MONIKA MUSIAŁ POSTULATY

Wielkość: px
Rozpocząć pokaz od strony:

Download "MONIKA MUSIAŁ POSTULATY"

Transkrypt

1 CHEMIA KWANTOWA MONIKA MUSIAŁ POSTULATY Ćwiczenia

2 Literatura Lucjan Piela, Idee chemii kwantowej, PWN, Warszawa Włodzimierz Kołos, Chemia kwantowa, PWN, Warszawa Alojzy Gołębiewski, Elementy mechaniki i chemii kwantowej, PWN, Warszawa 1982.

3 Dygresja układy współrzędnych w dwóch wymiarach: biegunowy x=rcosϕ y=rsinϕ 0 r 0 ϕ 2π r= x x 2 +y 2 ϕ=arccos x2 +y2 w trzech wymiarach: sferyczny x=rsinϑcosϕ y=rsinϑsinϕ z=rcosϑ r= z x 2 +y 2 +z 2 ϑ=arccos ϕ=arctg y x2 +y 2 +z 2 x

4 Dygresja zamiana zmiennych Zamiana zmiennych przy całkowaniu: f(x,y)dxdy= 2π 0 ( 0 g(r, ϕ)rdr)dϕ f(x,y,z)dxdydz= 0 π 0 2π 0 g(r,ϑ,ϕ)r 2 sinϑdrdϑdϕ

5 Dygresja całkiipochodne dx=x sinxdx= cosx cosxdx=sinx (x a ) =ax a 1 (sinx) =cosx (cosx) = sinx (e x ) =e x ( f(x)g(x) ) =f (x)g(x)+f(x)g (x) ( f(x) ) f (x)g(x) f(x)g (x) = g(x) g(x) 2

6 Dygresja użyteczne całki e ax dx= 1 a x n e ax dx= n! a n+1 + e ax2 dx= π a + x 2 e ax2dx= 1 2 π a 3

7 Dygresja wartości funkcji trygonometrycznych α sinα cosα tgα ctgα

8 Aksjomatyczna konstrukcja mechaniki kwantowej: pięć aksjomatów zwanych postulatami

9 Postulaty Postulat pierwszy: Stan układu kwantowomechanicznego opisuje funkcjafalowaψ(r 1,r 2,...,r N,t)zwanatakżefunkcj astanutaka,że kwadratjejmodułu: Ψ 2 =Ψ Ψpomnożonyprzezelementobjętości dτ określa prawdopodobieństwo, że w chwili t cząstka znajduje się w elemencie objętości dτ. gdzie: dw(r 1,r 2,...;t)= Ψ(r 1,r 2,...;t) 2 dτ=ρ(r 1,r 2,...;t)dτ ρoznaczagęstośćprawdopodobieństwaρ= dw dτ r i -współrzędne(x,y,z)i-tejcząstki dτ=dv 1 dv 2 dv N

10 Postulaty Postulat drugi: Każdej wielkości mechanicznej zapisanej jako funkcjafwspółrzędnychipędów,f(r 1,r 2,...,p 1,p 2,...)przypisujemyoperatorkwantowomechanicznyˆFzgodnieznastępującymiregułami(Jordan): p xi i h x i, p yi i h y i, p zi i h z i x i x i, y i y i, z i z i Postulat trzeci: równanie Schrödingera zawierające czas: ĤΨ=i h Ψ t określa zmianę funkcji falowej Ψ w czasie

11 Postulaty Postulat czwarty: Równanie stanu charakterystycznego wielkości F(zagadnieniewłasneoperatoraˆF):jeżelispełnionejestrównanie f i wartośćwłasna Φ i funkcjawłasna. ˆFΦ i =f i Φ i Wynikiem pomiaru wielkości F może być tylko jedna z wartości własnychoperatora ˆF.JeżeliΦ i jestfunkcjąstanuukładutozmiennaf mawtymstaniedokładniewartośćf i. Postulatpiąty:owartościśredniej.Wartośćspodziewana fwielkościmechanicznejf,którejodpowiadaoperatorˆfdanajestwyrażeniem: f= Ψ ˆFΨdτ Zakładamy, że funkcja falowa jest unormowana.

12 Postulat I Funkcja porządna: skończona, ciągła, jednoznaczna. jednoznaczność, np.: ϕ zmienna w układzie biegunowym f(ϕ)=f(ϕ+2π) f(ϕ)=sinaϕ jednoznacznatylkodlaa=0,±1,±2,... Funkcje klasy Q- całkowalne z kwadratem modułu.

13 Funkcja unormowana gdy: Normalizacja funkcji falowej Ψ(r1,r 2,...,t) 2 dτ=1 Jeżeli: Ψ(r1,r 2,...,t) 2 dτ=n to Ψ= 1 N Ψ

14 Unormowaćfunkcjȩfalow aψ(ϕ)=ne imϕ określon awprzedziale [0,2π] przy czym m jest liczb a całkowit a: N 22π czyli N= 1 2π 0 e imϕ e imϕ dϕ=n 22π Postaćfunkcjiunormowanej:Ψ(ϕ)= 1 2π e imϕ 0 dϕ=n 2 2π=1 Unormowaćfunkcjȩfalow aψ(r,ϑ,ϕ)=ne ar określon awcałej przestrzeni(wskazówka:skorzystajzwyniku 0 rn e ar dr= n! a n+1 ): N 2 ( czyli N=( a3 π )1 2 0 e 2ar r 2 dr π 0 sinϑdϑ 2π 0 dϕ)=n 2π a 3=1 Postaćfunkcjiunormowanej:Ψ(r,ϑ,ϕ)=( a3 π )1 2e ar

15 Postulat II funkcja: x y operator: f(x) g(x) Przykłady operatorów: -energiakinetycznaelektronu(t= p2 2m (p2 x+p 2 y+p 2 z)): ˆT= ˆp2 = h2 2m 2m ( 2 x y z 2 )= h2 2m 2m = 1 -energiaoddziaływaniaelektronuzj adrem(v= Ze2 Ze2 r ):ˆV= r -energiacałkowita(hamiltonian):ĥ=ˆt+ˆv -składowaxmomentupȩdu(m x =yp z zp y ):(ˆM x = i h(y z z y ) -etc.

16 Operatory liniowe: ˆF(Ψ 1 +Ψ 2 )= ˆFΨ 1 +ˆFΨ 2 ˆF(cΨ)=cˆFΨ ˆF(c 1 Ψ 1 +c 2 Ψ 2 )=c 1ˆFΨ1 +c 2ˆFΨ2 gdziec 1,c 2 s astałymi(równieżzespolonymi) Np. operatory różniczkowania, całkowania s a operatorami liniowymi a np. operatory potȩgowania, sprzȩżenia nie.

17 Operatory hermitowskie dla funkcji klasy Q: Ψ 1ˆFΨ2 dτ= Ψ 2 (ˆFΨ 1 ) dτ Sprawdzić czy operator ˆF = 2i jest operatorem hermitowskim Ψ 1 2iΨ 2 dτ= Ψ 2 (2iΨ 1 ) dτ OperatorˆF=2iniejestoperatoremhermitowskim. SprawdzićczyoperatorˆF=8jestoperatoremhermitowskim Ψ 1 8Ψ 2 dτ= Ψ 2 (8Ψ 1 ) dτ Operator ˆF = 8 jest operatorem hermitowskim.

18 SprawdzićczyoperatorˆF= d dx jestoperatoremhermitowskim wskazówka: skorzystać z całkowania przez czȩści u(x)v (x)dx=u(x)v(x) v(x)u (x)dx + Ψ 1 d dx Ψ 2dx=Ψ 1Ψ 2 + }{{} 0 + = + Ψ 2 d dx Ψ 1dx= Ψ 2 ( d dx Ψ 1) dx OperatorˆF= d dx niejestoperatoremhermitowskim.

19 SprawdzićczyoperatorˆF=i d dx jestoperatoremhermitowskim wskazówka: skorzystać z całkowania przez czȩści u(x)v (x)dx=u(x)v(x) v(x)u (x)dx + }{{} Ψ 1i d dx Ψ 2dx=iΨ 1Ψ i + = + Ψ 2 d dx Ψ 1dx= Ψ 2 (i d dx Ψ 1) dx OperatorˆF=i d dx jestoperatoremhermitowskim.

20 Działania na operatorach: suma:(ˆf+ĝ)ψ=ˆfψ+ĝψ iloczyn:(ˆfĝ)ψ=ˆf(ĝψ) potęga:ˆf 2 Ψ=ˆF(ˆFΨ) Komutator KomutatoremoperatorówˆFiĜnazywamyoperator: ˆK=[ˆF,Ĝ]df =ˆFĜ ĜˆF Gdy komutator sprowadza siȩ do mnożenia przez 0, wówczas mówimy, że operatory ˆF i Ĝ s a przemienne, czyli komutuj a.

21 W celu sprawdzenia czemu równy jest komutator, działamy nim na jak aś dowoln a funkcjȩ. Np.ˆF= d dx Ĝ=x: [ˆF,Ĝ]f(x)=[ d dx,x]f(x)= d dx (xf(x)) x(d dx f(x))= czyli [ d dx,x]=1 f(x)+x d dx f(x) xd dx f(x)=f(x)

22 Własności komutatorów: [Â,ˆB]= [ˆB,Â] [Â, n ]=0 n=1,2,3,... [kâ,ˆb]=[â,kˆb]=k[â,ˆb] k stała [Â,ˆB+Ĉ]=[Â,ˆB]+[Â,Ĉ] [Â+ˆB,Ĉ]=[Â,Ĉ]+[ˆB,Ĉ] [ˆB,Ĉ]=Â[ˆB,Ĉ]+[Â,Ĉ]ˆB [Â,ˆBĈ]=[Â,ˆB]Ĉ+ˆB[Â,Ĉ]

23 Moment pȩdu Ujęcie klasyczne: Moment pędu jest iloczynem wektorowym: wektora promienia wodzącego riwektorapędup: M=r p Moment pędu jest wektorem o składowych: M x =yp z zp y M y =zp x xp z M z =xp y yp x M 2 =M 2 x+m 2 y+m 2 z

24 Moment pȩdu Ujęcie kwantowe: Konstrukcja operatorów dla składowych momentu pędu: ˆM x = i h(y z z y ) ˆM y = i h(z x x z ) ˆM z = i h(x y y x )

25 Komutatory Własności komutacyjne operatorów momentu pędu: [ˆM x,ˆmy ]=i hˆm z [ˆM y,ˆmx ]= i hˆm z [ˆM z,ˆm x ]=i hˆm y [ˆM x,ˆm z ]= i hˆm y [ˆM y,ˆmz ]=i hˆm x [ˆM z,ˆm y ]= i hˆm x Z reguł komutacji wynika, iż: [ˆM 2,ˆM x ]=[ˆM 2,ˆM y ]=[ˆM 2,ˆM z ]=0 Równocześnie ostro mierzalne są: kwadrat momentu pędu i jedna ze składowych. Dwie dowolne składowe momentu pędu nie mogą być równocześnie dowolnie dokładnie zmierzone.

26 Komutatory Obliczkomutator[ˆM y,ˆmx ] (skorzystaj z własności komutatorów oraz pochodnej iloczynu funkcji (uv) =u v+uv ) [ˆM y,ˆm x ]=[ i h(z x x z ), i h(y z z y )]= h 2( (z x x z )(y z z y ) (y z z y )(z x x z )) = h 2 (zy 2 x z z2 2 x y xy 2 z 2+x y y x yz 2 z x +yx z z 2+z2 2 y x h 2 (x y y x )= i hˆm z +xz 2 z y zx 2 y z )=

27 Komutatory Obliczkomutator[ˆM 2,ˆMx ] (skorzystaj z własności komutatorów oraz własności komutacyjnych operatorów momentu pędu) [ˆM 2,ˆM x ]=[ˆM 2 x+ ˆM 2 y+ ˆM 2 z,ˆmx ]= [ˆM 2 x,ˆmx ]+[ˆM 2 y,ˆmx ]+[ˆM 2 z,ˆmx ]= [ˆM yˆmy,ˆmx ]+[ˆM zˆmz,ˆmx ]= ˆM y [ˆM y,ˆm x ]+[ˆM y,ˆm x ]ˆM y + ˆM z [ˆM z,ˆm x ]+[ˆM z,ˆm x ]ˆM z = ˆM y ( i hˆm z ) i hˆm zˆmy + ˆM z i hˆm y +i hˆm yˆmz = i hˆm yˆm z i hˆm zˆm y +i hˆm zˆm y +i hˆm yˆm z =0

28 Postulat III Stany stacjonarne: Hamiltonian nie zależy od czasu lub(równoważnie) gęstość prawdopodobieństwa nie zależy od czasu Ψ(r 1,r 2,...,t)=Ψ(r 1,r 2,...,r N )e iē h t E jest energią całkowitą układu. Po podstawieniu do równania Schrödingera: ĤΨ=EΨ Jest to równanie Schrödingera nie zawierające czasu.

29 Postulat IV Założenie: ˆF jest operatorem hermitowskim. Teza:wartościwłasneoperatora ˆFsąrzeczywiste. ˆFΦ i =f i Φ i ˆF Φ i =fiφ i MnożącprzezΦ iiφ i : Φ i FΦ i dτ =f i Φ i Φ i dτ Φi F Φ idτ =f i Φ i Φ i dτ Lewestronysąrównewięcf i =f i

30 Założenie: ˆFjestoperatoremhermitowskim wartościwłasnef i if jsąróżne Teza: funkcje własne są ortogonalne: MnożącprzezΦ jiφ i : ˆFΦ i =f i Φ i ˆF Φ j =f jφ j Φ j FΦ i dτ =f i Φ j Φ i dτ Φi F Φ jdτ =f j Φi Φ jdτ Lewe strony są równe więc (f i f j) Φ i Φ jdτ=0 i Φi Φ jdτ=0

31 Jednoczesna mierzalność wielkości fizycznych Kiedy dwie wielkości fizyczne(obserwable), którym odpowiadają operatory ˆF i Ĝ sa równocześnie dokładnie mierzalne? Z postulatu IV wynika, że ostro można określić wartość wielkości F,gdyfunkcjastanuΨjestfunkcjąwłasnąoperatoraˆF.Zatemjeślidwie wielkościfigmająbyćrównocześnieostromierzalnetofunkcjaψwinna byćfunkcjąwłasnąobuoperatorówˆfiĝ.

32 Zasada superpozycji stanów:zbiórfunkcjiwłasnych{φ i }dowolnego operatora kwantowomechanicznego F tworzy tzw. zbiór zupełny. Każdą funkcję porządną Ψ możemy rozwinąć: Ψ= i c iφ i akwadratwspółczynnika c i 2 =c ic i jestprawdopodobieństwem,żestan ΨmożemiećwłasnościopisaneprzezΦ i

33 Postulat V Wynika pośrednio z zasady superpozycji. Jeżeli prawdopodobieństwo udziałufunkcjiφ i wfunkcjiopisującejstanukładu,czyliprawdopodobieństwowystąpieniawielkościf i wynosi c i 2 tośredniawartośćwielkości F jest zgodnie z zasadami statystyki jako: f= i c i 2 f i W oparciu o postulat V obliczymy: f= Ψ ˆFΨdτ= i,j c ic j Φ iˆfφ j dτ= i c ic i f i

34 Oblicz p x jeślifunkcjajestpostaciψ=e ikx p x = e ikx ( i h d dx )eikx dx e ikx e ikx dx = i h e ikxd dx dx eikx dx = hk Oblicz p 2 xjeślifunkcjajestpostaciψ=e ikx p 2 x= e ikx ( h 2d2 dx 2 )e ikx dx e ikx e ikx dx = h2 e ikxd2 dx 2 e ikx dx dx = h 2 k 2 Oblicz wartość spodziewan a energii kinetycznej energii potencjalnej energii całkowitej w przypadku oscylatora harmonicznego w stanie podstawowym, gdzie Ψ(x)=( Π a ) 1 4 e 1 2 ax2 a= mω h

35 Dygresja notacja Diraca Notacja Diraca: Φ iˆfφ j dτ df = Φ i F Φ j Φ i Φ j dτ= Φ iˆ1φ j dτ df = Φ i 1 Φ j = Φ i Φ j

MOMENT PĘDU, ROTATOR SZTYWNY. c.us.edu.pl/ mm

MOMENT PĘDU, ROTATOR SZTYWNY.   c.us.edu.pl/ mm MOMENT PĘDU, ROTATOR SZTYWNY http://zcht.mf c.us.edu.pl/ mm dygresja(materiał dodatkowy) układy współrzędnych w dwóch wymiarach: biegunowy x=rcosϕ y=rsinϕ 0 r 0 ϕ 2π r= x 2 +y 2 x ϕ=arccos x2 +y2 w trzech

Bardziej szczegółowo

Normalizacja funkcji falowej

Normalizacja funkcji falowej Normalizacja funkcji falowej Postulaty mechaniki kwantowej Zadanie. Wyznacz stałą normalizacyjną i podaj postać funkcji unormowanej: Ψ = Ncosαx) dla x [, a] Opis sposobu rozwiązania zadania krok po kroku:.

Bardziej szczegółowo

1 Postulaty mechaniki kwantowej

1 Postulaty mechaniki kwantowej 1 1.1 Postulat Pierwszy Stan ukłau kwantowomechanicznego opisuje funkcja falowa Ψ(r 1, r 2,..., r N, t) zwana także funkcją stanu taka, że kwarat jej moułu: Ψ 2 = Ψ Ψ pomnożony przez element objętości

Bardziej szczegółowo

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

Postulaty interpretacyjne mechaniki kwantowej Wykład 6

Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 19 września 2014 Karol Kołodziej Postulaty interpretacyjne mechaniki

Bardziej szczegółowo

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx

Bardziej szczegółowo

Chemia teoretyczna. Postulaty mechaniki kwantowej. Katarzyna Kowalska-Szojda

Chemia teoretyczna. Postulaty mechaniki kwantowej. Katarzyna Kowalska-Szojda Chemia teoretyczna Postulaty mechaniki kwantowej Katarzyna Kowalska-Szoja Spis treści 1 Postulaty mechaniki kwantowej 2 1.1 Postulat pierwszy.......................... 2 1.2 Postulat rugi.............................

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

1. Matematyka Fizyki Kwantowej: Cześć Trzecia

1. Matematyka Fizyki Kwantowej: Cześć Trzecia 1 Matematyka Fizyki Kwantowej: Cześć Trzecia Piotr Szańkowski Ćwiczenia nr 3 : Podstawowy aparatu matematycznego mechaniki kwantowej I OPERATORY Operator to odwzorowanie  : V V, które działa na stan,

Bardziej szczegółowo

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 ) Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz

Bardziej szczegółowo

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne

Bardziej szczegółowo

II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski

II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU Janusz Adamowski 1 1 Przestrzeń Hilberta Do opisu stanów kwantowych używamy przestrzeni Hilberta. Przestrzenią Hilberta H nazywamy przestrzeń wektorową

Bardziej szczegółowo

w jednowymiarowym pudle potencja lu

w jednowymiarowym pudle potencja lu Do wyk ladu II czastka w pudle potencja lu oscylator harmoniczny rotator sztywny Ścis le rozwiazania równania Schrödingera: atom wodoru i jon wodoropodobny) Czastka w jednowymiarowym pudle potencja lu

Bardziej szczegółowo

Postulaty mechaniki kwantowej

Postulaty mechaniki kwantowej Wyk lad 2 Postulaty mechaniki kwantowej 1 wymiar Postulat Stan czastki określa funkcja falowa Ψ = Ψ(x, t) zależna od po lożenia czastki x oraz czasu t. Interpretacje fizyczna ma jedynie kwadrat modu lu

Bardziej szczegółowo

Mechanika kwantowa Schrödingera

Mechanika kwantowa Schrödingera Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny

Bardziej szczegółowo

Chemia kwantowa. Pytania egzaminacyjne. 2010/2011: 1. Przesłanki doświadczalne mechaniki kwantowej.

Chemia kwantowa. Pytania egzaminacyjne. 2010/2011: 1. Przesłanki doświadczalne mechaniki kwantowej. 1 Chemia kwantowa. Pytania egzaminacyjne. 21/211: 1. Przesłanki doświadczalne mechaniki kwantowej. 2. Efekt fotoelektryczny - interpretacja Einsteina. 3. Efekt fotoelektryczny: jak skorelowana jest licza

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

V. RÓWNANIA MECHANIKI KWANTOWEJ

V. RÓWNANIA MECHANIKI KWANTOWEJ V. RÓWNANIA MECHANIKI KWANTOWEJ 1 1 Postulaty mechaniki kwantowej Istota teorii kwantowej może być sformułowana za pomocą postulatów, których spełnienie postulujemy i których nie można wyprowadzić z żadnych

Bardziej szczegółowo

Mechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II.

Mechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II. Próg potencjału Mecanika klasyczna zasada zacowania energii mvi mv E + V W obszarze I cząstka biegnie z prędkością v I, E > V w obszarze cząstka biegnie z prędkością v Cząstka przecodzi z obszaru I do.

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]

Bardziej szczegółowo

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.

Bardziej szczegółowo

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej

Bardziej szczegółowo

Postulaty mechaniki kwantowej

Postulaty mechaniki kwantowej 3.10.2004 11. Postulaty mechaniki kwantowej 120 Rozdział 11 Postulaty mechaniki kwantowej Mechanika kwantowa, jak zresztą każda teoria fizyczna, bazuje na kilku postulatach, które przyjmujemy "na wiarę".

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Fizyka 2 Wykład 3 1 Równanie Schrödingera Chcemy znaleźć dopuszczalne wartości energii układu fizycznego, dla którego znamy energię potencjalną. Z zasady odpowiedniości znamy postać hamiltonianu. Wybieramy

Bardziej szczegółowo

Rozwiązania zadań z podstaw fizyki kwantowej

Rozwiązania zadań z podstaw fizyki kwantowej Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze

Bardziej szczegółowo

Wstęp do chemii kwantowej - laboratorium. Zadania

Wstęp do chemii kwantowej - laboratorium. Zadania Wstęp do chemii kwantowej - laboratorium. Zadania 2 października 2012 1 Wstęp Używanie maximy jako kalkulatora Zadanie 1 1. Oblicz 2+2*2 2. Oblicz 18769 3. Oblicz 2 10 4. Oblicz 7/8 i 7.0/8.0 5. Oblicz

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

gęstością prawdopodobieństwa

gęstością prawdopodobieństwa Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)

Bardziej szczegółowo

Reprezentacje położeniowa i pędowa

Reprezentacje położeniowa i pędowa 3.10.2004 9. Reprezentacje położeniowa i pędowa 103 Rozdział 9 Reprezentacje położeniowa i pędowa 9.1 Reprezentacja położeniowa Reprezentacja położeniowa jest szczególnie uprzywilejowana i najczęściej

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II 1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

1. Przesłanki doświadczalne mechaniki kwantowej.

1. Przesłanki doświadczalne mechaniki kwantowej. 1 Pytania egzaminacyjne: 1. Przesłanki doświadczalne mechaniki kwantowej. 2. Efekt fotoelektryczny- interpretacja Einsteina. 3. Efekt fotoelektryczny: jak skorelowana jest liczba wybijanych elektronów

Bardziej szczegółowo

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Jak matematycznie opisać własności falowe materii? Czym są fale materii? Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, Funkcja falowa

Bardziej szczegółowo

Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie

Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie Schrödingera, zasada nieoznaczoności Heisenberga, ruch cząstki swobodnej,

Bardziej szczegółowo

Wykład 13 Mechanika Kwantowa

Wykład 13 Mechanika Kwantowa Wykład 13 Mechanika Kwantowa Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 25 maja 2016 Maciej J. Mrowiński (IF PW) Wykład 13 25 maja 2016 1 / 21 Wprowadzenie Sprawy organizacyjne

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Całka nieoznaczona wykład 7 ( ) Motywacja

Całka nieoznaczona wykład 7 ( ) Motywacja Całka nieoznaczona wykład 7 (12.11.07) Motywacja Problem 1 Kropla wody o średnicy 0,07 mm porusza się z prędkościa v(t) = g c (1 e ct ), gdzie g oznacza przyśpieszenie ziemskie, a stałac c = 52,6 1 s została

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan (Uzupełnienie matematyczne II) Abstrakcyjna przestrzeń stanów Podstawowe własności Iloczyn skalarny amplitudy prawdopodobieństwa Operatory i ich hermitowskość Wektory

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Jak matematycznie opisać własności falowe materii? Czym są fale materii? Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, t ) Tutaj upraszczamy

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

(U.14) Oddziaływanie z polem elektromagnetycznym

(U.14) Oddziaływanie z polem elektromagnetycznym 3.10.2004 35. U.14 Oddziaływanie z polem elektromagnetycznym 131 Rozdział 35 U.14 Oddziaływanie z polem elektromagnetycznym 35.1 Niezmienniczość ze względu na W rozdziale 16 wspominaliśmy jedynie o podstawowych

Bardziej szczegółowo

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe

Bardziej szczegółowo

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zad 1. Znaleźć rozwiązania ogólne u = u(x, y) następujących równań u x = 1, u y = 2xy, u yy = 6y, u xy = 1, u x + y = 0, u xxyy = 0. Zad 2. Znaleźć

Bardziej szczegółowo

15 Potencjały sferycznie symetryczne

15 Potencjały sferycznie symetryczne z ϕ θ r y x Rysunek : Definicje zmiennych we współrzędnych sferycznych r, θ, ϕ) 5 Potencjały sferycznie symetryczne 5. Separacja zmiennych Do tej pory omawialiśmy problemy jednowymiarowe, które służyły

Bardziej szczegółowo

5 Reprezentacje połozeniowa i pedowa

5 Reprezentacje połozeniowa i pedowa 5 Reprezentacje połozeniowa i pedowa 5.1 Reprezentacja położeniowa W poprzednim rozdziale znaleźliśmy jawną postać operatora Ĥ w przedstawieniu położeniowym. Co to znaczy? W przedstawieniu położeniwym

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem

Bardziej szczegółowo

Chemia kwantowa - proste modele

Chemia kwantowa - proste modele Uniwersytet Warszawski Wydział Chemii Małgorzata Jeziorska, Aleksandra Tucholska Michał Hapka, Tomasz Grining Chemia kwantowa - proste modele Skrypt dla studentów zainteresowanych raczej innymi działami

Bardziej szczegółowo

Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe

Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Definicja 1 (Iloczyn skalarny). Niech V będzie rzeczywistą przestrzenią liniową. Iloczynem skalarnym w przestrzeni V nazywamy funkcję

Bardziej szczegółowo

21 Symetrie Grupy symetrii Grupa translacji

21 Symetrie Grupy symetrii Grupa translacji 21 Symetrie 21.1 Grupy symetrii Spróbujmy odpowiedzieć sobie na pytanie, jak zmienia się stan układu kwantowego pod wpływem transformacji układu współrzędnych. Najprostszą taką transformacją jest np. przesunięcie

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy poziom Sylabus modułu: Chemia kwantowa 021 Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

(U.11) Obroty i moment pędu

(U.11) Obroty i moment pędu 3.10.2004 32. U.11) Obroty i moment pędu 96 Rozdział 32 U.11) Obroty i moment pędu 32.1 Wprowadzenie Obroty w przestrzeni R 3 są scharakteryzowane przez podanie osi obrotu, którą określa wektor jednostkowy

Bardziej szczegółowo

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x. Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)

Bardziej szczegółowo

Zestaw IV Wstęp do matematyki wyższej (cz. 1)

Zestaw IV Wstęp do matematyki wyższej (cz. 1) Funkcje trygonometryczne. Definicja Zestaw IV Wstęp do matematyki wyższej (cz. ) Łukasz Kuśmierz, Jan Major, Adam Wyrzykowski e-mail: kolkof@uj.edu.pl http://www.fais.uj.edu.pl/dla-szkol/ warsztaty-z-fizykiśzkoly-ponadgimnazjalne

Bardziej szczegółowo

Logarytmiczne równanie Schrödingera w obracajacej się pułapce harmonicznej

Logarytmiczne równanie Schrödingera w obracajacej się pułapce harmonicznej Logarytmiczne równanie Schrödingera w obracajacej się pułapce harmonicznej Tomasz Sowiński Seminarium CFT p.1/17 Nieliniowa mechanika kwantowa Dwa konteksty nielinowej mechaniki kwantowej: czy istnieja

Bardziej szczegółowo

Wielomiany Legendre a

Wielomiany Legendre a grudzień 2013 grudzień 2013 Funkcja tworząca 1 (4.1) g(x, t) = = P n (x)t n, 1 2xt + t 2 albo pamiętając, że x = cos θ 1 (4.2) g(cos θ, t) = = P n (cos θ)t n. 1 2 cos θ t + t 2 jeżeli rozpatrzyć pole wytwarzane

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17

Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17 41. Niech z = 5 + 4i. Dla podanych liczb m, n podać taką liczbę całkowitą k, aby 5 zachodziła równość z m z n =z k. Uwaga na sprzężenie w drugim czynniku po lewej stronie. a) m = 1, n = 1, k = 9 ; b) m

Bardziej szczegółowo

Niezb. ednik matematyczny. Niezb. ednik matematyczny

Niezb. ednik matematyczny. Niezb. ednik matematyczny Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

Funkcje. Część pierwsza. Zbigniew Koza. Wydział Fizyki i Astronomii

Funkcje. Część pierwsza. Zbigniew Koza. Wydział Fizyki i Astronomii Funkcje Część pierwsza Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 Co to są funkcje? y(x) x Co to są funkcje? y(x) x Co to są funkcje? Funkcja dla każdego argumentu ma określoną dokładnie jedną

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych 1 Układy równań liniowych 1. Rozwiązać układy równań liniowych metodą eliminacji Gaussa x + 2y z = 4 y 2z = 4x y + z = 0 x y + z = 0 2y + 5z = 1 6x 4y z = 1 x + y t = 1 x + y z = 0 y + z + t = 1 x + +

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Uklady modelowe III - rotator, atom wodoru

Uklady modelowe III - rotator, atom wodoru Wyk lad 5 Uklady modelowe III - rotator, atom wodoru Model Separacja ruchu środka masy R = m 1r 1 + m 2 r 2 m 1 + m 2 Ĥ = Ĥ tr (R) + Ĥ rot (r) Ĥ tr 2 (R) = 2(m 1 + m 2 ) R [ Ψ E tr (R; t) = exp i (k R

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach

Bardziej szczegółowo

Wykład I.2 1 Kłopoty z mechaniką klasyczną. 2 Postulaty mechaniki kwantowej 1. Stan układu funkcja falowa ψ(x), ψ(x) 2 interpretacja

Wykład I.2 1 Kłopoty z mechaniką klasyczną. 2 Postulaty mechaniki kwantowej 1. Stan układu funkcja falowa ψ(x), ψ(x) 2 interpretacja Wykład I.2 1 Kłopoty z mechaniką klasyczną 2 Postulaty mechaniki kwantowej 1. Stan układu funkcja falowa ψ(x), ψ(x) 2 interpretacja probabilistyczna 2. Wielkości fizyczne operatory hermitowskie (obserwable)

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

f x f x(x, y) (1.1) f(x, y, z) = xyz (1.5)

f x f x(x, y) (1.1) f(x, y, z) = xyz (1.5) 1 Pochodne cząstkowo Pochodną cząstkową funkcji dwóch zmiennych z = f(x, y) względem zmiennej x oznaczamy i definiujemy jako granicę f(x + h, y) f(x, y) lim h 0 h natomiast pochodną cząstkową względem

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

3 Ewolucja układu w czasie, trajektorie kwantowe

3 Ewolucja układu w czasie, trajektorie kwantowe 3 Ewolucja układu w czasie, trajektorie kwantowe Pytanie: jak ewoluuje funkcja falowa stanu kwantowego ψ? W tym rozdzoale zajmiemy się ruchem cząstki w jednym wymiarze. 3.1 Trajektorie klasyczne Klasyczne

Bardziej szczegółowo

Wykłady z Mechaniki Kwantowej

Wykłady z Mechaniki Kwantowej Wykłady z Mechaniki Kwantowej Mechanika Kwantowa, Relatywistyczna Mechanika Kwantowa Wykład dla doktorantów (2017) Wykład 3 Fakty nie są najważniejsze. Zresztą, aby je poznać, nie trzeba studiować na

Bardziej szczegółowo

Rachunek różniczkowy i całkowy w przestrzeniach R n

Rachunek różniczkowy i całkowy w przestrzeniach R n Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda

Bardziej szczegółowo

Mechanika kwantowa - zadania 1 (2007/2008)

Mechanika kwantowa - zadania 1 (2007/2008) Wojciech Broniowski Instytut Fizyki, Akademia Świetokrzyska Mechanika kwantowa - zadania (007/008) Elementy algebry (powtórka). Ortoganalizacja Gramma-Schmidta. Rozważ wektory w przestrzeni R 3 v = 0,

Bardziej szczegółowo

Wykład 10: Całka nieoznaczona

Wykład 10: Całka nieoznaczona Wykład 10: Całka nieoznaczona dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2016/2017 Motywacja Problem 1 Kropla wody o średnicy 0,07 mm

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

GAL 80 zadań z liczb zespolonych

GAL 80 zadań z liczb zespolonych GAL 80 zadań z liczb zespolonych Postać algebraiczna liczby zespolonej 1 Sprowadź wyrażenia do postaci algebraicznej: (a) ( + i)(3 i) + ( + 31)(3 + 41), (b) (4 + 3i)(5 i) ( 6i), (5 + i)(7 6i) (c), 3 +

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 193) De Broglie zaproponował, że każdy

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji

Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji Sprawdzian nr 2: 25..204, godz. 8:5-8:40 (materiał zad. -48) Sprawdzian nr 3: 9.2.204, godz. 8:5-8:40 (materiał zad. -88) Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji

Bardziej szczegółowo

Całka podwójna po prostokącie

Całka podwójna po prostokącie Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Matematyczne Metody Chemii I Zadania

Matematyczne Metody Chemii I Zadania Matematyczne Metody Chemii I Zadania Mariusz Radoń, Marcin Makowski, Grzegorz Mazur Zestaw Zadanie. Pokazać, że wyznacznik dowolnej macierzy unitarnej jest liczbą o module. Zadanie. Pokazać, że elementy

Bardziej szczegółowo

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41?

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41? TEST. Ortogonalne i znormalizowane funkcje f i f są funkcjami własnymi operatora αˆ, przy czym: α ˆ f =. 05 f i α ˆ f =. 4f. Stan pewnej cząstki opisuje 3 znormalizowana funkcja falowa Ψ = f + f. Jakie

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

1. Matematyka Fizyki Kwantowej: Cześć Druga

1. Matematyka Fizyki Kwantowej: Cześć Druga . Matematyka Fizyki Kwantowej: Cześć Druga Piotr Szańkowski I. PRZESTRZEŃ WEKTOROWA Kolejnym punktem naszej jest ogólna struktura matematyczna mechaniki kwantowej, która jest strukturą przestrzeni wektorowej

Bardziej szczegółowo