Laboratorium grafiki komputerowej i animacji. Ćwiczenie IV - Biblioteka OpenGL - transformacje przestrzenne obiektów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Laboratorium grafiki komputerowej i animacji. Ćwiczenie IV - Biblioteka OpenGL - transformacje przestrzenne obiektów"

Transkrypt

1 Laboratorium grafiki komputerowej i animacji Ćwicenie IV - Biblioteka OpenGL - transformacje prestrenne obiektów Prgotowanie do ćwicenia: 1. Zaponać się transformacjami prestrennmi (obrót, presunięcie, skalowanie), 2. Zaponać się opisem jednorodnm transformacji prestrennch, 3. Zaponać się estawem komend OpenGL umożliwiającm dokonwanie transformacji prestrennch obiektów na scenie wra podstawowmi asadami posługiwania się tmi komendami. Prebieg ćwicenia: 1. Założenia: a. Celem prac na ajęciach laboratorjnch jest wkonanie ruchomego modelu siatki manipulatora Puma. b. Wnikiem prac na disiejsch ajęciach ma bć program bliżon w diałaniu do programu puma_siatka.ee dostarconego do materiałów laboratorjnch. c. Realiacja ćwicenia polega na uupełnieniu kodu programu gl_template modfikowanego na ostatnich ajęciach. d. W realiacji prac worować się należ na rowiąaniach prjętch w programie robot1 również dołąconm do materiałów laboratorjnch. 2. Prebieg ćwicenia: a. Załadować do programu VS projekt Gl_Template modfikowan na poprednich ajęciach i awierając opracowane siatki: seścianu, walca ora ramienia robota. b. Ustalić następując trb rsowania wielokątów: prednie i tlne ścian rsowane jako siatka (należ w funkcji RenderScene() uaktwnić wwołanie funkcji glpolgonmode(gl_front_and_back,gl_line);) c. Utworć funkcję o prototpie: void robot(double d1, double d2, double d3); Model robota będie posiadał 3 stopnie swobod: obród wokół podstaw, obrót pierwsego ramienia i obrót drugiego ramienia, stąd do funkcji ostaną prekaane 3 parametr określające jego bieżącą konfigurację. Funkcja będie korstała funkcji rsującch walec i ramię robota. d. Powołać do żcia 3 mienne globalne tpu double do prechowwania konfiguracji robota: double rot1, rot2, rot3; e. Wwołać funkcję robot wewnątr funkcji RenderScene() parametrami wwołania rot1, rot2, rot3: robot(rot1, rot2, rot3); f. Wewnątr funkcji robot() pretransformować baow układ współrędnch do miejsca, w którm będie rsowana podstawa robota. Zmianę położenia układu

2 współrędnch pokaano na rsunku 1 Rs. 1 Ocekiwana miana orientacji i położenia układu współrędnch. Układ baow obrócono o -90 stopni wokół osi, a następnie presunięto o wektor [0,0,-50]. W bibliotece OpenGL można dokonać takiej transformacji na macier modelowania-transformacji wwołując komend: glrotated(-90,1,0,0); gltranslated(0,0,-50); g. W pretransformowanm układie współrędnch wrsować podstawę robota: walec(30,5); Wnik rsowania pokaano na rsunku 2. Rs. 2. Wrsowanie podstaw robota. h. Presunąć układ współrędnch o wektor [0,0,5] (5-wsokość walca modelującego podstawę robota). Wrsować model walca obraując 1 cęść kolumn robota: gltranslated(0,0,5); walec(10,40); Reultat wkonania nowch komend OpenGL pokaano na rsunku 3.

3 Rs. 3. Wrsowanie 1 cęści kolumn robota. i. Presunąć układ współrędnch o wektor [0,0,40] (40-wsokość walca modelującego podstawę robota), a następnie obrócić układ współrędnch o wartość parametru d1 wokół osi. Należ pamiętać, że wartość parametru d1 ależ od wartości miennej globalnej rot1. Następnie wrsować kolejn walec stanowiąc drugą cęść kolumn robota: gltranslated(0,0,40); glrotated(d1,0,0,1); walec(10,40); Reultat dotchcasowego ciągu komend pokaano na rsunku 4. Rs. 4. Wrsowanie 2 cęści kolumn robota. j. Obsługę komunikatu WM_KEYDOWN w funkcji WndProc() uupełnić (pred wwołaniem funkcji InvalidateRect(hWnd,NULL,FALSE);) o następując kod: if(wparam == '1') rot1 -= 5.0f; if(wparam == '2') rot1 += 5.0f; Od tej chwili prciśnięcie klawisa 1 powoduje mniejsenie rot1, kolei prciśnięcie klawisa 2 - więksenie wartości miennej rot1, a następnie wmusenie wrsowania scen. W konsekwencji druga cęść kolumn robota obraca się pod wpłwem prciskania klawis 1 i 2.

4 k. Uupełnić obsługę komunikatu WM_KEYDOWN o możliwość modfikacji stanu miennej rot2 po prciśnięciu klawis 3, 4 ora modfikacji stanu miennej rot3 po prciśnięciu klawis 5, 6. l. Presunąć układ współrędnch o wektor [0,0,40], obrócić układ współrędnch o kąt 90 stopni wokół osi i presunąć układ współrędnch o wektor [0,0,-20]: gltranslated(0,0,40); glrotated(90,0,1,0); gltranslated(0,0,-20); m. Wrsować kolejn walec w nowej pocji lokalnego układu współrędnch: walec(10,40); Reultat dotchcasowego skrptu pokaano na rsunku 5. Rs. 5. Uupełnienie kolumn robota o element umożliwiając prłącenie ramienia. n. Presunąć układ współrędnch o wektor [0,0,40], obrócić układ współrędnch o (+90º+d2) wokół osi, wrsować ramię robota: gltranslated(0,0,+40); glrotated(90+d2,0,0,1); ramie(15,10,5,30); Dotchcasow reultat wkonania skrptu pokaano na rs. 6. Rs. 6. Uupełnienie modelu robota o pierwse ramię.

5 o. Presunąć układ współrędnch o wektor [30,0,-5], obrócić układ współrędnch o kąt d3 wokół osi, wrsować ramię robota: gltranslated(30,0,-5); glrotated(d3,0,0,1); ramie(15,10,5,30); Dotchcasow reultat wkonania skrptu pokaano na rs. 7. Rs. 7. Kompletna siatka robota. p. Skrpt rsując model robota ropocąć od polecenia glpushmatri() i akońcć poleceniem glpopmatri(): glpushmatri(); // skrpt rsując robota glpopmatri(); Takie astosowanie funkcji glpushmatri() i glpopmatri() powoduje, że wsstkie transformacje prestrenne astosowane w skrpcie tworącm model robota nie wpłwają na rsowanie innch elementów scen. q. Obsługę komunikatu WM_CREATE w funkcji WndProc() uupełnić o wwołanie funkcji: SetTimer(hWnd,101,200,NULL); Spowoduje to ainstalowanie w programie budika, któr będie powiąan oknem programu, będie miał identfikator 101 i będie wsłał specjaln komunikat WM_TIMER do procedur okna co 200 [ms]. r. Obsługę komunikatu WM_DESTROY w funkcji WndProc() uupełnić o wwołanie funkcji: KillTimer(hWnd,101); Funkcja oddaje sstemowi operacjnemu budik tuż pred akońceniem diałania programu. s. Powołać globalną całkowitolicbową mienną licnik.

6 t. Wprowadić do funkcji WndProc() mechanim obsługi nowego komunikatu WM_TIMER: case WM_TIMER: if(wparam==101) { licnik++; if(licnik<15) rot2+=15.0; if(licnik>15 && licnik < 30) rot2-=15.0; if(licnik>30) {licnik=0;} InvalidateRect(hWnd,NULL,FALSE); } break; Tak modfikowan program będie stosował budik do automatcnego generowania kolejnch klatek animacji. u. Zaproponować realiację funkcji dwa_robot(), która będie modelowała gniado robotów składające się 2 egemplar robota opracowanego wceśniej. Uwaga: Należ umiejętnie posłużć się wwołaniem komend glpushmatri() i glpopmatri() w celu odiolowania transformacji prestrennch. v. Opracować własn scenarius porusania się robotów w gnieźdie.

Laboratorium grafiki komputerowej i animacji. Ćwiczenie III - Biblioteka OpenGL - wprowadzenie, obiekty trójwymiarowe: punkty, linie, wielokąty

Laboratorium grafiki komputerowej i animacji. Ćwiczenie III - Biblioteka OpenGL - wprowadzenie, obiekty trójwymiarowe: punkty, linie, wielokąty Laboratorium grafiki komputerowej i animacji Ćwicenie III - Biblioteka OpenGL - wprowadenie, obiekty trójwymiarowe: punkty, linie, wielokąty Prygotowanie do ćwicenia: 1. Zaponać się ogólną charakterystyką

Bardziej szczegółowo

Laboratorium grafiki komputerowej i animacji. Ćwiczenie V - Biblioteka OpenGL - oświetlenie sceny

Laboratorium grafiki komputerowej i animacji. Ćwiczenie V - Biblioteka OpenGL - oświetlenie sceny Laboratorium grafiki komputerowej i animacji Ćwiczenie V - Biblioteka OpenGL - oświetlenie sceny Przygotowanie do ćwiczenia: 1. Zapoznać się ze zdefiniowanymi w OpenGL modelami światła i właściwości materiałów.

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

Elementy symetrii makroskopowej w ujęciu macierzowym.

Elementy symetrii makroskopowej w ujęciu macierzowym. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Element smetrii makroskopowej w ujęciu macierowm. 2 god. Cel ćwicenia: tworenie macier smetrii elementów smetrii makroskopowej

Bardziej szczegółowo

Laboratorium Grafiki Komputerowej i Animacji. Ćwiczenie IV. Biblioteka OpenGL - transformacje przestrzenne obiektów

Laboratorium Grafiki Komputerowej i Animacji. Ćwiczenie IV. Biblioteka OpenGL - transformacje przestrzenne obiektów Laboratorium Grafiki Komputerowej i Animacji Ćwicenie IV Biblioteka OpenGL - transformacje prestrenne obiektów Sławomir Samolej Resów, 1999 1. Wprowadenie Podstawowm agadnieniem dotcącm tworenia scen graficnch

Bardziej szczegółowo

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste Katedra Robotki i Mechatroniki Akademia Górnico-Hutnica w Krakowie Mechanika Robotów Wojciech Lisowski Opis położenia i orientacji efektora Model geometrcn adanie proste Mechanika Robotów KRIM, AGH w Krakowie

Bardziej szczegółowo

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił . REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. 2 god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne

Bardziej szczegółowo

Zginanie ukośne LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki

Zginanie ukośne LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Katedra Wtrmałości Materiałów i Metod Komputerowch Mechaniki Wdiał Mechanicn Technologicn Politechnika Śląska LABORATORUM WYTRZYMAŁOŚC MATERAŁÓW Zginanie ukośne ZGNANE UKOŚNE 2 1. CEL ĆWCZENA Ćwicenie

Bardziej szczegółowo

GRUPY SYMETRII Symetria kryształu

GRUPY SYMETRII Symetria kryształu GRUPY SYMETRII Smetria krstału Zamknięte (punktowe) operacje smetrii (minimum jeden punkt prestreni nie porusa się wskutek astosowania amkniętej operacji smetrii): Obrot i obrot inwersjne; Inwersja (smetria

Bardziej szczegółowo

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka

Bardziej szczegółowo

Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu.

Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu. TEMATYKA: Optymaliacja nakładania wyników pomiarów Ćwicenia nr 6 DEFINICJE: Optymaliacja: metoda wynacania najlepsego (sukamy wartości ekstremalnej) rowiąania punktu widenia określonego kryterium (musimy

Bardziej szczegółowo

Zadanie polega na zbudowaniu i wyświetleniu przykładowej animowanej sceny przedstawiającej robota spawalniczego typu PUMA.

Zadanie polega na zbudowaniu i wyświetleniu przykładowej animowanej sceny przedstawiającej robota spawalniczego typu PUMA. Zadanie PUMA Zadanie polega na zbudowaniu i wyświetleniu przykładowej animowanej sceny przedstawiającej robota spawalniczego typu PUMA. Cały projekt składa się z następujących elementów: 1. Animacja ramion

Bardziej szczegółowo

Temat: Transformacje 3D

Temat: Transformacje 3D Instrukcja laboratoryjna 11 Grafika komputerowa 3D Temat: Transformacje 3D Przygotował: dr inż. Grzegorz Łukawski, mgr inż. Maciej Lasota, mgr inż. Tomasz Michno 1 Wstęp teoretyczny Bardzo często programując

Bardziej szczegółowo

DryLin T System prowadnic liniowych

DryLin T System prowadnic liniowych DrLin T Sstem prowadnic liniowch Prowadnice liniowe DrLin T ostał opracowane do astosowań wiąanch automatką i transportem materiałów. Chodiło o stworenie wdajnej, beobsługowej prowadnic liniowej do astosowania

Bardziej szczegółowo

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd

Bardziej szczegółowo

napór cieczy - wypadkowy ( hydrostatyczny )

napór cieczy - wypadkowy ( hydrostatyczny ) 5. apór hdrostatcn i równowaga ciał płwającch Płn najdując się w stanie równowagi oddiałwuje na ścian ogranicające ropatrwaną jego objętość i sił te nawane są naporami hdrostatcnmi. Omawiana problematka

Bardziej szczegółowo

Laboratorium 1. Część I. Podstawy biblioteki graficznej OpenGL.

Laboratorium 1. Część I. Podstawy biblioteki graficznej OpenGL. Laboratorium 1 Część I Podstawy biblioteki graficznej OpenGL. I. Konfiguracja środowiska 1. Ściągamy bibliotekę freeglut i rozpakujemy do głównego folderu dysku systemowego np. C:\freeglut 2. Uruchamiamy

Bardziej szczegółowo

2 Przygotował: mgr inż. Maciej Lasota

2 Przygotował: mgr inż. Maciej Lasota Laboratorium nr 2 1/6 Grafika Komputerowa 3D Instrukcja laboratoryjna Temat: Manipulowanie przestrzenią 2 Przygotował: mgr inż. Maciej Lasota 1) Manipulowanie przestrzenią Istnieją dwa typy układów współrzędnych:

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

Ruch kulisty bryły. Kąty Eulera. Precesja regularna

Ruch kulisty bryły. Kąty Eulera. Precesja regularna Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje

Bardziej szczegółowo

Zad. 6: Sterowanie robotem mobilnym

Zad. 6: Sterowanie robotem mobilnym Zad. 6: Sterowanie robotem mobilnym 1 Cel ćwiczenia Utrwalenie umiejętności modelowania kluczowych dla danego problemu pojęć. Tworzenie diagramu klas, czynności oraz przypadków użycia. Wykorzystanie dziedziczenia

Bardziej szczegółowo

BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL strona 1/7

BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL strona 1/7 BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL strona 1/7 BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL 1. Wiadomości wstępne Monolitcne układ scalone TTL ( ang. Trasistor Transistor Logic) stanowią obecnie

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam

Bardziej szczegółowo

MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH

MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH Oga Kopac, am Łogowski, Wojciech Pawłowski, ichał Płotkowiak, Krstof mber Konsutacje naukowe: prof. r hab. JERZY RKOWSKI Ponań /3 ECHIK BUDOWI Praca sił normanch Siła normana prpomnienie (): Jest to siła

Bardziej szczegółowo

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: I. Animacje na slajdach przygotował mgr inż.

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: I. Animacje na slajdach przygotował mgr inż. SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE CZĘŚĆ: I DR INŻ. TOMASZ LASKOWSKI Animacje na slajdach 13-30 prgotował mgr inż. Marcin Płosiński MOTTO WYKŁADU Nie treba końcć studiów na kierunku elektronika, ab

Bardziej szczegółowo

Rozwiązanie równań stanu dla układów liniowych - pola wektorowe

Rozwiązanie równań stanu dla układów liniowych - pola wektorowe Rozwiązanie równań stanu dla układów liniowch - pola wektorowe Przgotowanie: Dariusz Pazderski Wprowadzenie Rozważm liniowe równanie stanu układu niesingularnego stacjonarnego o m wejściach: ẋ = A+ Bu,

Bardziej szczegółowo

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane

Bardziej szczegółowo

Przekształcenia geometryczne. Dorota Smorawa

Przekształcenia geometryczne. Dorota Smorawa Przekształcenia geometryczne Dorota Smorawa Przekształcenia geometryczne Na poprzednich laboratoriach już dowiedzieliśmy się, na czym polegają podstawowe przekształcenia geometryczne. Trzy podstawowe przekształcenia

Bardziej szczegółowo

1. Podstawy matematyczne programowania grafiki 3D

1. Podstawy matematyczne programowania grafiki 3D Podstaw programowania gier 3D Podstaw atematki. Podstaw matematcne programowania grafiki 3D Analię agadnień dotcącch grafiki komputerowej acniem od elementów matematki niebędnch do roumienia omawianch

Bardziej szczegółowo

EPR. W -1/2 =-1/2 gµ B B

EPR. W -1/2 =-1/2 gµ B B Hamiltonian spinow Elektronow reonans paramanetcn jest wiąan absorpcją pola wsokiej cęstotliwości, która towars mianie orientacji spin w ewnętrnm polu manetcnm. Niesparowane spinowe moment manetcne µ s

Bardziej szczegółowo

1 Wstęp teoretyczny. Temat: Manipulowanie przestrzenią. Grafika komputerowa 3D. Instrukcja laboratoryjna Układ współrzędnych

1 Wstęp teoretyczny. Temat: Manipulowanie przestrzenią. Grafika komputerowa 3D. Instrukcja laboratoryjna Układ współrzędnych Instrukcja laboratoryjna 9 Grafika komputerowa 3D Temat: Manipulowanie przestrzenią Przygotował: dr inż. Grzegorz Łukawski, mgr inż. Maciej Lasota, mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1 Układ

Bardziej szczegółowo

I. Rachunek wektorowy i jego zastosowanie w fizyce.

I. Rachunek wektorowy i jego zastosowanie w fizyce. Blok 1: Rachunek wektorow i jego astosowanie w fice Podstawowe wielkości ficne w kinematce Opis ruchu w różnch układach odniesienia Ruch wględn I Rachunek wektorow i jego astosowanie w fice Wsstkie wielkości

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

4.2.1. Środek ciężkości bryły jednorodnej

4.2.1. Środek ciężkości bryły jednorodnej 4..1. Środek ciężkości rł jednorodnej Brłą jednorodną nawam ciało materialne, w którm masa jest romiescona równomiernie w całej jego ojętości. Dla takic ciał arówno gęstość, jak i ciężar właściw są wielkościami

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE. WYDZIAŁ Kultury Fizycznej i Ochrony Zdrowia

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE. WYDZIAŁ Kultury Fizycznej i Ochrony Zdrowia PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE WYDZIAŁ Kultury Fiycnej i Ochrony Zdrowia Katedra Morfologicnych i Cynnościowych Podstaw Kultury Fiycnej Kierunek: Wychowanie Fiycne SYLABUS Nawa predmiotu Rytmika

Bardziej szczegółowo

7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.11 7.12 7.12 7.13 7.14 7.14 7.15 7.18 7.20 7.21 7.1. www.erico.pl

7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.11 7.12 7.12 7.13 7.14 7.14 7.15 7.18 7.20 7.21 7.1. www.erico.pl 7.1-7.21 PRFI 7.2 7.2 7.3 7.3 7.4 27x18x1,25 27x3x1,5 1 3x15x2 2 34x2x1,5 2 34x2x2,4 7.4 7.5 7.6 7.7 7.8 3 35x35x2 4 38x4x2-27x18x1,25-27x3x1,5-2 34x2x2,4 7.9 7.1 7.11 7.11 7.12-3 35x35x2-4 38x4x2-4 -4

Bardziej szczegółowo

PRÓBNA MATURA. ZADANIE 1 (1 PKT) Wskaż liczbę, której 4% jest równe 8. A) 200 B) 100 C) 3,2 D) 32

PRÓBNA MATURA. ZADANIE 1 (1 PKT) Wskaż liczbę, której 4% jest równe 8. A) 200 B) 100 C) 3,2 D) 32 PRÓBNA MATURA ZADANIE ( PKT) Wskaż liczbę, której % jest równe 8. A) B) C), D) ZADANIE ( PKT) Odległość liczb od liczb -8 na osi liczbowej jest równa A) 8 B) + 8 C) + 8 D) 8 ZADANIE ( PKT) Wskaż rsunek,

Bardziej szczegółowo

Wyznaczanie środka ścinania w prętach o przekrojach niesymetrycznych

Wyznaczanie środka ścinania w prętach o przekrojach niesymetrycznych Insttut Mechaniki i Inżnierii Obliceniowej Wdiał Mechanicn echnologicn Politechnika Śląska www.imio.polsl.pl LBORORIUM WYRZYMŁOŚCI MERIŁÓW Wnacanie środka ścinania w prętach o prekrojach niesmetrcnch WYZNCZNIE

Bardziej szczegółowo

LABORATORIUM MECHANIKI EKSPERYMENTALNEJ. Instrukcja do ćwiczenia

LABORATORIUM MECHANIKI EKSPERYMENTALNEJ. Instrukcja do ćwiczenia LABORATORIUM MECHANIKI EKSPERYMENTALNEJ Instrukcja do ćwicenia 3 Ruch precesjn giroskopu Cel ćwicenia Obserwacja jawiska precesji regularnej. Badanie ależności prędkości kątowej precesji od momentu sił

Bardziej szczegółowo

Grafika 3D program POV-Ray - 94 -

Grafika 3D program POV-Ray - 94 - Temat 12: Polecenie blob parametry i zastosowanie do tworzenia obiektów. Użycie polecenia blob (kropla) jest wygodnym sposobem tworzenia gładkiego przejścia pomiędzy bryłami (kulami lub walcami). Możemy

Bardziej szczegółowo

Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla

Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla Ćwicenie 13 Wnacanie ruchliwości i koncentracji nośników prądu w półprewodnikach metodą efektu alla Cel ćwicenia Celem ćwicenia jest aponanie się e jawiskiem alla, stałoprądową metodą badania efektu alla,

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrmałości materiałów IMiR -IA- Wkład Nr 9 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja

Bardziej szczegółowo

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania

Bardziej szczegółowo

Zajęcia z grafiki komputerowej Pov Ray część 2

Zajęcia z grafiki komputerowej Pov Ray część 2 Zajęcia z grafiki komputerowej Pov Ray część 2 Stwórzmy na początek pustą scenę. #include "colors.inc" camera { location look_at 0 angle 36 White plane { , -1.5 pigment

Bardziej szczegółowo

Zad. 5: Sterowanie robotem mobilnym

Zad. 5: Sterowanie robotem mobilnym Zad. 5: Sterowanie robotem mobilnym 1 Cel ćwiczenia Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Tworzenie diagramu klas, czynności oraz przypadków użycia. Wykorzystanie

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

Układy współrzędnych GUW, LUW Polecenie LUW

Układy współrzędnych GUW, LUW Polecenie LUW Układy współrzędnych GUW, LUW Polecenie LUW 1 Układy współrzędnych w AutoCAD Rysowanie i opis (2D) współrzędnych kartezjańskich: x, y współrzędnych biegunowych: r

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja

Bardziej szczegółowo

RZUTOWANIE. rzutnia (ekran) obserwator

RZUTOWANIE. rzutnia (ekran) obserwator WYKŁAD 6 RZUTOWANIE Plan wkładu: Układ współr rędnch, ogólne asad rutowania Rutowanie równolegr wnoległe Rutowanie perspektwicne Ogóln prpadek rutowania 1. Układ współr rędnch, ogólne asad rutowania Lewoskrętn

Bardziej szczegółowo

Języki interpretowane Interpreted languages PRZEWODNIK PO PRZEDMIOCIE

Języki interpretowane Interpreted languages PRZEWODNIK PO PRZEDMIOCIE Jęyki interpretowane Interpreted languages Informatyka Stacjonarne IO2_02 Obowiąkowy w ramach specjalności: Inżynieria oprogramowania II stopień Rok: I Semestr: II wykład, laboratorium 1W, 2L 3 ECTS I

Bardziej szczegółowo

OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA

OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA Wprowadzenie W robotyce przez pojęcie manipulacji rozumiemy przemieszczanie w przestrzeni przedmiotów i narzędzi za pomocą specjalnego mechanizmu. W związku z tym pojawia

Bardziej szczegółowo

MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB

MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB Kocurek Łukasz, mgr inż. email: kocurek.lukasz@gmail.com Góra Marta, dr inż. email: mgora@mech.pk.edu.pl Politechnika Krakowska, Wydział Mechaniczny MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH

Bardziej szczegółowo

Rozdział 9. Baza Jordana

Rozdział 9. Baza Jordana Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,

Bardziej szczegółowo

WIZUALIZACJA I STEROWANIE ROBOTEM

WIZUALIZACJA I STEROWANIE ROBOTEM Maciej Wochal, Opiekun koła: Dr inż. Dawid Cekus Politechnika Częstochowska, Wydział Inżynierii Mechanicznej i Informatyki, Instytut Mechaniki i Podstaw Konstrukcji Maszyn, Koło Naukowe Komputerowego Projektowania

Bardziej szczegółowo

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji:

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji: Zad. Wznaczć rozkład sił wewnętrznch N, T, M, korzstając z komputerowej wersji metod przemieszczeń. schemat konstrukcji: ϕ 4, kn 4, 4, macierz transformacji (pręt nr): α = - ϕ = -, () 5 () () E=5GPa; I

Bardziej szczegółowo

PRZEKSZTAŁCENIA W PRZESTRZENI 3D czyli matematyczny zawrót głowy. Część2 :Rodzaje układów współrzędnych. Obroty i Skalowanie

PRZEKSZTAŁCENIA W PRZESTRZENI 3D czyli matematyczny zawrót głowy. Część2 :Rodzaje układów współrzędnych. Obroty i Skalowanie PRZEKSZTAŁCENIA W PRZESTRZENI 3D cli matematcn awrót głow Cęść :Rodaje układów wpółrędnch. Obrot i Skalowanie Witam wtkich agorałch grafików. Tak jak piałem w popredniej cęści nach matematcnch roważań,

Bardziej szczegółowo

pionowe od kół suwnic, zgodnie z warunków równowagi statecznej (rys. 6.4) dla

pionowe od kół suwnic, zgodnie z warunków równowagi statecznej (rys. 6.4) dla 6.7. Prkład oblicania słupa pełnościennego esakad podsuwnicowej Pełnościenne słup esakad podsuwnicowej podpierają or podsuwnicowe na kórch pracują suwnice pomosowe naorowe o udźwigach i paramerach echnicnch

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Grafika komputerowa Rok akademicki: 2015/2016 Kod: ITE-1-514-s Punkty ECTS: 5 Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Teleinformatyka Specjalność: - Poziom studiów:

Bardziej szczegółowo

Rok akademicki: 2017/2018 Kod: JFM s Punkty ECTS: 7. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2017/2018 Kod: JFM s Punkty ECTS: 7. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Grafika komputerowa 1 Rok akademicki: 2017/2018 Kod: JFM-1-507-s Punkty ECTS: 7 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów: Studia I stopnia

Bardziej szczegółowo

ĆWICZENIE 5 BADANIE ZASILACZY UPS

ĆWICZENIE 5 BADANIE ZASILACZY UPS ĆWICZENIE 5 BADANIE ZASILACZY UPS Cel ćwicenia: aponanie budową i asadą diałania podstawowych typów asilacy UPS ora pomiar wybranych ich parametrów i charakterystyk. 5.1. Podstawy teoretycne 5.1.1. Wstęp

Bardziej szczegółowo

Adam Bodnar: Wytrzymałość Materiałów. Ukośne zginanie 13. UKOŚNE ZGINANIE

Adam Bodnar: Wytrzymałość Materiałów. Ukośne zginanie 13. UKOŚNE ZGINANIE . UKOŚNE GINNIE.. Naprężenia i odkstałcenia Ukośne ginanie pręta prmatcnego wstępuje wówcas gd układ sił ewnętrnch po jednej stronie jego prekroju poprecnego pręta redukuje się do momentu ginającego, którego

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu.

Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu. Grafika inżynierska geometria wykreślna 5a. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna,

Bardziej szczegółowo

Zegary. Zegary (timers) umożliwiają cykliczne w danych odstępach czasu wykonać określone operacje.

Zegary. Zegary (timers) umożliwiają cykliczne w danych odstępach czasu wykonać określone operacje. Zegary Zegary (timers) umożliwiają cykliczne w danych odstępach czasu wykonać określone operacje. Zaczniemy od funkcji przetwarzania komunikatów: //procedura okna LRESULT CALLBACK WndProc(HWND hwnd, UINT

Bardziej szczegółowo

rgbf<składowa_r,składowa_g,składowa_b,filter>. Dla parametru filter przyjmij kolejno wartości: 0.60, 0.70, 0.80, 0.90, 1.00, np.:

rgbf<składowa_r,składowa_g,składowa_b,filter>. Dla parametru filter przyjmij kolejno wartości: 0.60, 0.70, 0.80, 0.90, 1.00, np.: Temat 2: Przezroczystość. Prostopadłościan, walec i stożek. Przesuwanie i skalowanie obiektów. Omówimy teraz przezroczystość obiektów związaną z ich kolorem (lub teksturą). Za przezroczystość odpowiadają

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollb.pl Transformacje 3D Podobnie jak w prestreni -wymiarowej, dla prestreni 3-wymiarowej definijemy transformacje RST: presnięcie miana skali obrót

Bardziej szczegółowo

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH MES W ANALIZIE SPRĘŻYS UKŁADÓW PRĘOWYCH Prykłady obliceń Belki Lidia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice 7r. 6-4 Lidia Fedorowic, Jan Fedorowic, Magdalena Mroek, Dawid Mroek

Bardziej szczegółowo

6 Przygotował: mgr inż. Maciej Lasota

6 Przygotował: mgr inż. Maciej Lasota Laboratorium nr 6 1/7 Grafika Komputerowa 3D Instrukcja laboratoryjna Temat: Materiały i oświetlenie 6 Przygotował: mgr inż. Maciej Lasota 1) Wprowadzenie Specyfikacja biblioteki OpenGL rozróżnia trzy

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium GRAFIKA KOMPUTEROWA I WIZUALIZACJA Computer

Bardziej szczegółowo

Spora część kodu programu jest dla nas nieprzydatna. Dokonaj zmian tak, aby kod miał postać:

Spora część kodu programu jest dla nas nieprzydatna. Dokonaj zmian tak, aby kod miał postać: Temat 8: Rodzaje kamery. Ustawienia kamery. Animacja ruchu kamery. Aby prześledzić różne możliwości zastosowania kamery zbudujemy najpierw jakąś ciekawą scenę. Ćwiczenie 053 Otwórz nowy plik. Z menu programu

Bardziej szczegółowo

CYFROWA SYNTEZA FOTOREALISTYCZNYCH OBRAZÓW W ŚRODOWISKU 3D

CYFROWA SYNTEZA FOTOREALISTYCZNYCH OBRAZÓW W ŚRODOWISKU 3D CYFROWA SYNTEZA FOTOREALISTYCZNYCH OBRAZÓW W ŚRODOWISKU 3D Daniel Jaroszewski Warszawska Wyższa Szkoła Informatyki djaroszewski@poczta.wwsi.edu.pl www.grafika3d.wwsi.edu.pl WPROWADZENIE Przykładowa wizualizacja

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY MAJA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 ( 4) 2 8 4 jest

Bardziej szczegółowo

KARTA KURSU. Grafika komputerowa

KARTA KURSU. Grafika komputerowa KARTA KURSU Nazwa Nazwa w j. ang. Grafika komputerowa Computer graphics Kod Punktacja ECTS* 3 Koordynator dr inż. Krzysztof Wójcik Zespół dydaktyczny: dr inż. Krzysztof Wójcik dr inż. Mateusz Muchacki

Bardziej szczegółowo

Automatyczna kompensacja mocy biernej z systemem monitorowania kopalnianej sieci 6 kv

Automatyczna kompensacja mocy biernej z systemem monitorowania kopalnianej sieci 6 kv dr inż MARIAN HYLA Politechnika Śląska w Gliwicach Automatycna kompensacja mocy biernej systemem monitorowania kopalnianej sieci 6 kv W artykule predstawiono koncepcję, realiację ora efekty diałania centralnego

Bardziej szczegółowo

Grafika Komputerowa Wykład 4. Synteza grafiki 3D. mgr inż. Michał Chwesiuk 1/30

Grafika Komputerowa Wykład 4. Synteza grafiki 3D. mgr inż. Michał Chwesiuk 1/30 Wykład 4 mgr inż. 1/30 Synteza grafiki polega na stworzeniu obrazu w oparciu o jego opis. Synteza obrazu w grafice komputerowej polega na wykorzystaniu algorytmów komputerowych do uzyskania obrazu cyfrowego

Bardziej szczegółowo

1 Tworzenie brył obrotowych

1 Tworzenie brył obrotowych 1 Tworzenie brył obrotowych Do tworzenia brył obrotowych w programie Blender służą dwa narzędzia: Spin i SpinDup. Idea tworzenia brył obrotowych jest prosta i polega na narysowania połowy przekroju poprzecznego

Bardziej szczegółowo

SYNTHESIS OF MOTION FOR A FOUR-LEGGED ROBOT

SYNTHESIS OF MOTION FOR A FOUR-LEGGED ROBOT Dr inŝ. Maciej T. Trojnacki Premsłow Insttut Automatki i Pomiarów Al. Jeroolimskie 0, 0-486 Warsawa Telefon: +48 8740 341, email: mtrojnacki@piap.pl SYNTEZA UCHU OBOTA CZTEONOśNEO W prac predstawiono nowatorską

Bardziej szczegółowo

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematka Poziom rozszerzon Listopad W niniejszm schemacie oceniania zadań otwartch są prezentowane przkładowe poprawne odpowiedzi. W tego tpu ch

Bardziej szczegółowo

OpenGL transformacje przestrzenne

OpenGL transformacje przestrzenne OpenGL trnsformcje przestrzenne Kżdy zdefiniowny obiekt sceny, znim pojwi się n ekrnie monitor, poddwny jest trzem podstwowym trnsformcjom: Obserwcji Modelowni Projekcji Projekcj określ frgment przestrzeni,

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa Metody dokładne w astosowaniu do rowiąywania łańcuchów Markowa Beata Bylina, Paweł Górny Zakład Informatyki, Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej Plac Marii Curie-Skłodowskiej 5, 2-31

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrmałości materiałów IMiR - MiBM - Wkład Nr 5 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja

Bardziej szczegółowo

Powierzchnie stopnia drugiego

Powierzchnie stopnia drugiego Algebra WYKŁAD 3 Powierchnie sopnia drugiego Deinicja Powierchnią sopnia drugiego kwadrką nawam biór punków presreni rójwmiarowej, spełniającch równanie A B C D E F G H I K gdie A, B,, K są sałmi i prnajmniej

Bardziej szczegółowo

Bartosz Bazyluk DEFINIOWANIE GEOMETRII Sposoby opisu geometrii brył w OpenGL. Grafika Komputerowa, Informatyka, I Rok

Bartosz Bazyluk DEFINIOWANIE GEOMETRII Sposoby opisu geometrii brył w OpenGL.   Grafika Komputerowa, Informatyka, I Rok Bartos Baluk DEFINIOWANIE GEOMETRII Sposob opisu geometrii brł w OpenGL. http://baluk.net/psb Grafika Komputerowa, Informatka, I Rok Renderowanie geometrii Wierchołki Pretwaranie wierchołków Łącenie w

Bardziej szczegółowo

BLENDER- Laboratorium 1 opracował Michał Zakrzewski, 2014 r. Interfejs i poruszanie się po programie oraz podstawy edycji bryły

BLENDER- Laboratorium 1 opracował Michał Zakrzewski, 2014 r. Interfejs i poruszanie się po programie oraz podstawy edycji bryły BLENDER- Laboratorium 1 opracował Michał Zakrzewski, 2014 r. Interfejs i poruszanie się po programie oraz podstawy edycji bryły Po uruchomieniu programu Blender zawsze ukaże się nam oto taki widok: Jak

Bardziej szczegółowo

Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink.

Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink. Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink. Celem ćwiczenia jest symulacja działania (w środowisku Matlab/Simulink) sterownika dla dwuosiowego robota

Bardziej szczegółowo

Kalibracja robotów przemysłowych

Kalibracja robotów przemysłowych Kalibracja robotów przemysłowych Rzeszów 27.07.2013 Kalibracja robotów przemysłowych 1. Układy współrzędnych w robotyce... 3 2 Deklaracja globalnego układu współrzędnych.. 5 3 Deklaracja układu współrzędnych

Bardziej szczegółowo

Symulacje komputerowe

Symulacje komputerowe Fizyka w modelowaniu i symulacjach komputerowych Jacek Matulewski (e-mail: jacek@fizyka.umk.pl) http://www.fizyka.umk.pl/~jacek/dydaktyka/modsym/ Symulacje komputerowe Dynamika bryły sztywnej Wersja: 8

Bardziej szczegółowo

0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do

0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do 0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do obserwatora f) w kierunku od obserwatora 1. Obrót dookoła osi

Bardziej szczegółowo

Zad. 7: Sterowanie robotami mobilnymi w obecności przeszkód

Zad. 7: Sterowanie robotami mobilnymi w obecności przeszkód Zad. 7: Sterowanie robotami mobilnymi w obecności przeszkód 1 Cel ćwiczenia Utrwalenie umiejętności modelowania kluczowych dla danego problemu pojęć. Tworzenie diagramu klas oraz czynności. Wykorzystanie

Bardziej szczegółowo

Rysunek 1: Okno timeline wykorzystywane do tworzenia animacji.

Rysunek 1: Okno timeline wykorzystywane do tworzenia animacji. Ćwiczenie 5 - Tworzenie animacji Podczas tworzenia prostej animacji wykorzystywać będziemy okno Timeline domyślnie ustawione na dole okna Blendera (Rys. 1). Proces tworzenia animacji polega na stworzeniu

Bardziej szczegółowo

Studia Podyplomowe Grafika Komputerowa i Techniki Multimedialne, 2017, semestr II Modelowanie 3D - Podstawy druku 3D. Ćwiczenie nr 4.

Studia Podyplomowe Grafika Komputerowa i Techniki Multimedialne, 2017, semestr II Modelowanie 3D - Podstawy druku 3D. Ćwiczenie nr 4. Ćwiczenie nr 4 Metaobiekty 1 Materiały ćwiczeniowe Wszelkie materiały ćwiczeniowe: wykłady, instrukcje oraz ewentualne pliki ćwiczeniowe dla potrzeb realizacji materiału dydaktycznego z przedmiotu Modelowanie

Bardziej szczegółowo

σ x σ y σ z σ z, Adam Bodnar: Wytrzymałość Materiałów. Równania fizyczne.

σ x σ y σ z σ z, Adam Bodnar: Wytrzymałość Materiałów. Równania fizyczne. Ada Bodnar: Wtrałość Materiałów. Równania ficne. 7. RÓWNANIA FIZCZN 7.. Zwiąki ięd stane odkstałcenia i naprężenia. I i II postać równań Hooke a Zależność deforacji brł od obciążeń ewnętrnch naruca istnienie

Bardziej szczegółowo

Projektowanie systemów zrobotyzowanych

Projektowanie systemów zrobotyzowanych ZAKŁAD PROJEKTOWANIA TECHNOLOGII Laboratorium Projektowanie systemów zrobotyzowanych Instrukcja 4 Temat: Programowanie trajektorii ruchu Opracował: mgr inż. Arkadiusz Pietrowiak mgr inż. Marcin Wiśniewski

Bardziej szczegółowo

GLKit. Wykład 10. Programowanie aplikacji mobilnych na urządzenia Apple (IOS i ObjectiveC) #import "Fraction.h" #import <stdio.h>

GLKit. Wykład 10. Programowanie aplikacji mobilnych na urządzenia Apple (IOS i ObjectiveC) #import Fraction.h #import <stdio.h> #import "Fraction.h" #import @implementation Fraction -(Fraction*) initwithnumerator: (int) n denominator: (int) d { self = [super init]; } if ( self ) { [self setnumerator: n anddenominator:

Bardziej szczegółowo

x od położenia równowagi

x od położenia równowagi RUCH HARMONICZNY Ruch powtarając się w regularnch odstępach casu nawa ruche okresow. Jeżeli w taki ruchu seroko rouiane odchlenie od stanu równowagi ( np. odchlenie as podcepionej do sprężn, wartość wektora

Bardziej szczegółowo