Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )
|
|
- Filip Marszałek
- 6 lat temu
- Przeglądów:
Transkrypt
1 Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz stałą A. Jakie jest średnie położenie i pęd cząstki w chwili t =? Odpowiedź: A = 15, x =, p = 16a 5 Zadanie MK Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: Ψ(x, t) = Ae λ x iωt gdzie λ +, ω +. Wyznacz stałą A. Jakie jest średnie położenie i średni kwadrat położenia cząstki? Odpowiedź: A = λ, x =, x = 1 λ Zadanie MK3 a Wyznacz unormowane stany stacjonarne i dozwolone wartości energii dla cząstki znajdującej się w nieskończonej studni potencjału o szerokości a (patrz rysunek) przy założeniu, że energia cząstki E >. Odpowiedź: Ψ n (x, t) = a sin nπ a x e i nπ ma t, E n = n π ma Skompilowane z wielu źródeł. Tylko do użytku na zajęciach. 1
2 Zadanie MK4 Iloczyn skalarny dwóch funkcji falowych Ψ 1 i Ψ może zostać zdefiniowany w następujący sposób: (Ψ 1,Ψ ) = Ψ Ψ 1 dx przy czym granica tej całki zależy od kontekstu (na przykład dziedziny lub okresu funkcji Ψ 1 i Ψ ). Wykaż, że tak zdefiniowany iloczyn skalarny jest odwzorowaniem addytywnym względem obu parametrów: (Ψ 1,Ψ + Ψ 3 ) = (Ψ 1,Ψ ) + (Ψ 1,Ψ 3 ) (Ψ 1 + Ψ 3,Ψ ) = (Ψ 1,Ψ ) + (Ψ 3,Ψ ) Wykaż również, że zachodzą następujące równości: (Ψ 1, cψ ) = c (Ψ 1,Ψ ) dla dowolnego c. (cψ 1,Ψ ) = c (Ψ 1,Ψ ) Zadanie MK5 Dyskretną bazą ortonormalną nazywamy zbiór funkcji {u n (x)} (u n :, n ), pomiędzy którymi zachodzi, między innymi, następująca zależność (ortonormalność): un, u m = δn,m Wykaż, że rozwiązania niezależnego od czasu równania Schrödingera dla cząstki w nieskończonej studni potencjału (zadanie MK3) spełniają ten warunek. Zadanie MK6 Załóżmy, że funkcje falowe Ψ 1 (x, t) i Ψ (x, t) są rozwiązaniami równania Schrödingera. Udowodnij, że funkcja falowa Ψ 3 (x, t) będąca ich liniową kombinacją: Ψ 3 (x, t) = c 1 Ψ 1 (x, t) + c Ψ (x, t) gdzie c 1 i c to dowolne stałe, jest również rozwiązaniem równania Schrödingera. Ile będą wynosiły iloczyny skalarne (Ψ 1,Ψ 3 ), (Ψ,Ψ 3 ) i (Ψ 3,Ψ 3 ), jeżeli funkcje falowe Ψ 1 i Ψ są ortonormalne (zadanie MK5)? Odpowiedź: (Ψ 1,Ψ 3 ) = c 1, (Ψ,Ψ 3 ) = c, (Ψ 3,Ψ 3 ) = c 1 + c (tu warto zauważyć, że jest to z definicji całka kwadratu modułu Ψ 3 )
3 Zadanie MK7 Najbardziej ogólne rozwiązanie równania Schrödingera, z uwagi na jego liniowość, dla cząstki w nieskończonej studni potencjału (zadanie MK3) może zostać przedstawione jako superpozycja wielu stanów stacjonarnych (zadanie MK6): Ψ(x, t) = n c n Ψ n (x, t) gdzie Ψ n (x, t) to n-ty stan stacjonarny, a c n to pewna stała (waga). Załóżmy, że dla pewnej cząstki w nieskończonej studni potencjału o szerokości a (V = gdy x [,a], V = gdy x / [,a]) kształt funkcji falowej w chwili t = dany jest w następujący sposób: Ψ(x,) = Ax(a x) Wyznacz dla tej cząstki stałą A i poszczególne wartości współczynników c n. Podpowiedź: przy wyznaczaniu c n należy skorzystać z ortogonalności stanów stacjonarnych (patrz zadania MK5, MK6) - problem ten jest analogiczny do wyznaczania współczynników wektora w pewnej ortonormalnej bazie (gdyż, w istocie, jest to dokładnie wyznaczanie współczynników wektora w pewnej ortonormalnej bazie - naszym wektorem jest funkcja falowa a bazą poszczególne stany stacjonarne). Odpowiedź: A = 3, c a 5 n = 8 15 (nπ) 3 gdy n jest nieparzyste gdy gdy n jest parzyste Zadanie MK8 Po jakim czasie cząstka w nieskończonej studni potencjału znajdzie się znowu w stanie początkowym: Ψ(x,T ) = Ψ(x,) jeżeli w chwili początkowej znajdowała się w dowolnym stanie Ψ(x, ) (niekoniecznie stacjonarnym)? Odpowiedź: T = 4ma π Zadanie MK9 Wyznacz wzór na prąd prawdopodobieństwa j (x, t): j (x, t) = Ψ Ψ mi x Ψ x Ψ różniczkując gęstość prawdopodobieństwa Ψ po czasie i używając równania Schrödingera do zamiany pochodnych na pochodne po położeniu. 3
4 Zadanie MK1 Wyznacz prąd prawdopodobieństwa (zadanie MK9) dla funkcji falowej: ±i k x iωt Ψ(x, t) = Ae Odpowiedź: j (x, t) = ± k m A Zadanie MK11 Wyznacz prąd prawdopodobieństwa (zadanie MK9) dla cząstki w nieskończonej studni potencjału o szerokości a (zadanie MK3), jeżeli cząstka znajduje się w n-tym stanie stacjonarnym: nπ Ψ n (x, t) = a sin a x e ie n t gdzie E n = n π ma Jaki będzie prąd prawdopodobieństwa w przypadku cząstki znajdującej się w stanie będącym następującą liniową kombinacją n-tego i m-tego stanu stacjonarnego: Ψ n,m (x, t) = 1 Ψn (x, t) + Ψ m (x, t) Odpowiedź: j n (x, t) =, j n,m (x, t) = π (n + m)sin (n m)πx (n m)sin (n+m)πx sin (E n E m )t ma a a Zadanie MK1 V Wyznacz, korzystając z prądu prawdopodobieństwa, współczynnik odbicia R i transmisji T dla stopnia potencjału o wysokości V w przypadku kiedy energia E > V i E [,V [. Odpowiedź: dla E > V : R = ( k ), T = 4 k, k ( +k ) ( +k ) 1 = E [,V [: R = 1, T = me, k = m(e V ) ; dla 4
5 Zadanie MK13 Wyznacz współczynnik odbicia R i transmisji T dla odwróconego stopnia potencjału o głębokości V w przypadku, kiedy energia E >. Odpowiedź: R = ( k ), T = 4 k m(e+v ), k ( +k ) ( +k ) 1 =, k = me -V Zadanie MK14 -a a Wyznacz parzyste i nieparzyste unormowane rozwiązania niezależnego od czasu równania Schrödingera dla cząstki o energii E ] V,[ znajdującej się w skończonej studni potencjału o głębokości V i szerokości a. Znajdź, w obu przypadkach, równania na dopuszczalne wartości energii (uwaga: równań tych nie daje się analitycznie rozwikłać). Dla energii E > znajdź współczynnik transmisji. Dla jakich wartości energii fala całkowicie przejdzie przez barierę (studnię)? Odpowiedź: Rozwiązania parzyste: ψ(x) = -V e a cos k a e x gdy x ], a[ cos k x gdy x [ a, a] e a cos k a e x gdy x ]a, [ Warunek dla energii stanów parzystych: = k tg k a e a sin k a e x gdy x ], a[ sin k x Rozwiązania nieparzyste: ψ(x) = e a sin k a e x gdy x [ a, a] gdy x ]a, [ Warunek dla energii stanów nieparzystych: = k ctg k a T = 1 + V 4E(E+V ) sin a m(e + V ) 1 E n + V = n π 8ma 5
6 Zadanie MK15 V a Wyznacz współczynnik transmisji dla prostokątnej bariery potencjału o szerokości a i wysokości V w przypadku, kiedy energia cząstki E > V, E = V i < E < V. Odpowiedź: k 1 1 E > V : T = 1 + k k sin k a, = E = V : T = 1 + ka 1, k = me < E < V : T = 1 + k 1 +k k sinh k a 1, = me m(e V ), k = me m(v E), k = Zadanie MK16 Cząstka o masie m porusza się w potencjale: gdy x ],[ V (x) = 3 gdy x [,a] ma gdy x ]a, [ W ilu stanach o energii E [ 3 ma,] może znaleźć się cząstka. Podpowiedź: końcówkę zadania należy rozwiązać graficznie. Odpowiedź: Istnieją 3 stany stacjonarne o energii E [ 3 ma,]. Zadanie MK17 Dla operatora pędu ˆp = i rozwiąż zagadnienie własne: x ˆpu p (x) = pu p (x) to znaczy znajdź taki zbiór funkcji (funkcji własnych) {u p : } dla których, w wyniku działania operatora pędu na jedną z nich, dostaniemy tę samą funkcję pomnożoną przez pewną stałą p (wartość własną; choć wcale nie musimy, to dla spokoju ducha ograniczymy się do rzeczywistych wartości własnych). Odpowiedź: u p (x) = C e i p x 6
7 Zadanie MK18 Delta Diraca δ(x) to funkcja uogólniona (dystrybucja) zdefiniowana w następujący sposób (tu następuje drobne kłamstwo): dla której δ = + gdy x = gdy x +ɛ ɛ δ(x) = 1 dla dowolnego ɛ > (w tym dla ɛ = ; czy potraficie po tym warunku stwierdzić dlaczego δ nie jest funkcją?). Delta Diraca jest więc unormowana. Delta Diraca jest również parzysta: δ( x) = δ(x) Bardzo użyteczną cechą δ jest wycinanie wartości funkcji pod całką: + f (x) δ(x x ) dx = f (x ) Warto również pamiętać o następującej równości: 1 π + e i k x dk = δ(x) Korzystając z powyższych zależności wyznacz wartość całki + π I 1 = cos T x δ(x nt ) dx dla dowolnego n, oraz I = Odpowiedź: I 1 = 1, I = πδ(x x ) + e i z(x x ) dz Zadanie MK19 Ciągłą bazą ortonormalną nazywamy zbiór funkcji {u p (x)} (u p :, p ), pomiędzy którymi zachodzi, między innymi, następująca zależność (ortonormalność w sensie Diraca): u p, u p = δ( p p ) Wykaż, że funkcje własne operatora pędu (zadanie MK17) spełniają ten warunek przy odpowiednim doborze stałej C. Wyznacz tę stałą. Odpowiedź: C = 1 π 7
8 Zadanie MK Każda przyzwoicie zachowująca się funkcja (w naszym przypadku całkowalna z kwadratem modułu) daje się wyrazić w bazie funkcji własnych operatora pędu (zadanie MK17) Ψ(x) = + dp c( p) u p (x) Równanie to jest analogiczne do tego w zadaniu MK7, gdzie przedstawialiśmy funkcje falową w bazie stanów stacjonarnych cząstki w nieskończonej studni potencjału. Różnica polega na tym, że teraz mamy do czynienia z bazą ciągłą i musimy całkować po ciągłym indeksie p, numerującym poszczególne funkcje własne. Funkcja c( p) pełni analogiczną rolę do stałych c n w MK7. Dla funkcji Ψ(x) zdefiniowanej jako A gdy x [ a,a] Ψ(x) = gdy x / [ a,a] wyznacz stałą A tak, aby Ψ(x) była unormowana. Następnie wyznacz dla niej funkcję c( p). Podpowiedź: należy skorzystać z ortogonalności funkcji u p (zadanie MK19) i z własności delty Diraca (zadanie MK18). Odpowiedź: A = 1 a, c( p) = πa sin pa p Zadanie MK1 Załóżmy, że rozwiązanie niezależnego od czasu równania Schrödingera ma następującą postać ψl (x) gdy x ], x ψ(x) = [ ψ r (x) gdy x [x,+ [ Udowodnij, że dla dowolnego potencjału będącego funkcją V : ( V (x) < ), pierwsza pochodna ψ(x) musi być ciągła. Wykaż również, że możemy dokładnie określić jak zachowuje się nieciągłość pochodnej ψ(x) w przypadku deltoidalnego potencjału V (x) = cδ(x x ). Podpowiedź: w obu przypadkach należy obustronnie scałkować niezależne od czasu równanie Schrödingera w najbliższym otoczeniu punktu x. Odpowiedź: dψ r dψ l gdy V (x) zachowuje się przyzwoicie = dx x=x dx mc ψ(x x=x ) nieciągłość dla potencjału deltoidalnego 8
9 Zadanie MK Wyznacz stany stacjonarne i dopuszczalne wartości energii dla cząstki w potencjale deltoidalnym V (x) = cδ(x), której energia E <. Dla energii E > wyznacz współczynnik transmisji i odbicia. Pamiętaj, że w punkcie x = pierwsza pochodna funkcji falowej nie będzie ciągła z uwagi na deltoidalny potencjał (zadanie MK1). Odpowiedź: Ψ(x, y) = mc e mc x ie t, E = mc (istnieje tylko jeden stan stacjonarny!) R = 1 + E 1, mc T = 1 + mc 1 E 9
Równanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
Rozwiązania zadań z podstaw fizyki kwantowej
Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze
gęstością prawdopodobieństwa
Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)
Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera
lementy mechaniki kwantowej Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe
Nieskończona jednowymiarowa studnia potencjału
Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,
Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera
lementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 193) De Broglie zaproponował, że każdy
II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski
II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU Janusz Adamowski 1 1 Przestrzeń Hilberta Do opisu stanów kwantowych używamy przestrzeni Hilberta. Przestrzenią Hilberta H nazywamy przestrzeń wektorową
PODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że
FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej
Jak matematycznie opisać własności falowe materii? Czym są fale materii?
Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, Funkcja falowa
Równanie Schrödingera
Fizyka 2 Wykład 3 1 Równanie Schrödingera Chcemy znaleźć dopuszczalne wartości energii układu fizycznego, dla którego znamy energię potencjalną. Z zasady odpowiedniości znamy postać hamiltonianu. Wybieramy
RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU
X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne
Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg
Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(
1. Matematyka Fizyki Kwantowej: Cześć Druga
. Matematyka Fizyki Kwantowej: Cześć Druga Piotr Szańkowski I. PRZESTRZEŃ WEKTOROWA Kolejnym punktem naszej jest ogólna struktura matematyczna mechaniki kwantowej, która jest strukturą przestrzeni wektorowej
Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.
Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)
Wyprowadzenie prawa Gaussa z prawa Coulomba
Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią
Wykład 13 Mechanika Kwantowa
Wykład 13 Mechanika Kwantowa Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 25 maja 2016 Maciej J. Mrowiński (IF PW) Wykład 13 25 maja 2016 1 / 21 Wprowadzenie Sprawy organizacyjne
Jak matematycznie opisać własności falowe materii? Czym są fale materii?
Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, t ) Tutaj upraszczamy
Normalizacja funkcji falowej
Normalizacja funkcji falowej Postulaty mechaniki kwantowej Zadanie. Wyznacz stałą normalizacyjną i podaj postać funkcji unormowanej: Ψ = Ncosαx) dla x [, a] Opis sposobu rozwiązania zadania krok po kroku:.
15 Potencjały sferycznie symetryczne
z ϕ θ r y x Rysunek : Definicje zmiennych we współrzędnych sferycznych r, θ, ϕ) 5 Potencjały sferycznie symetryczne 5. Separacja zmiennych Do tej pory omawialiśmy problemy jednowymiarowe, które służyły
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału
Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)
Reprezentacje położeniowa i pędowa
3.10.2004 9. Reprezentacje położeniowa i pędowa 103 Rozdział 9 Reprezentacje położeniowa i pędowa 9.1 Reprezentacja położeniowa Reprezentacja położeniowa jest szczególnie uprzywilejowana i najczęściej
5 Reprezentacje połozeniowa i pedowa
5 Reprezentacje połozeniowa i pedowa 5.1 Reprezentacja położeniowa W poprzednim rozdziale znaleźliśmy jawną postać operatora Ĥ w przedstawieniu położeniowym. Co to znaczy? W przedstawieniu położeniwym
Postulaty interpretacyjne mechaniki kwantowej Wykład 6
Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 19 września 2014 Karol Kołodziej Postulaty interpretacyjne mechaniki
Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5
Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................
Mechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II.
Próg potencjału Mecanika klasyczna zasada zacowania energii mvi mv E + V W obszarze I cząstka biegnie z prędkością v I, E > V w obszarze cząstka biegnie z prędkością v Cząstka przecodzi z obszaru I do.
Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
Równania różniczkowe cząstkowe drugiego rzędu
Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................
1 Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych
Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych 2. Wektory. 2.. Wektor jako n ka liczb W fizyce mamy do czynienia z pojęciami lub obiektami o różnym charakterze. Są np. wielkości,
V. RÓWNANIA MECHANIKI KWANTOWEJ
V. RÓWNANIA MECHANIKI KWANTOWEJ 1 1 Postulaty mechaniki kwantowej Istota teorii kwantowej może być sformułowana za pomocą postulatów, których spełnienie postulujemy i których nie można wyprowadzić z żadnych
Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max.
Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. 10 stron na jeden z listy tematów + rozmowa USOS! 1 Model
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n
V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Zasada nieoznaczoności Heisenberga
Fale materii paczki falowe o różnej szerokości Dwa gaussowskie rozkład amplitud fal armonicznc o różnc szerokościac σ p i różnc wartościac średnic pędu p. Części rzeczwista ReΨ i urojona mψ funkcji falowc
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera
Elementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 1923) De Broglie zaproponował, że każdy
Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera
Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy
Postulaty mechaniki kwantowej
3.10.2004 11. Postulaty mechaniki kwantowej 120 Rozdział 11 Postulaty mechaniki kwantowej Mechanika kwantowa, jak zresztą każda teoria fizyczna, bazuje na kilku postulatach, które przyjmujemy "na wiarę".
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)
Dualizm korpuskularno falowy
Dualizm korpuskularno falowy Fala elektromagnetyczna o długości λ w pewnych zjawiskach zachowuje się jak cząstka (foton) o pędzie p=h/λ i energii E = h = h. c/λ p Cząstki niosą pęd p Cząstce o pędzie p
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Równania dla potencjałów zależnych od czasu
Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności
r. akad. 2012/2013 wykład III-IV Mechanika kwantowa Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa
r. akad. 01/013 wykład III-IV Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa Zakład Zakład Biofizyki Biofizyki 1 Falowa natura materii Zarówno fale elektromagnetyczne (fotony) jaki i
x = cos θ. (13.13) P (x) = 0. (13.14) dx 1 x 2 Warto zauważyć, że miara całkowania w zmiennych sferycznych przyjmuje postać
3.. Zaeżność od kąta θ Aby rozwiązać równanie 3.9) da dowonego ν m, rozważymy przypadek z m 0, a potem pokażemy jak z tego rozwiązania przez wieokrotne różniczkowanie wygenerować rozwiązanie da dowonego
Postulaty mechaniki kwantowej
Wyk lad 2 Postulaty mechaniki kwantowej 1 wymiar Postulat Stan czastki określa funkcja falowa Ψ = Ψ(x, t) zależna od po lożenia czastki x oraz czasu t. Interpretacje fizyczna ma jedynie kwadrat modu lu
1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,
Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,
Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały
WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe
Czastka swobodna Bariera potencja lu Pud lo jednowymiarowe FEMO Pud la wielowymiarowe. Wyk lad 3. Uk lady modelowe I
Wyk lad 3 Uk lady modelowe I Hamiltonian, równania Schrödingera hamiltonian Ĥ(x) = ˆT (x) = 2 d 2 2m dx 2 równanie Schrödingera zależne od czasu stany stacjonarne 2 2 Ψ(x, t) Ψ(x, t) 2m x 2 = i t dψ E
Metody rozwiązania równania Schrödingera
Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Mechanika kwantowa Schrödingera
Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Wstęp do Modelu Standardowego
Wstęp do Modelu Standardowego Plan (Uzupełnienie matematyczne II) Abstrakcyjna przestrzeń stanów Podstawowe własności Iloczyn skalarny amplitudy prawdopodobieństwa Operatory i ich hermitowskość Wektory
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Chemia ogólna - część I: Atomy i cząsteczki
dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane
Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.
1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu
Moment pędu fali elektromagnetycznej
napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0
Wykłady... b i a i. i=1. m(d k ) inf
Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem
Wstęp do Modelu Standardowego
Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej
h 2 h p Mechanika falowa podstawy pˆ 2
Mechanika falowa podstawy Hipoteza de Broglie a Zarówno promieniowanie jak i cząstki materialne posiadają naturę dwoistą korpuskularno-falową. Z każdą mikrocząstką można związać pewien proces falowy pierwotnie
TRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych
TRYGONOMETRIA. Definicje i własności funkcji trygonometrycznych Funkcje trygonometryczne kąta ostrego można zdefiniować przy użyciu trójkąta prostokątnego: c a α b DEFINICJA. Sinusem kąta ostrego α w trójkącie
Zadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
Faculty of Applied Physics and Mathematics -> Department of Solid State Physics. dydaktycznych, objętych planem studiów
Nazwa i kod przedmiotu Kierunek studiów Mechanika kwantowa, NAN1B0051 Nanotechnologia Poziom studiów I stopnia - inżynierskie Typ przedmiotu obowiąkowy Forma studiów stacjonarne Sposób realizacji na uczelni
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 26, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 26, 28.05.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 25 - przypomnienie
Mechanika kwantowa - zadania 1 (2007/2008)
Wojciech Broniowski Instytut Fizyki, Akademia Świetokrzyska Mechanika kwantowa - zadania (007/008) Elementy algebry (powtórka). Ortoganalizacja Gramma-Schmidta. Rozważ wektory w przestrzeni R 3 v = 0,
1. Matematyka Fizyki Kwantowej: Część Pierwsza
1. Matematyka Fizyki Kwantowej: Część Pierwsza Notatki Piotra Szańkowskiego SŁOWO WSTĘPNE Mechanika kwantowa, w przeciwieństwie do klasycznych teorii fizycznych, wydaję się być zagmatwana, nieintuicyjna
Numeryczne rozwiązanie równania Schrodingera
Numeryczne rozwiązanie równania Schrodingera Równanie ruchu dla cząstki o masie m (elektron- cząstka elementarna o masie ~9.1 10-31 kg) Mechanika klasyczna - mechanika kwantowa 1. Druga zasada dynamiki
11 Przybliżenie semiklasyczne
11 Przybliżenie semiklasyczne W tym rozdziale rozważymy rachunek przybliżony, który opiera się na rozwinięciu funkcji falowej w szereg potęg stałej Plancka. Zakłada się przy tym jawnie, że h jest małym
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora
Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II
1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność
Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :
Lista Przestrzenie liniowe Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : V = R[X], zbiór wielomianów jednej zmiennej o współczynnikach rzeczywistych, wraz ze standardowym dodawaniem
Rachunek różniczkowy i całkowy w przestrzeniach R n
Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda
wartość oczekiwana choinki
wartość oczekiwana choinki Plan seminarium cośo równaniu Schrödingera analityczne metody rozwiązywania algorytm & obliczenia Schrödinger w studni koniec choinka ortogonalna Coś o równaniu Schrödingera
że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41?
TEST. Ortogonalne i znormalizowane funkcje f i f są funkcjami własnymi operatora αˆ, przy czym: α ˆ f =. 05 f i α ˆ f =. 4f. Stan pewnej cząstki opisuje 3 znormalizowana funkcja falowa Ψ = f + f. Jakie
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Wykład Budowa atomu 2
Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie
Wielomiany Legendre a, itp.
3.0.2004 Dod. mat. D. Wieomiany Legendre a, itp. 25 Dodatek D Wieomiany Legendre a, itp. Wieomiany Legendre a i stowarzyszone z nimi funkcje są szeroko omawiane w wieu podręcznikach fizyki matematycznej.
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Równanie przewodnictwa cieplnego (I)
Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca
Zaawansowane metody numeryczne
Wykład 7 a szeregi Fouriera (zarówno w przypadku ciągłym, jak i dyskretnym) jest szczegónym przypadkiem aproksymacji funkcjami ortogonanymi. Anaitycznie rozwiązanie zadania aproksymacji trygonometrycznej
1. Matematyka Fizyki Kwantowej: Cześć Trzecia
1 Matematyka Fizyki Kwantowej: Cześć Trzecia Piotr Szańkowski Ćwiczenia nr 3 : Podstawowy aparatu matematycznego mechaniki kwantowej I OPERATORY Operator to odwzorowanie  : V V, które działa na stan,
Podstawy fizyki wykład 2
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011
Wykład 9. Matematyka 3, semestr zimowy 2011/2012 4 listopada 2011 W trakcie poprzedniego wykładu zdefiniowaliśmy pojęcie k-kowektora na przestrzeni wektorowej. Wprowadziliśmy także iloczyn zewnętrzny wielokowektorów
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
Wykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
Fizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
Równania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym