; x - po lożenie atomu [ + 1 ] m 1 x 1 m x kx 1 x x e ) Φ = εφ 35) gdzie x e - po lożenie równowagowe Wspó lrz edne środka masy: m 1 + m )X s = m 1 x 1 + m x czyli: X s = m 1 m 1 +m x 1 + m m 1 +m x Wspó lrz edne ruchu wzgl ednego odchylenie od po lożenia równowagi) : x = x 1 x x e x 1 = X s x 1 x = X s x x 1 = x = m 1 m 1 + m m m 1 + m + x X s x 1 + x X s x x x + X s x X s x 36) 37) 38) 39) Po podstawieniu: gdzie µ = m 1m m 1 +m x 1 x = = m1 ) m 1 + m ) m m 1 + m m 1 + m ) X s - masa zredukowana X s X s + m 1 m 1 + m X s x + x 40) m m 1 + m X s x + x 41) µ x + 1 ) kx Φ = εφ 4) Ĥ1 X s ) + Ĥx)) Φ = εφ 43) 8

9 Hamiltonian sk lada sie z dwóch cześci: Ĥ 1 zależy tylko od X s, Ĥ zależy tylko od x X s i x niezależne). Metoda rozdzielenia zmiennych. Za lożenie: Φ = F X s )Ψx) Po podstawieniu do równania Schrödingera: ΨĤ1F + F ĤΨ = εf Ψ Po podzieleniu obu stron przez F Ψ: Ĥ x)ψ Ψ = ε Ĥ1X s )F F 44) Musi być zatem: Ĥ x)ψ Ψ = E ε Ĥ1X s)f F = E gdzie E - pewna sta la) ε Ĥ1X s )F F m 1 + m ) d dx s ruch translacyjny środka masy = E 45) F = ε E)F 46) Ĥ x)ψ Ψ = E 47) d µ dx Ψ + 1 kx Ψ = EΨ 48) równanie Schrödingera dla oscylatora harmonicznego o masie µ 9

10 Energia potencjalna, poziomy energetyczne i kwadraty funkcji falowych dla oscylatora harmonicznego energia oscylatora harmonicznego zmienia sie w sposób kwantowy nieciag ly): E υ = hν 0 υ + 1 ), υ = 0, 1,,... - liczba kwantowa oscylacji ν 0 = π) 1 k/µ - czestość drgań klasycznego oscylatora harmonicznego energia kwantowego oscylatora harmonicznego nie może nigdy być równa zeru zerowa energia oscylacji) w stanie podstawowym najbardziej prawdopodobne jest znalezienie kwantowego oscylatora harmonicznego w pobliżu punktu równowagi przenikanie do obszarów niedost epnych wed lug praw fizyki klasycznej tu poza klasyczne punkty zwrotu) Ψ 0 = ) α 1/4 y π e Ψ 1 = α π Ψ = α π ) 1/4 ye y ) 1/4 1 y 1)e y itd., gdzie y = αx, α = kµ wielomiany Hermite a 10

11 Rotator sztywny gdzie ale Uk lad dwóch czastek, poruszajacych sie w taki sposób, 1 = że ich odleg lość pozostaje sta la ) 1 Ψ = εψ 49) m 1 m + x 1 y1 + z 1 x1 x ) + y 1 y ) + z 1 z ) = R ; = + x y + z Po przejściu do wspó lrzednych środka masy: X s = m1 m 1 +m x 1 + m m 1 +m x ; Y s = m1 m 1 +m y 1 + m m 1 +m y i Z s = m1 m 1 +m z 1 + m m 1 +m z ; i wspó lrzednych ruchu wzglednego: x = x 1 x ; y = y 1 y i z = z 1 z można latwo dokonać oddzielenia ruchu translacyjnego środka masy. Równanie Schrödingera dla ruchu wewn etrznego wzgl ednego) w uk ladzie środka mas: gdzie µ - masa zredukowana, = przy czym x + y + z = R 50) Ψ = EΨ 51) µ + + x y z Wspó lrz edne sferyczne: 0 r, 0 θ π, 0 φ π 11

12 Operator Laplace a we wspó lrzednych sferycznych: = 1 r r ) + 1 r r r sin θ sin θ ) θ θ + 1 r sin θ 5) φ r = R sta le), wiec hamiltonian ma postać: 1 µr sin θ sin θ ) θ θ + 1 sin θ ) φ 53) µr = I moment bezw ladności Należy rozwiazać równanie: 1 I sin θ θ sin θ ) + 1 θ sin θ po pomnożeniu obu stron równania przez I gdzie λ = IE 1 sin θ sin θ ) + 1 θ θ sin θ Y θ, φ) = Θθ)Φφ) - możliwe rozdzielenie zmiennych. sin θ Mnożac obie strony równania przez otrzymuje sie: Θθ)Φφ) czyli sin θ Θθ) sin θ Θθ) ) θ θ ) Y θ, φ) = EY θ, φ) 54) φ ) Y θ, φ) = λy θ, φ) 55) φ + 1 Φφ) Φφ) φ = λ sin θ 56) sin θ Θθ) sin θ Θθ) ) + λ sin θ = 1 θ θ Φφ) Φφ) 57) φ Jedna strona równania zależy tylko od zmiennej θ, a druga tylko od zmiennej φ każda z tych cześci musi być równa sta lej, która oznaczymy M Równanie zawierajace zmienna φ ma postać: czyli 1 Φφ) d Φφ) dφ = M 58) d Φφ) dφ + M Φφ) = 0 59) Rozwiazanie, to funkcje: Φ M φ) = 1 π e imφ, które sa jednoznaczne tylko dla M = 0, ±1, ±,... 1

13 Równanie zawierajace zmienna θ ma bardziej z lożona postać. Rozwiazania znane. Sens fizyczny maja tylko rozwiazania, które uzyskuje sie przy spe lnieniu warunku prowadzacego do zależności: J - liczba kwantowa rotacji Funkcje falowe dla rotatora sztywnego: E J = JJ + 1), gdzie J = 0, 1,, 3,... 60) I Y M J θ, φ) = 1 π N J, M P M J cos θ)e imφ 61) J= 0, 1,,..., M = J, J + 1,..., -1, 0, 1,,..., J 1, J N J, M - czynnik normalizacyjny Harmoniki sferyczne: E 0 - jeden stan Y 0 0 Y 0 0 = 1 π Y 0 1 = 1 Y 1 1 = 1 Y 1 1 = 1. 3 cos θ π 3 sin θeiφ π 3 π sin θe iφ E 1 - trzy stany, opisywane przez Y 1 1, Y 0 1 i Y 1 1 E - pi eć stanów Poziomy rotacyjne sa J + 1-krotnie zdegenerowane J + 1 stanów funkcji falowych) o tej samej energii) 13

14 Energia klasycznego rotatora E = L I, gdzie L - moment p edu czyli L = IE zatem ˆL = IĤ - operator kwadratu momentu p edu; ĤY M J zatem θ, φ) = I M JJ + 1)YJ θ, φ), gdzie J = 0, 1,, 3,... ˆL YJ M θ, φ) = JJ + 1) YJ M θ, φ) 6) Operator wspó lrz ednej L z wektora momentu p edu sk ladowej L z momentu p edu) L z = xp y yp x ˆLz = i x y y x ) We wspó lrz ednych sferycznych: ˆLz = i φ ˆL z YJ M θ, φ) = M YJ M θ, φ) 63) Harmoniki sferyczne sa funkcjami w lasnymi operatorów Ĥ, ˆL i ˆL z Dla rotatora sztywnego energia, kwadrat momentu pedu i rzut momentu pedu na wyróżniony kierunek w przestrzeni maja jednocześnie ściśle określone wartości. - Rotator sztywny - model obracajacej sie czasteczki dwuatomowej 14

15 Stan uk ladu opisuje f 1 -funkcja w lasna operatora ˆα reprezentujacego wielkość mechaniczna A. ˆαf 1 = a 1 f 1 64) a 1 -wynik pomiaru wielkości mechanicznej A Co uzyskamy w wyniku pomiaru innej wielkości mechanicznej B, która reprezentuje operator ˆβ? Jeśli funkcja f 1 jest także funkcja w lasna ˆβ, to w wyniku pomiaru otrzymamy odpowiadajac a jej wartość w lasna operatora ˆβ ˆβf 1 = b 1 f 1 65) A jaki bedzie wynik pomiaru B, jeśli funkcja f 1 nie jest funkcja w lasna ˆβ? ˆβg 1 = b 1 g 1, ˆβg = b g, ˆβg3 = b 3 g 3 66) Wyniku pomiaru B nie można ściśle określić jest to jedna z wartości w lasnych ˆβ) Wartości wielkości mechanicznych A i B można zawsze jednocześnie ściśle określić, jeśli każda funkcja w lasna ˆα jest także funkcja w lasna operatora ˆβ Można udowodnić: jeśli iloczyn ˆα i ˆβ jest przemienny, czyli dla dowolnej funkcji f: ˆβ ˆαf = ˆα ˆβf 67) to każda funkcja w lasna operatora ˆα jest także funkcja w lasna ˆβ i odwrotnie, jeśli operatory maja wspólny zbiór funkcji w lasnych, to sa przemienne). Przyk lad: operatory: ˆx=x i ˆp x = i d dx Iloczyn tych operatorów nie jest przemienny, np. natomiast x i d dx ex ) = i xe x ) 68) i d dx xex ) = i e x + xe x ) 69) Nie można jednocześnie ściśle określić po lożenia czastki i jej pedu zasada nieoznaczoności Heisenberga) Zatem: ˆLx ˆLz ˆL z ˆLx ; ˆL z = i x y y x ) ˆL x = i y z z y ) Podobnie: ˆLx ˆLy ˆL y ˆLx i ˆLy ˆLz ˆL z ˆLy Nie można dok ladnie określić jednocześnie wartości żadnych dwóch sk ladowych momentu p edu. Można określić tylko kwadrat momentu pedu i jedna ze sk ladowych. 15

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych:

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych: do wyk ladu z 1.10.13 Atom wodoru i jon wodoropodobny Ze - ladunek jadra, e - ladunek elektronu, µ - masa zredukowana µ = mem j m e+m j ( µ m e ) M j - masa jadra, m e - masa elektronu, ε 0 - przenikalność

Bardziej szczegółowo

i elektronów w czasteczkach (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra 2M b a i b; m -masa elektronu e 2 r ij

i elektronów w czasteczkach (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra 2M b a i b; m -masa elektronu e 2 r ij Notatki do wyk ladu IX Rozdzielenie ruchu jader i elektronów w czasteczkach W dowolnym uk ladzie wspó lrzednych (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra a i b)ma postać: Ĥ

Bardziej szczegółowo

Czastka swobodna Bariera potencja lu Pud lo jednowymiarowe FEMO Pud la wielowymiarowe. Wyk lad 3. Uk lady modelowe I

Czastka swobodna Bariera potencja lu Pud lo jednowymiarowe FEMO Pud la wielowymiarowe. Wyk lad 3. Uk lady modelowe I Wyk lad 3 Uk lady modelowe I Hamiltonian, równania Schrödingera hamiltonian Ĥ(x) = ˆT (x) = 2 d 2 2m dx 2 równanie Schrödingera zależne od czasu stany stacjonarne 2 2 Ψ(x, t) Ψ(x, t) 2m x 2 = i t dψ E

Bardziej szczegółowo

Uklady modelowe III - rotator, atom wodoru

Uklady modelowe III - rotator, atom wodoru Wyk lad 5 Uklady modelowe III - rotator, atom wodoru Model Separacja ruchu środka masy R = m 1r 1 + m 2 r 2 m 1 + m 2 Ĥ = Ĥ tr (R) + Ĥ rot (r) Ĥ tr 2 (R) = 2(m 1 + m 2 ) R [ Ψ E tr (R; t) = exp i (k R

Bardziej szczegółowo

Chemia kwantowa - proste modele

Chemia kwantowa - proste modele Uniwersytet Warszawski Wydział Chemii Małgorzata Jeziorska, Aleksandra Tucholska Michał Hapka, Tomasz Grining Chemia kwantowa - proste modele Skrypt dla studentów zainteresowanych raczej innymi działami

Bardziej szczegółowo

Uk lady modelowe II - oscylator

Uk lady modelowe II - oscylator Wyk lad 4 Uk lady modelowe II - oscylator Model Prawo Hooke a F = m d 2 x = kx = dv dt2 dx Potencja l Równanie ruchu V = 1 2 kx2 d 2 x dt 2 + k m x = 0 Obraz klasyczny Rozwiazania k x = A sin t = A sin

Bardziej szczegółowo

Rotacje i drgania czasteczek

Rotacje i drgania czasteczek Rotacje i drgania czasteczek wieloatomowych Gdy znamy powierzchnie energii potencjalnej V( R 1, R 2,..., R N ) to możemy obliczyć poziomy energetyczne czasteczki. Poziomy te sa w ogólności efektem: rotacji

Bardziej szczegółowo

Rozwiązania zadań z podstaw fizyki kwantowej

Rozwiązania zadań z podstaw fizyki kwantowej Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze

Bardziej szczegółowo

Chemia ogólna - część I: Atomy i cząsteczki

Chemia ogólna - część I: Atomy i cząsteczki dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane

Bardziej szczegółowo

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx

Bardziej szczegółowo

Postulaty mechaniki kwantowej

Postulaty mechaniki kwantowej Wyk lad 2 Postulaty mechaniki kwantowej 1 wymiar Postulat Stan czastki określa funkcja falowa Ψ = Ψ(x, t) zależna od po lożenia czastki x oraz czasu t. Interpretacje fizyczna ma jedynie kwadrat modu lu

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ Za dzień narodzenia mechaniki kwantowej jest uważany 14 grudnia roku 1900. Tego dnia, na posiedzeniu Niemieckiego Towarzystwa Fizycznego w Instytucie Fizyki Uniwersytetu Berlińskiego

Bardziej szczegółowo

gęstością prawdopodobieństwa

gęstością prawdopodobieństwa Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)

Bardziej szczegółowo

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne

Bardziej szczegółowo

MOMENT PĘDU, ROTATOR SZTYWNY. c.us.edu.pl/ mm

MOMENT PĘDU, ROTATOR SZTYWNY.   c.us.edu.pl/ mm MOMENT PĘDU, ROTATOR SZTYWNY http://zcht.mf c.us.edu.pl/ mm dygresja(materiał dodatkowy) układy współrzędnych w dwóch wymiarach: biegunowy x=rcosϕ y=rsinϕ 0 r 0 ϕ 2π r= x 2 +y 2 x ϕ=arccos x2 +y2 w trzech

Bardziej szczegółowo

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x. Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe

Bardziej szczegółowo

V. RÓWNANIA MECHANIKI KWANTOWEJ

V. RÓWNANIA MECHANIKI KWANTOWEJ V. RÓWNANIA MECHANIKI KWANTOWEJ 1 1 Postulaty mechaniki kwantowej Istota teorii kwantowej może być sformułowana za pomocą postulatów, których spełnienie postulujemy i których nie można wyprowadzić z żadnych

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe

Bardziej szczegółowo

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Jak matematycznie opisać własności falowe materii? Czym są fale materii? Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, Funkcja falowa

Bardziej szczegółowo

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41?

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41? TEST. Ortogonalne i znormalizowane funkcje f i f są funkcjami własnymi operatora αˆ, przy czym: α ˆ f =. 05 f i α ˆ f =. 4f. Stan pewnej cząstki opisuje 3 znormalizowana funkcja falowa Ψ = f + f. Jakie

Bardziej szczegółowo

Chemia kwantowa. Pytania egzaminacyjne. 2010/2011: 1. Przesłanki doświadczalne mechaniki kwantowej.

Chemia kwantowa. Pytania egzaminacyjne. 2010/2011: 1. Przesłanki doświadczalne mechaniki kwantowej. 1 Chemia kwantowa. Pytania egzaminacyjne. 21/211: 1. Przesłanki doświadczalne mechaniki kwantowej. 2. Efekt fotoelektryczny - interpretacja Einsteina. 3. Efekt fotoelektryczny: jak skorelowana jest licza

Bardziej szczegółowo

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 193) De Broglie zaproponował, że każdy

Bardziej szczegółowo

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader Notatki do wyk ladu VII Struktura elektronowa czasteczek przybliżenie Borna-Oppenheimera rozwiazanie równania Schrödingera dla elektronów przy ustalonym po lożeniu jader przybliżenie jednoelektronowe metoda

Bardziej szczegółowo

Zastosowanie metod matematycznych w fizyce i technice - zagadnienia

Zastosowanie metod matematycznych w fizyce i technice - zagadnienia Zastosowanie metod matematycznych w fizyce i technice - zagadnienia 1 Metoda ι Grama Schmidta zortogonalizować uk lad funkcji {x n } n= a) na odcinku 1; 1 z waga ι ρx) = 1, b) na prostej ; ) z waga ι ρx)

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]

Bardziej szczegółowo

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Jak matematycznie opisać własności falowe materii? Czym są fale materii? Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, t ) Tutaj upraszczamy

Bardziej szczegółowo

Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie

Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie Schrödingera, zasada nieoznaczoności Heisenberga, ruch cząstki swobodnej,

Bardziej szczegółowo

15 Potencjały sferycznie symetryczne

15 Potencjały sferycznie symetryczne z ϕ θ r y x Rysunek : Definicje zmiennych we współrzędnych sferycznych r, θ, ϕ) 5 Potencjały sferycznie symetryczne 5. Separacja zmiennych Do tej pory omawialiśmy problemy jednowymiarowe, które służyły

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Normalizacja funkcji falowej

Normalizacja funkcji falowej Normalizacja funkcji falowej Postulaty mechaniki kwantowej Zadanie. Wyznacz stałą normalizacyjną i podaj postać funkcji unormowanej: Ψ = Ncosαx) dla x [, a] Opis sposobu rozwiązania zadania krok po kroku:.

Bardziej szczegółowo

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B:

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B: Notatki do wyk ladu XIII Oddzia lywania miedzycz asteczkowe A i B zamknietopow lokowe czasteczki, jony molekularne lub atomy. Energia oddzia lywania E oddz mi edzy A i B: E oddz = E AB (E A + E B ) ()

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

czastkowych Państwo przyk ladowe zadania z rozwiazaniami: karpinw adres strony www, na której znajda

czastkowych Państwo przyk ladowe zadania z rozwiazaniami:   karpinw adres strony www, na której znajda Zadania z równań różniczkowych czastkowych Za l aczam adres strony www, na której znajda Państwo przyk ladowe zadania z rozwiazaniami: http://math.uni.lodz.pl/ karpinw Zadanie 1. Znaleźć wszystkie rozwiazania

Bardziej szczegółowo

Mechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II.

Mechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II. Próg potencjału Mecanika klasyczna zasada zacowania energii mvi mv E + V W obszarze I cząstka biegnie z prędkością v I, E > V w obszarze cząstka biegnie z prędkością v Cząstka przecodzi z obszaru I do.

Bardziej szczegółowo

Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń

Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń Wyk lad 6 Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń Uk lady modelowe czastka swobodna czastka na barierze potencja lu czastka w pudle oscylator harmoniczny oscylator Morse

Bardziej szczegółowo

Metody obliczeniowe chemii kwantowej oparte na funkcji falowej. Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać:

Metody obliczeniowe chemii kwantowej oparte na funkcji falowej. Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać: Metody obliczeniowe chemii kwantowej oparte na funkcji falowej Równanie Schrödingera: ĤΨ = EΨ Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać: Ĥ = h 2 K α=1 1 2M α 2 α h2 2m

Bardziej szczegółowo

h 2 h p Mechanika falowa podstawy pˆ 2

h 2 h p Mechanika falowa podstawy pˆ 2 Mechanika falowa podstawy Hipoteza de Broglie a Zarówno promieniowanie jak i cząstki materialne posiadają naturę dwoistą korpuskularno-falową. Z każdą mikrocząstką można związać pewien proces falowy pierwotnie

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Elementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 1923) De Broglie zaproponował, że każdy

Bardziej szczegółowo

MONIKA MUSIAŁ POSTULATY

MONIKA MUSIAŁ POSTULATY CHEMIA KWANTOWA MONIKA MUSIAŁ POSTULATY Ćwiczenia Literatura Lucjan Piela, Idee chemii kwantowej, PWN, Warszawa 2003. Włodzimierz Kołos, Chemia kwantowa, PWN, Warszawa 1978. Alojzy Gołębiewski, Elementy

Bardziej szczegółowo

r. akad. 2012/2013 wykład III-IV Mechanika kwantowa Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa

r. akad. 2012/2013 wykład III-IV Mechanika kwantowa Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa r. akad. 01/013 wykład III-IV Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa Zakład Zakład Biofizyki Biofizyki 1 Falowa natura materii Zarówno fale elektromagnetyczne (fotony) jaki i

Bardziej szczegółowo

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 ) Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz

Bardziej szczegółowo

Zasada nieoznaczoności Heisenberga

Zasada nieoznaczoności Heisenberga Fale materii paczki falowe o różnej szerokości Dwa gaussowskie rozkład amplitud fal armonicznc o różnc szerokościac σ p i różnc wartościac średnic pędu p. Części rzeczwista ReΨ i urojona mψ funkcji falowc

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

c) prawdopodobieństwo znalezienia cząstki między x=1.0 a x=1.5 jest równe

c) prawdopodobieństwo znalezienia cząstki między x=1.0 a x=1.5 jest równe TEST 1. Ortogonalne i znormalizowane funkcje f 1 i f są funkcjami własnymi operatora, przy czym: f 1 =1.05 f 1 i f =.41 f. Stan pewnej cząstki opisuje znormalizowana funkcja 1 3 falowa = f1 f. Jakie jest

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 26, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 26, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 26, 28.05.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 25 - przypomnienie

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

Postulaty interpretacyjne mechaniki kwantowej Wykład 6

Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 19 września 2014 Karol Kołodziej Postulaty interpretacyjne mechaniki

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Metody obliczeniowe chemii teoretycznej

Metody obliczeniowe chemii teoretycznej Metody obliczeniowe chemii teoretycznej mechanika kwantowa mechanika klasyczna ւ ց WFT DFT MM FFM metody bazuj ace na metody bazuj ace na Mechanika Molekularna funkcji falowej gȩstości elektronowej Wave

Bardziej szczegółowo

stosunek przyrostu funkcji y do odpowiadajacego dy dx = lim y wielkości fizycznej x, y = f(x), to pochodna dy v = ds edkości wzgl edem czasu, a = dv

stosunek przyrostu funkcji y do odpowiadajacego dy dx = lim y wielkości fizycznej x, y = f(x), to pochodna dy v = ds edkości wzgl edem czasu, a = dv Matematyka Pochodna Pochodna funkcji y = f(x) w punkcie x nazywamy granice, do której daży stosunek przyrostu funkcji y do odpowiadajacego mu przyrostu zmiennej niezaleźnej x, g przyrost zmiennej daży

Bardziej szczegółowo

Elementy fizyki kwantowej. Obraz interferencyjny. Funkcja falowa Ψ. Funkcja falowa Ψ... Notatki. Notatki. Notatki. Notatki. dr inż.

Elementy fizyki kwantowej. Obraz interferencyjny. Funkcja falowa Ψ. Funkcja falowa Ψ... Notatki. Notatki. Notatki. Notatki. dr inż. Elementy fizyki kwantowej dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 013/14 1 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Obraz interferencyjny

Bardziej szczegółowo

Niezb. ednik matematyczny. Niezb. ednik matematyczny

Niezb. ednik matematyczny. Niezb. ednik matematyczny Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz

Bardziej szczegółowo

Notatki do wyk ladu IV (z 27.10.2014)

Notatki do wyk ladu IV (z 27.10.2014) Dla orbitalnego momentu p edu (L): Notatki do wyk ladu IV (z 7.10.014) ˆL ψ nlm = l(l + 1) ψ nlm (1) ˆL z ψ nlm = m ψ nlm () l + 1 możliwych wartości rzutu L z na wyróżniony kierunek w przestrzeni (l -liczba

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Mechanika kwantowa Schrödingera

Mechanika kwantowa Schrödingera Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny

Bardziej szczegółowo

Podstawy mechaniki kwantowej. Jak opisać świat w małej skali?

Podstawy mechaniki kwantowej. Jak opisać świat w małej skali? Podstawy mechaniki kwantowej Jak opisać świat w małej skali? 1 Promieniowanie elektromagnetyczne gamma X ultrafiolet podczerwień mikrofale radiowe widzialne Wavelength in meters 10-1 10-10 10-8 4 x 10-7

Bardziej szczegółowo

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej

Bardziej szczegółowo

Podstawy mechaniki kwantowej

Podstawy mechaniki kwantowej Podstawy mechaniki kwantowej Jak opisać świat w małej skali? Czy świat jest realny? 1 Promieniowanie elektromagnetyczne gamma X ultrafiolet podczerwień mikrofale radiowe widzialne Wavelength in meters

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

Symbol termu: edu (sumy ca lkowitego orbitalnego momentu edu i ca lkowitego spinu) Przyk lad: 2 P 3. kwantowa

Symbol termu: edu (sumy ca lkowitego orbitalnego momentu edu i ca lkowitego spinu) Przyk lad: 2 P 3. kwantowa Notatki do wyk ladu VI (z 18.11.2013) Symbol termu: 2S+1 L (1) L -liczba kwantowa ca lkowitego orbitalnego momentu pedu Duże litery S, P, D, F, itd. dla L=0, 1, 2, 3, itd. 2S+1 - multipletowość; S - liczba

Bardziej szczegółowo

Rozdział 4 Równanie Schrödingera

Rozdział 4 Równanie Schrödingera Rozdział 4 Równanie Schrödingera 4.1 Równanie falowe Schrödingera 4. Obserwable, stany stacjonarne, wartości średnie 4.3 Nieskończona studnia potencjału 4.4 Skończona studnia potencjału 4.5 Trójwymiarowa

Bardziej szczegółowo

Podstawy mechaniki kwantowej

Podstawy mechaniki kwantowej Podstawy mechaniki kwantowej Jak opisać świat w małej skali? Czy świat jest realny? Promieniowanie elektromagnetyczne gamma X ultrafiolet podczerwień mikrofale radiowe widzialne Wavelength in meters 0-0

Bardziej szczegółowo

Wykład Budowa atomu 2

Wykład Budowa atomu 2 Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Fizyka 2 Wykład 3 1 Równanie Schrödingera Chcemy znaleźć dopuszczalne wartości energii układu fizycznego, dla którego znamy energię potencjalną. Z zasady odpowiedniości znamy postać hamiltonianu. Wybieramy

Bardziej szczegółowo

5 Reprezentacje połozeniowa i pedowa

5 Reprezentacje połozeniowa i pedowa 5 Reprezentacje połozeniowa i pedowa 5.1 Reprezentacja położeniowa W poprzednim rozdziale znaleźliśmy jawną postać operatora Ĥ w przedstawieniu położeniowym. Co to znaczy? W przedstawieniu położeniwym

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 10 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Zadania z mechaniki kwantowej

Zadania z mechaniki kwantowej Zadania z mechaniki kwantowej Gabriel Wlazłowski 13 maja 2016 Rachunek zaburzeń bez czasu 1. Metodą rachunku zaburzeń obliczyć pierwszą i drugą poprawkę dla poziomów energetycznych oscylatora harmonicznego

Bardziej szczegółowo

1. Przesłanki doświadczalne mechaniki kwantowej.

1. Przesłanki doświadczalne mechaniki kwantowej. 1 Pytania egzaminacyjne: 1. Przesłanki doświadczalne mechaniki kwantowej. 2. Efekt fotoelektryczny- interpretacja Einsteina. 3. Efekt fotoelektryczny: jak skorelowana jest liczba wybijanych elektronów

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

FUNKCJE LICZBOWE. x 1

FUNKCJE LICZBOWE. x 1 FUNKCJE LICZBOWE Zbiory postaci {x R: x a}, {x R: x a}, {x R: x < a}, {x R: x > a} oznaczane sa symbolami (,a], [a, ), (,a) i (a, ). Nazywamy pó lprostymi domknie tymi lub otwartymi o końcu a. Symbol odczytujemy

Bardziej szczegółowo

Hierarchia baz gaussowskich (5)

Hierarchia baz gaussowskich (5) Hierarchia baz gaussowskich (5) Bazy split-valence czyli VDZ, VTZ, etc. (np. bazy Pople a 6-31G, 6-311G, etc) Bazy split-valence spolaryzowane VDZP, VTZP, etc. Bazy bazy Dunninga (konsystentne korelacyjnie)

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK Mikroskopia polowa Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania Bolesław AUGUSTYNIAK Efekt tunelowy Efekt kwantowy, którym tłumaczy się przenikanie elektronu w sposób niezgodny

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia

Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia Matematyka A, klasówka, 4 maja 5 Na prośbe jednej ze studentek podaje zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le dów Podać definicje wektora w lasnego i wartości w lasnej

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Procesy Stochastyczne - Zestaw 1

Procesy Stochastyczne - Zestaw 1 Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie

Bardziej szczegółowo

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,

Bardziej szczegółowo

Spis treści. Przedmowa redaktora do wydania czwartego 11

Spis treści. Przedmowa redaktora do wydania czwartego 11 Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania

Bardziej szczegółowo

5. Wykazać, że swobodny elektron nie może poch lon ać fotonu.

5. Wykazać, że swobodny elektron nie może poch lon ać fotonu. 1. Zbadać rozpraszanie cz astki na ladowanej na potencjale kulombowskim. Wyprowadzić wzór Rutherforda na przkrój czynny.. Jak a temperaturȩ ma czarna kula o średnicy 10 cm, która emituje promieniowanie

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. 1 WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. Współrzędne wewnętrzne 2 F=-fq q ξ i F i =-f ij x j U = 1 2 fq2 U = 1 2 ij f ij ξ i ξ j 3 Najczęściej stosowaną metodą obliczania drgań

Bardziej szczegółowo

Podstawy chemii obliczeniowej

Podstawy chemii obliczeniowej Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy poziom Sylabus modułu: Chemia kwantowa 021 Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo