RZUTOWANIE. rzutnia (ekran) obserwator

Wielkość: px
Rozpocząć pokaz od strony:

Download "RZUTOWANIE. rzutnia (ekran) obserwator"

Transkrypt

1 WYKŁAD 6 RZUTOWANIE Plan wkładu: Układ współr rędnch, ogólne asad rutowania Rutowanie równolegr wnoległe Rutowanie perspektwicne Ogóln prpadek rutowania 1. Układ współr rędnch, ogólne asad rutowania Lewoskrętn układ współrędnch i rutnia: P rutnia (ekran) oś oś oś obserwator Jeśli patrm dodatniego kierunku osi w stronę środka układu współrędnch, to obrót o 90 w kierunku godnm ruchem wskaówek egara, prekstałci jedną dodatnią oś w drugą. Wartości współrędnej są więkse dla punktów leżącch dalej od obserwatora. 1

2 Zadanie rutowania: Dane: opis obiektu w układie współrędnch. płascna rutowania (rutnia P ). Jak uskać obra obiektu na rutni? Stosuje się wkle jeden dwóch sposobów rutowania. 1. P 2 P rutnia P 1 P 2 P 1 obserwator Rutowanie równoległe Punkt P 1 i P 2 ostał preniesione na rutnię, wdłuż prostch równoległch. Punkt precięcia prostch rutowania rutnią są obraami rutowanch punktów. 2. P 1 P 2 P 2 P rutnia P 1 Rutowanie perspektwicne obserwator (środek projekcji) Punkt P 1 i P 2 ostał preniesione na rutnię, wdłuż prostch precinającch się w jednm punkcie (środku projekcji). Punkt precięcia prostch rutowania rutnią są obraami rutowanch punktów. 2

3 2. Rutowanie równoległe Wróżnia się wkle dwa prpadki : proste rutowania precinają rutnię pod kątem prostm (rut pionow), proste rutowania precinają rutnię pod kątem innm niż kąt prost (rut ukośn) Rut pionow Proste rutowania precinają rutnię pod kątem prostm. Prkład: Obiekt - seścian jednostkow Rutnia P -płascna (-) (1,2,2) (2,2,2) (1,2,1) (2,2,1) (2,1,2) (1,1,1) (2,1,1) Jeśli proste rutowania precinają rutnię pod kątem prostm, to rut obiektu wgląda następująco. Jeśli rutnią P jest płascna (-), to równania opisujące wiąek międ współrędnmi rutowanego punktu (,, ) a współrędnmi jego rutu ( p, p, p ) prjmują postać p p p = = = 0 3

4 Własności obraów wkonanch techniką rutu pionowego: rut odcinków równoległch do rutni mają taką samą długość jak te odcinki, rut odcinków prostopadłch do rutni są punktami. Zastosowanie rutu pionowego - rsunek technicn. Definiując rutnie jako płascn (-), (-), (-), bądź płascn do nich równoległe, można uskać rut produ, boku, gór itd. Dla prkładu: rut boku rut gór 2.2. Rut ukośn Proste rutowania precinają rutnię pod kątem innm niż kąt prost. Jak jednonacnie orientować proste rutowania wględem rutni? P (,, ) α L Φ ( p, p ) (, ) Ab jednonacnie orientować prostą rutowania wględem rutni, próc kąta a treba adać dodatkow parametr np. kąt Φ. 4

5 Z rsunku widać, że p p = + LcosF = + L sinf (,, ) α L Φ P ( p, p ) podstawiając tg = 1 a = L L i dalej L = L 1 1 (, ) uskuje się równania p p = + ( L 1 = + ( L 1 cosf cosf ) = + tga sinf sinf ) = + tga Parametrami definiującmi rut ukośn są wiec kąt Φ i odległość L 1 = 1 / tga lub para kątów Φ i α. Dla prkładu seścianu jednostkowego, można pokaać interpretację parametrów rutowania na utworonm obraie. P L 1 Φ Powżs rsunek wjaśnia także metodę konstrukcji rsunkowej rutu ukośnego seścianu. 5

6 Prkład: Wprowadone wceśniej równania powalają na wkonwanie rutów ukośnch dla dowolnch estawów parametrów L 1 i Φ. W praktce stosuje się jednak najcęściej pewne tpowe estaw parametrów rutowania. Wkonane ostaną cter rut ukośne seścianu jednostkowego. (1,2,2) (2,2,2) (1,2,1) (2,2,1) (2,1,2) (1,1,1) (2,1,1) Seścian, którego rut ostaną narsowane 1. o L 1 = 1 / tga = 1, a = 45 (rut kawalerjski) o F = 30 F = 45 o 2. L1 = 1 / tga = 1 / 2, a 63 (rut gabinetow) o o F = 30 o F = 45 6

7 3.Rutowanie perspektwicne Jak na płascźnie obraować obiekt trójwmiarowe, ab obserwator patrąc na taki obra odniósł wrażenie, że widi świat trójwmiarow? Niektóre cnniki jakie należ uwględnić pr próbie osiągnięcia wrażenia prestrenności na obraie płaskim: Geometria obrau - obiekt, które są w recwistości dalej, wdają się mniejse, - linie, które są w recwistości równoległe, wdają się bieżne. Wpłw oświetlenia scen na to, co widi obserwator - oświetlenie powierchni obiektów scen, - interakcje świetlne pomięd obiektami, cienie. Prkład (miniatura średniowiecna): La Somme le Ro (1290) British Museum, London 7

8 Filip Brunelleschi ( ) - architekt, reźbiar Kopuła katedr we Florencji Baptsterium św. Jana Filip Brunelleschi jest uważan a odkrwcę świadomie stosowanej metod rutu perspektwicnego. Narsował on obra perspektwicn baptsterium św. Jana posługując się sstemem dwóch wierciadeł. Paweł Uccello ( ) - malar P. Uccello Bitwa pod san Romano 8

9 Masaccio ( ) - malar Masaccio Gros cnsow Rafael Santi ( ) - malar Rafael Skoła ateńska 9

10 Urądenie do wkonwania rutów perspektwicnch: Albrecht Dürer ( ) Poucenie o miereniu crklem i linią r. Pr pomoc trech nici możes prenieść na obra każdą rec, którą [tmi nićmi] można dosięgnąć i narsować na desce. Cń ted tak: jeśli jesteś w sali, wbij w ścianę dużą spilę dużm uchem i prjmij, że to jest oko. Pre to [ucho] preciągnij mocną nić i awieś u dołu na niej ołowian ciężarek: Potem postaw stół lub deskę tak daleko jak echces od ucha spili, w której jest nić. Ustaw na tm [stole] prostą [pionową] ramę poprecnie do ucha spili, wżej lub niżej, w jaką echces stronę, a w tej ramie niech będą drwicki, które można b otwierać i amkać. Prbij do nich dwie nici, które b bł tak długie jak pionowa rama jest seroka i długa, u gór i pośrodku ram i ostaw b tak wisiał. Potem rób długi metalow stft, któr na predie, na ostru miałb uch igielne; prewlec preeń długą nić, która preciągnięta jest pre ucho spili w ścianie i prenieś igłę i długą nić pre ramę na ewnątr. Daj ją komuś innemu do ręki i pilnuj dwóch innch nici, które wisą pr ramie. A tera użwaj ich tak: połóż lutnię c cokolwiek ci się podoba tak daleko od ram, jak echces bleb leżała be mian tak długo jak będies jej potrebował. Każ tera pomocnikowi naciągać igłę nicią do najbardiej istotnch punktów lutni. A ile ra atrma się ona na którmś tch punktów i napnie długą nić, naciągnij awse dwie nici pr ramie na krż, w miejscu [gdie prechodi] długa nić, i prlepiaj je w obu miejscach woskiem do ram, a do pomocnika wołaj b popuścił długą nić. Wted amkaj drwicki i wrsowuj na desce ten sam punkt w miejscu gdie nici się krżują. Potem otwieraj nów drwicki i cń tak samo innm punktem - ażwpunktujes całą upełnie lutnię na desce. Potem połąc liniami wsstkie punkt lutni, które najdują się na desce - wówcas obacs, co tego wjdie. Możes w ten sposób odrsować i inne rec. 10

11 drwicki ucho rama długa nić ( p, p ) (,, ) krótkie nici ciężarek Jak wraić wiąek międ współrędnmi punktu (,, ) a współrędnmi jego rutu ( p, p ) pr pomoc równań? (,, ) ( p, p, 0) (,, ) d środek projekcji Zależność pomięd współrędnmi punktu (,, ) a punktu (,, ) opisuje układ równań parametrcnch = u = u 0 u 1 = ( + d )u 11

12 Ab wnacć współrędne punktu rutu ( p, p, 0 ) należ więc oblicć u, dla którego Rowiąaniem równania jest = ( + d )u = 0 u = + d Podstawiając oblicone u do układu równań parametrcnch opisującch współrędne punktu (,, ) otrmuje się równania, d p = + d d p = + d Jak wglądają obra perspektwicne? Prkład: (1,2,2) (2,2,2) (1,2,1) (2,2,1) (2,1,2) (1,1,1) (2,1,1) d = 3 d = 20 Gd d rut perspektwicn staje się rutem pionowm. 12

13 4. Ogóln prpadek rutowania W poprednich roważaniach rutnia leżała na płascźnie (-). Co robić gd rutnia jest ustuowana inacej? Jaki będie w takim prpadku efekt rutowania? Sformułowanie problemu: 1. Dan jest układ prostokątn współrędnch ewnętrnch (world coordinates) i opisan w tm układie obiekt. 2. W układie współrędnch ewnętrnch opisan jest drugi układ współrędnch prostokątnch wan układem obserwatora (viewing coordinates). Model sntetcnej kamer: w w, w, w układ ewnętrn v, v, v układ obserwatora obiekt v v v w Rowiąanie: w 1. Zapisać obiekt w układie współrędnch obserwatora (prelicć współrędne obiektu układu ( w, w, w ) na układ ( v, v, v ). 2. Wkonać rutowanie (np. perspektwicne) na płascnę ( v - v ). 13

14 Ab wkonać krok 1 najlepiej jest określić transformacje łożoną ( transformacji elementarnch). Składanie transformacji elementarnch może odbwać się według następującej procedur: 1. Presunięcie środka układu obserwatora do środka układu współrędnch ewnętrnch. 2. Obrót presuniętego układu obserwatora wokół osi w, tak ab oś v nalała się na płascźnie ( v - v ). 3. Obrót układu obserwatora wokół osi v, tak b oś v pokrła się osią w. 4. Obrót układu obserwatora wokół osi w, ab osie v i v pokrł się osiami w i w. Pewnm problemem pr wkonaniu łożenia transformacji może bć wnacenia kątów obrotu. Zastosowanie dla rutu perspektwicnego: Klasfikacja rutów perspektwicnch Krterium klasfikacji - licba osi układu współrędnch ewnętrnch ( w, w, w ), które precinają rutnię ( v - v ). w w v v obiekt v obiekt v v w w w v w jedna oś ( w ) precina rutnię tr osie precinają rutnię 14

15 Jak wglądają obra perspektwicne dla różnch położeń rutni? 1. Perspektwa jednopunktowa (rutnia ( v - v )leż na płascźnie ( w - w )). v Poorn punkt bieżności Seścian ( poprednich prkładów) w perspektwie jednopunktowej Na obraie perspektwicnm proste, na którch leżą obra niektórch krawędi seścianu biegają się w jednm punkcie (poorn punkt bieżności, vanishing point). v Canaletto ( ) - Plac św. Marka w Wenecji 15

16 2. Perspektwa dwupunktowa. Dwie osie układu współrędnch ewnętrnch ( w, w, w ) precinają rutnię ( v - v ) P 1 P 2 v v Seścian jednostkow w perspektwie dwupunktowej Na obraie perspektwicnm seścianu pojawił się dwa poorne punkt bieżności. E. Hopper (1923) - The Mansard Roof 16

17 3. Perspektwa trójpunktowa. Tr osie układu współrędnch ewnętrnch ( w, w, w ) precinają rutnię ( v - v ) v v Seścian jednostkow w perspektwie trójpunktowej Na obraie perspektwicnm seścianu można anacć tr poorne punkt bieżności. G. O'Keefe (1926) - Cit Night 17

18 Prkład: Pietro Lorenetti (1432) - Birth of Mar Hans Memling (1490) - Flower still-life 18

Plan wykładu. Wykład 2. Rzutowanie równoległe i perspektywiczne. Układ współrzędnych, zasady rzutowania. Układ współrzędnych, zasady rzutowania

Plan wykładu. Wykład 2. Rzutowanie równoległe i perspektywiczne. Układ współrzędnych, zasady rzutowania. Układ współrzędnych, zasady rzutowania Plan wkładu Wkład 2 Rutwanie równległe i ersektwicne 1. Układ wsółrędnch, asad rutwania 2. Rutwanie równległe 3. Rutwanie ersektwicne 4. Ogóln radek rutwania Układ wsółrędnch, asad rutwania Układ wsółrędnch,

Bardziej szczegółowo

WYKŁAD 8 RZUTOWANIE. Plan wykładu: 1. Układ współrzędnych, ogólne zasady rzutowania

WYKŁAD 8 RZUTOWANIE. Plan wykładu: 1. Układ współrzędnych, ogólne zasady rzutowania Plan wkładu: WYKŁAD 8 RZUTOWANIE Układ wsółrędnch, gólne asad rutwania Rutwanie równległe Rutwanie ersektwicne Ogóln radek rutwania. Układ wsółrędnch, gólne asad rutwania Lewskrętn układ wsółrędnch i rutnia:

Bardziej szczegółowo

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania

Bardziej szczegółowo

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot - podstawowe pojęcia Geometria analitcna w prestreni Wektorem acepionm w prestreni R 3 nawam uporądkowaną parę punktów A ora B i onacam go pre AB. Punkt A nawam jego pocątkiem, a punkt B - jego końcem.

Bardziej szczegółowo

Ruch kulisty bryły. Kąty Eulera. Precesja regularna

Ruch kulisty bryły. Kąty Eulera. Precesja regularna Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje

Bardziej szczegółowo

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił . REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch

Bardziej szczegółowo

Rozdział 9. Baza Jordana

Rozdział 9. Baza Jordana Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,

Bardziej szczegółowo

,..., u x n. , 2 u x 2 1

,..., u x n. , 2 u x 2 1 . Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

GRUPY SYMETRII Symetria kryształu

GRUPY SYMETRII Symetria kryształu GRUPY SYMETRII Smetria krstału Zamknięte (punktowe) operacje smetrii (minimum jeden punkt prestreni nie porusa się wskutek astosowania amkniętej operacji smetrii): Obrot i obrot inwersjne; Inwersja (smetria

Bardziej szczegółowo

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste Katedra Robotki i Mechatroniki Akademia Górnico-Hutnica w Krakowie Mechanika Robotów Wojciech Lisowski Opis położenia i orientacji efektora Model geometrcn adanie proste Mechanika Robotów KRIM, AGH w Krakowie

Bardziej szczegółowo

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać: ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ

Bardziej szczegółowo

Elementy symetrii makroskopowej w ujęciu macierzowym.

Elementy symetrii makroskopowej w ujęciu macierzowym. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Element smetrii makroskopowej w ujęciu macierowm. 2 god. Cel ćwicenia: tworenie macier smetrii elementów smetrii makroskopowej

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

LABORATORIUM MECHANIKI EKSPERYMENTALNEJ. Instrukcja do ćwiczenia

LABORATORIUM MECHANIKI EKSPERYMENTALNEJ. Instrukcja do ćwiczenia LABORATORIUM MECHANIKI EKSPERYMENTALNEJ Instrukcja do ćwicenia 3 Ruch precesjn giroskopu Cel ćwicenia Obserwacja jawiska precesji regularnej. Badanie ależności prędkości kątowej precesji od momentu sił

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. 2 god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam

Bardziej szczegółowo

Graficzne modelowanie scen 3D. Wykład 4

Graficzne modelowanie scen 3D. Wykład 4 Wkład 4 Podstawowe pojęcia i definicje . Modelowanie. Definicja Model awiera wsstkie dane i obiekt ora wiąki pomięd nimi, które są niebędne do prawidłowego wświetlenia i realiowania interakcji aplikacją,

Bardziej szczegółowo

Ruch kulisty bryły. Kinematyka

Ruch kulisty bryły. Kinematyka Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)

Bardziej szczegółowo

Zginanie ukośne LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki

Zginanie ukośne LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Katedra Wtrmałości Materiałów i Metod Komputerowch Mechaniki Wdiał Mechanicn Technologicn Politechnika Śląska LABORATORUM WYTRZYMAŁOŚC MATERAŁÓW Zginanie ukośne ZGNANE UKOŚNE 2 1. CEL ĆWCZENA Ćwicenie

Bardziej szczegółowo

I. Rachunek wektorowy i jego zastosowanie w fizyce.

I. Rachunek wektorowy i jego zastosowanie w fizyce. Blok 1: Rachunek wektorow i jego astosowanie w fice Podstawowe wielkości ficne w kinematce Opis ruchu w różnch układach odniesienia Ruch wględn I Rachunek wektorow i jego astosowanie w fice Wsstkie wielkości

Bardziej szczegółowo

4.2.1. Środek ciężkości bryły jednorodnej

4.2.1. Środek ciężkości bryły jednorodnej 4..1. Środek ciężkości rł jednorodnej Brłą jednorodną nawam ciało materialne, w którm masa jest romiescona równomiernie w całej jego ojętości. Dla takic ciał arówno gęstość, jak i ciężar właściw są wielkościami

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

napór cieczy - wypadkowy ( hydrostatyczny )

napór cieczy - wypadkowy ( hydrostatyczny ) 5. apór hdrostatcn i równowaga ciał płwającch Płn najdując się w stanie równowagi oddiałwuje na ścian ogranicające ropatrwaną jego objętość i sił te nawane są naporami hdrostatcnmi. Omawiana problematka

Bardziej szczegółowo

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne

Bardziej szczegółowo

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska

Bardziej szczegółowo

Równoważne układy sił

Równoważne układy sił Równoważne układ sił Równoważnmi układami sił nawam takie układ, którch skutki diałania na ten sam obiekt są jednakowe. Jeżeli układ sił da się astąpić jedną siłą, to siłę tą nawam siłą wpadkową. Wpadkowa

Bardziej szczegółowo

PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA

PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA MAŁOPOLSKI KONKURS MATEMATYCZNY Rok skoln 08/09 ETAP REJONOWY 0 grudnia 08 roku PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA adanie odpowiedź punkt B 3 C 3 3 A 3 4 B 3 5 E 3 6 B 3 7 E 3 8 C 3 9 D 3 0 A 3 7 adania

Bardziej szczegółowo

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd

Bardziej szczegółowo

Adam Bodnar: Wytrzymałość Materiałów. Ukośne zginanie 13. UKOŚNE ZGINANIE

Adam Bodnar: Wytrzymałość Materiałów. Ukośne zginanie 13. UKOŚNE ZGINANIE . UKOŚNE GINNIE.. Naprężenia i odkstałcenia Ukośne ginanie pręta prmatcnego wstępuje wówcas gd układ sił ewnętrnch po jednej stronie jego prekroju poprecnego pręta redukuje się do momentu ginającego, którego

Bardziej szczegółowo

Powierzchnie stopnia drugiego

Powierzchnie stopnia drugiego Algebra WYKŁAD 3 Powierchnie sopnia drugiego Deinicja Powierchnią sopnia drugiego kwadrką nawam biór punków presreni rójwmiarowej, spełniającch równanie A B C D E F G H I K gdie A, B,, K są sałmi i prnajmniej

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 17751 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Rozważm treść następujacego

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

TRANSFORMACJE 2-D2 PROCEDURA WIZUALIZACJI 2-D2

TRANSFORMACJE 2-D2 PROCEDURA WIZUALIZACJI 2-D2 WYKŁAD TRANSFORMACJE -D PROCEDURA WIZUALIZACJI -D Plan wkładu: Transforaje eleentarne w przestrzeni -D Składanie transforaji Ogólna proedura wizualizaji w -D Obinanie w oknie prostokątn tn 1. Transforaje

Bardziej szczegółowo

Laboratorium grafiki komputerowej i animacji. Ćwiczenie IV - Biblioteka OpenGL - transformacje przestrzenne obiektów

Laboratorium grafiki komputerowej i animacji. Ćwiczenie IV - Biblioteka OpenGL - transformacje przestrzenne obiektów Laboratorium grafiki komputerowej i animacji Ćwicenie IV - Biblioteka OpenGL - transformacje prestrenne obiektów Prgotowanie do ćwicenia: 1. Zaponać się transformacjami prestrennmi (obrót, presunięcie,

Bardziej szczegółowo

σ x σ y σ z σ z, Adam Bodnar: Wytrzymałość Materiałów. Równania fizyczne.

σ x σ y σ z σ z, Adam Bodnar: Wytrzymałość Materiałów. Równania fizyczne. Ada Bodnar: Wtrałość Materiałów. Równania ficne. 7. RÓWNANIA FIZCZN 7.. Zwiąki ięd stane odkstałcenia i naprężenia. I i II postać równań Hooke a Zależność deforacji brł od obciążeń ewnętrnch naruca istnienie

Bardziej szczegółowo

EPR. W -1/2 =-1/2 gµ B B

EPR. W -1/2 =-1/2 gµ B B Hamiltonian spinow Elektronow reonans paramanetcn jest wiąan absorpcją pola wsokiej cęstotliwości, która towars mianie orientacji spin w ewnętrnm polu manetcnm. Niesparowane spinowe moment manetcne µ s

Bardziej szczegółowo

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka

Bardziej szczegółowo

x od położenia równowagi

x od położenia równowagi RUCH HARMONICZNY Ruch powtarając się w regularnch odstępach casu nawa ruche okresow. Jeżeli w taki ruchu seroko rouiane odchlenie od stanu równowagi ( np. odchlenie as podcepionej do sprężn, wartość wektora

Bardziej szczegółowo

Adam Bodnar: Wytrzymałość Materiałów. Proste zginanie

Adam Bodnar: Wytrzymałość Materiałów. Proste zginanie dam Bodnar: trmałość ateriałów. Proste ginanie. PROSTE GINNIE.. Naprężenia i odkstałcenia Proste ginanie pręta prmatcnego wstępuje wówcas gd układ sił ewnętrnch po jednej stronie jego prekroju poprecnego

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera

Bardziej szczegółowo

Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,...

Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,... Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,... Rzut sferyczny (projekcja sferyczna) Kryształ zastępuje się zespołem płaszczyzn i prostych równoległych do odpowiadających im płaszczyzn

Bardziej szczegółowo

Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla

Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla Ćwicenie 13 Wnacanie ruchliwości i koncentracji nośników prądu w półprewodnikach metodą efektu alla Cel ćwicenia Celem ćwicenia jest aponanie się e jawiskiem alla, stałoprądową metodą badania efektu alla,

Bardziej szczegółowo

ALGEBRA rok akademicki

ALGEBRA rok akademicki ALGEBRA rok akademck -8 Tdeń Tematka wkładu Tematka ćwceń ajęć Struktur algebracne (grupa cało; be Dałana na macerach perścen Defncja macer Dałana na macerach Oblcane wnacnków Wnacnk jego własnośc Oblcane

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennch Wkres i warstwice funkcji wielu zmiennch. Przeglad powierzchni stopnia drugiego. Granice i ciagłość funkcji wielu zmiennch. Małgorzata Wrwas Katedra Matematki Wdział Informatki Politechnika

Bardziej szczegółowo

DryLin T System prowadnic liniowych

DryLin T System prowadnic liniowych DrLin T Sstem prowadnic liniowch Prowadnice liniowe DrLin T ostał opracowane do astosowań wiąanch automatką i transportem materiałów. Chodiło o stworenie wdajnej, beobsługowej prowadnic liniowej do astosowania

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t Zesaw adań : Preksałcenia liniowe. Maciere preksałceń liniowch () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, 3 + + + +, d) n

Bardziej szczegółowo

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna

Bardziej szczegółowo

Belki zespolone 1. z E 1, A 1

Belki zespolone 1. z E 1, A 1 Belki espolone. DEFINIC Belki espolone to belki, którch prekrój poprecn składa się co najmniej dwóch materiałów o różnch własnościach ficnch (różne moduł Younga i współcnniki Poissona), pr cm apewnione

Bardziej szczegółowo

Część 1 2. PRACA SIŁ WEWNĘTRZNYCH 1 2. PRACA SIŁ WEWNĘTRZNYCH Wstęp

Część 1 2. PRACA SIŁ WEWNĘTRZNYCH 1 2. PRACA SIŁ WEWNĘTRZNYCH Wstęp Cęść 1. PRC SIŁ WEWNĘTRZNYCH 1.. PRC SIŁ WEWNĘTRZNYCH.1. Wstęp Na wstępie prpomnijm, że gd premiescenie danego eementu jest funkcją diałającej nań sił Δ = f(p), to praca sił na tm premiesceniu jest równa:

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA. Poziom podstawowy

GEOMETRIA ANALITYCZNA. Poziom podstawowy GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej

Bardziej szczegółowo

Belki złożone i zespolone

Belki złożone i zespolone Belki łożone i espolone efinicja belki łożonej siła rowarswiająca projekowanie połąceń prkła obliceń efinicja belki espolonej ałożenia echnicnej eorii ginania rokła naprężeń normalnch prkła obliceń Belki

Bardziej szczegółowo

Algebra z geometrią 2012/2013

Algebra z geometrią 2012/2013 Algebra geometrią 22/23 Seria XVI Javier de Lucas Zadanie. Wnacć rąd macier: A :, B : 2 4 3 4 3 2 3 3 5 7 3 3 6 3 Rowiąanie: Macier A: Sposób: Rąd macier to wmiar prestreni generowanej pre jej kolumn.

Bardziej szczegółowo

3. Metody rozwiązywania zagadnień polowych

3. Metody rozwiązywania zagadnień polowych 3. Metod rowiąwania agadnień polowch 3.. Dokładne metod anali pola Dokładne metod anali pola powalają na uskanie dokładnego rowiąania równania róŝnickowego lub całkowego w dowolnm punkcie obsaru diałania

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 9 MARCA 019 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Cena nart po obniżce o

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E'' GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

I. POLARYZATORY Dichroizm Polaryzator w postaci rastra z drutu

I. POLARYZATORY Dichroizm Polaryzator w postaci rastra z drutu I. POLARYZATORY Polarator nie służą tlko do polaracji światła naturalnego, ale również do mian stanu polaracji światła spolarowanego. Polarator: liniow, kołow, eliptcn. Zasad diałania różnch polaratorów

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba

Bardziej szczegółowo

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8 Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji

Bardziej szczegółowo

Wektory. P. F. Góra. rok akademicki

Wektory. P. F. Góra. rok akademicki Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrmałości materiałów IMiR - MiBM - Wkład Nr 5 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja

Bardziej szczegółowo

Adam Bodnar: Wytrzymałość Materiałów. Hipotezy wytężeniowe.

Adam Bodnar: Wytrzymałość Materiałów. Hipotezy wytężeniowe. HIPOTEZY WYTĘŻENIOWE Wtężenie i jego miara Wkres rociągania stali miękkiej pokauje że punkt materialn najdując się w jednoosiowm stanie naprężenia prechodi w trakcie więksania naprężenia pre kolejne stan

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 8 MARCA 015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Przbliżenie dziesiętne

Bardziej szczegółowo

PRZEKSZTAŁCENIA W PRZESTRZENI 3D czyli matematyczny zawrót głowy. Część2 :Rodzaje układów współrzędnych. Obroty i Skalowanie

PRZEKSZTAŁCENIA W PRZESTRZENI 3D czyli matematyczny zawrót głowy. Część2 :Rodzaje układów współrzędnych. Obroty i Skalowanie PRZEKSZTAŁCENIA W PRZESTRZENI 3D cli matematcn awrót głow Cęść :Rodaje układów wpółrędnch. Obrot i Skalowanie Witam wtkich agorałch grafików. Tak jak piałem w popredniej cęści nach matematcnch roważań,

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrmałości materiałów IMiR -IA- Wkład Nr 9 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja

Bardziej szczegółowo

Ćwiczenie 361 Badanie układu dwóch soczewek

Ćwiczenie 361 Badanie układu dwóch soczewek Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka

Bardziej szczegółowo

1. Podstawy matematyczne programowania grafiki 3D

1. Podstawy matematyczne programowania grafiki 3D Podstaw programowania gier 3D Podstaw atematki. Podstaw matematcne programowania grafiki 3D Analię agadnień dotcącch grafiki komputerowej acniem od elementów matematki niebędnch do roumienia omawianch

Bardziej szczegółowo

KINEMATYKA. Pojęcia podstawowe

KINEMATYKA. Pojęcia podstawowe KINEMTYK Pojęcia podstawowe Kinematka jest diałem mechaniki ajmującm się badaniem uchu ciał be uwględniania pcn wwołującch ten uch. Jej celem jest opis tego uchu. Ruchem nawam mianę położenia ciała w odniesieniu

Bardziej szczegółowo

Zestaw zadań 15: Funkcjonały dwuliniowe i formy kwadratowe (1) Sprawdzić, czy następujące odwzorowania ξ : R 3 R 3 R: x y. x y z. f(x)g(x)dx.

Zestaw zadań 15: Funkcjonały dwuliniowe i formy kwadratowe (1) Sprawdzić, czy następujące odwzorowania ξ : R 3 R 3 R: x y. x y z. f(x)g(x)dx. Zestaw adań 5: Funkcjonał dwuliniowe i form kwadratowe () Sprawdić, c następujące odworowania ξ : R 3 R 3 R: x x a) ξ( x, c) ξ( x, x ) = xx + + ; b) ξ(, x ) = xx + 2 + ; d) ξ( x, x x ) = x + x + 2; ) =

Bardziej szczegółowo

3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5.

3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5. WYKŁAD 7 3 Podstawowe własności unkcji Funkcje cklometrczne, hiperboliczne Deinicję unkcji o dziedzinie X i przeciwdziedzinie Y mam w 3A5 3A37 (Uwaga: dziedzina naturalna) Często się zdarza, że unkcja

Bardziej szczegółowo

ANALIZA STANU NAPRĘŻEŃ

ANALIZA STANU NAPRĘŻEŃ MACIJ PAWŁOWSKI ANALIZA STANU NAPRĘŻŃ Skrpt dla studentów Gdańsk 08 dr hab inż Maciej Pawłowski, prof GSW Wdiał Nauk Inżnierskich, Gdańska Skoła Wżsa Redakcja Tomas Mikołajcewski Wdanie pierwse, Gdańsk

Bardziej szczegółowo

Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej.

Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej. Prkład.7. Naprężenia tcne pr ginaniu belki cienkościennej. Wnac rokład naprężenia tcnego w prekroju podporowm belki wpornikowej o prekroju cienkościennm obciążonej na wobodnm końcu pionową iłą P. Siła

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie

Bardziej szczegółowo

MATURA PRÓBNA 2 KLASA I LO

MATURA PRÓBNA 2 KLASA I LO IMIE I NAZWISKO MATURA PRÓBNA KLASA I LO CZAS PRACY: 90 MIN. SUMA PUNKTÓW: 60 ZADANIE (5 PKT) Znajdź wszstkie funkcje liniowe określone na zbiorze ;, którch zbiorem wartości jest przedział ; 0. ZADANIE

Bardziej szczegółowo

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy.

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy. rzkład 0.. Łuk trójprzegubow. Rsunek 0.. przedstawia łuk trójprzegubow, którego oś ma kształt półokręgu (jest to łuk kołow ). Łuk obciążon jest ciężarem konstrukcji podwieszonej. Narsować wkres momentów

Bardziej szczegółowo

Wykład 1 Podstawy projektowania układów logicznych i komputerów Synteza i optymalizacja układów cyfrowych Układy logiczne

Wykład 1 Podstawy projektowania układów logicznych i komputerów Synteza i optymalizacja układów cyfrowych Układy logiczne Element cfrowe i układ logicne Wkład Literatura M. Morris Mano, Charles R. Kime Podstaw projektowania układów logicnch i komputerów, Wdawnictwa Naukowo- Technicne Giovanni De Micheli - Sntea i optmaliacja

Bardziej szczegółowo

TEORIA SPRĘŻYSTOŚCI 10

TEORIA SPRĘŻYSTOŚCI 10 W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,

Bardziej szczegółowo

Rok akademicki 2005/2006

Rok akademicki 2005/2006 GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Global Positioning System (GPS) zasada działania

Global Positioning System (GPS) zasada działania Global Positioning Sstem GPS asada diałania Metoda wnacania pocji GPS apewnia pocję 3D -,, H. Parametr nawigacjn odległość odbiornika od SV. Odległość od SV wlicana na podstawie pomiaru casu podcas prebtej

Bardziej szczegółowo

Geometria analityczna - przykłady

Geometria analityczna - przykłady Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu miennch wkład MATEMATYKI Automatka i robotka studia niestacjonarne sem II, rok ak 2009/2010 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R ndef ={( 1, 2,, n ): 1 R 2

Bardziej szczegółowo

Pola siłowe i ich charakterystyka

Pola siłowe i ich charakterystyka W-6 (Jaosewic) 10 slajdów Pola siłowe i ich chaaktestka Pola siłowe: pojęcie i odaje pól siłowch, wielkości chaakteujące pola siłowe Pola achowawce Pole gawitacjne: uch w polu gawitacjnm 3/10 L.R. Jaosewic

Bardziej szczegółowo

SYNTHESIS OF MOTION FOR A FOUR-LEGGED ROBOT

SYNTHESIS OF MOTION FOR A FOUR-LEGGED ROBOT Dr inŝ. Maciej T. Trojnacki Premsłow Insttut Automatki i Pomiarów Al. Jeroolimskie 0, 0-486 Warsawa Telefon: +48 8740 341, email: mtrojnacki@piap.pl SYNTEZA UCHU OBOTA CZTEONOśNEO W prac predstawiono nowatorską

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollb.pl Transformacje 3D Podobnie jak w prestreni -wymiarowej, dla prestreni 3-wymiarowej definijemy transformacje RST: presnięcie miana skali obrót

Bardziej szczegółowo

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia. rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej

Bardziej szczegółowo

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar 2.1. kreślenie i rodje wektorów. Mnożenie wektor pre sklr Wielkości ficne wstępujące w mechnice i innch diłch fiki możn podielić n sklr i wektor. A określić wielkość sklrną, wstrc podć tlko jedną licę.

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa: PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci

Bardziej szczegółowo

Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej

Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej 1. Wstęp Pojemność kondensatora można obliczyć w prosty sposób znając wartości zgromadzonego na nim ładunku i napięcia między okładkami: Q

Bardziej szczegółowo

3.3. UKŁADY RÓWNAŃ LINIOWYCH. Równanie liniowe z dwiema niewiadomymi. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci

3.3. UKŁADY RÓWNAŃ LINIOWYCH. Równanie liniowe z dwiema niewiadomymi. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci .. UKŁADY RÓWNAŃ LINIOWYCH Równanie liniowe z dwiema niewiadommi Równaniem liniowm z dwiema niewiadommi i nazwam równanie postaci A B C 0, gdzie A, B, C R i A B 0 m równania z dwiema niewiadommi nazwam

Bardziej szczegółowo

EGZAMIN PRÓBNY CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 50 ZADANIE 1 (1 PKT) ZADANIE 2 (1 PKT) ZADANIE 3 (1 PKT) ZADANIE 4 (1 PKT) ZADANIE 5 (1 PKT)

EGZAMIN PRÓBNY CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 50 ZADANIE 1 (1 PKT) ZADANIE 2 (1 PKT) ZADANIE 3 (1 PKT) ZADANIE 4 (1 PKT) ZADANIE 5 (1 PKT) IMIE I NAZWISKO EGZAMIN PRÓBNY CZAS PRACY: MIN. SUMA PUNKTÓW: 5 ZADANIE ( PKT) Dziedzina funkcji f (x) = x jest zbiór x 2 +x 6 A) R \ {, 2} B) (, 2) C) (, ) (2, + ) D) (, 2) (, + ) ZADANIE 2 ( PKT) W pewnej

Bardziej szczegółowo

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI UTORK: ELŻBIET SZUMIŃSK NUCZYCIELK ZESPOŁU SZKÓŁ OGÓLNOKSZTŁCĄCYCH SCHOLSTICUS W ŁODZI ZNNE RÓWNNI PROSTEJ N PŁSZCZYŹNIE I W PRZESTRZENI SPIS TREŚCI: PROST N PŁSZCZYŻNIE Str 1. Równanie kierunkowe prostej

Bardziej szczegółowo