ELIPTYCZNE FUNKCJE UŻYTECZNOŚCI I INNE WYRÓWNANE FUNKCJE UŻYTECZNOŚCI

Wielkość: px
Rozpocząć pokaz od strony:

Download "ELIPTYCZNE FUNKCJE UŻYTECZNOŚCI I INNE WYRÓWNANE FUNKCJE UŻYTECZNOŚCI"

Transkrypt

1 DECYZJE r 4 grudzień 005 ELIPTYCZNE FUNKCJE UŻYTECZNOŚCI I INNE WYRÓWNANE FUNKCJE UŻYTECZNOŚCI Maria Ekes * Szkoła Główa Hadlowa Adrze Wieczorek ** Polska Akademia Nauk W artykule chcemy przedstawić klasę fukci użyteczości, których hiperpowierzchie oboętości są w pewie sposób wpisae w hiperpowierzchie będące przesuięciami brzegu orthatu dodatiego odpowiedie przestrzei Euklidesowe; te fukce azywamy wyrówaymi fukcami użyteczości. Takie fukce bardzie odpowiadaą, zdaiem autorów, rzeczywistym preferecom kosumetów, w szczególości w sytuacach, kiedy przy ustaloych ceach wszystkich towarów oprócz edego, umer i, i cey tego towaru maleące do zera, popyt a towar i przy dostateczie iskim poziomie ego cey edostkowe ustala się a pewym poziomie, a ie rośie do ieskończoości, ak to est w przypadku aczęście używaych w literaturze fukci użyteczości, ak a przykład fukce Cobba-Douglasa, czy fukce CES. Poadto, właśie wyrówae fukce użyteczości często poawiaą się w wielu kostrukcach pomociczych, kiedy a przykład dowodu istieia rówowagi w akimś modelu ie dae się przeprowadzić bezpośredio dla daych fukci użyteczości, więc odpowiedio się e modyfikue, przeprowadza dowód dla takich fukci zmodyfikowaych, a ostateczie przeprowadza się eszcze pewe przeście graicze. Wyrówae fukce użyteczości maą eszcze edą bardzo pożądaą własość: odpowiadaące im (multi-) fukce popytu są dobrze zdefiiowae rówież w przypadku, kiedy pewe cey * Maria Ekes, Katedra Ekoomii Matematycze, Szkoła Główa Hadlowa, al. Niepodległości 6, Warszawa, maria.ekes@sgh.waw.pl ** Adrze Wieczorek, Istytut Podstaw Iformatyki, Polska Akademia Nauk, ul. Ordoa, 0-37 Warszawa, adrze.wieczorek@ipipa.waw.pl Matematycza klasyfikaca przedmiotowa 000: 9D3, 9D0, 9B30. Praca aukowa fiasowaa ze środków a aukę w latach ako proekt badawczy r H0B 06 9.

2 5 ELIPTYCZNE FUNKCJE UŻYTECZNOŚCI (edak ie wszystkie) są rówe 0, co est bardzo waże przy wykoywaiu obliczeń umeryczych. Przy dodatkowych założeiach, dotyczących wypukłości fukci użyteczości, każdy zbiór popytowy zawiera elemet miimaly ze względu a częściowy porządek w R. Uzasadieiem potrzeby zdefiiowaia fukci wyrówaych może być astępuący cytat z klasycze moografii Scarfa i Hasea [3], str. 0: It is difficult to imagie that this techical problem has much ecoomic cotet: cosumers would ot be expected to demad arbitrarily large quatities of ay particular commodity eve if its price were quite small. I the study of the existece of equilibrium prices this difficulty has bee successfully overcome, but at the cost of somewhat more elaborate aalysis tha I would care to preset here. Give our primary cocer with computatioal techiques, we shall fid it coveiet to require that the demad fuctios be cotiuous o the etire uit simplex ad ot oly i the iterior. We shall make this assumptio i our discussio of computatioal procedures eve though may of our umerical examples will employ utility fuctios such as the Cobb-Douglas fuctio... for which the assumptio is ot valid. The reader should have o difficulty i adustig to this slight ambiguity. W artykule opisuemy, w aki sposób zwykle stosowae fukce użyteczości moża, przez operacę obcięcia, doprowadzić do fukci wyrówae. Kokrety przykład dotyczy fukci Cobba-Douglasa. Wprowadzamy też, ak się wydae, ową klasę fukci, azwaych przez as fukcami eliptyczymi, które z defiici są fukcami wyrówaymi. Ituici co do atury tych fukci dostarcza kształt odpowiadaących im krzywych i powierzchi oboętości przedstawioych a rysukach i 3. Wprowadzeie do tematyki poruszae w te pracy mogą staowić pozyce bibliografii [-7]. Słowa kluczowe: fukca (multifukca) popytu, fukca użyteczości, fukce Cobba-Douglasa, eliptycze fukce użyteczości, krzywe (powierzchie) oboętości. Defiice Jeżeli x,y R, to piszemy x y gdy x i y i dla i =,,...,; piszemy x < y gdy x i < y i dla i =,,...,. Przez fukcę użyteczości rozumiemy fukcę u: R R, ograiczymy się przy tym do fukci ciągłych i mootoiczych w tym sesie, że spełiaą waruki:

3 Maria Ekes, Adrze Wieczorek 53 a. eżeli dla wektorów x,y R zachodzi x < y, to u(x) < u(y); oraz b. eżeli dla wektorów x,y R zachodzi x y, to u(x) u(y). Dla fukci użyteczości u i ieueme liczby a, hiperpowierzchia oboętości odpowiadaąca poziomowi a est zdefiiowaa ako zbiór Id(u, a) = {x R u(x)=a}. Powiemy, że mootoicza (spełiaąca waruki (a) i (b)) fukca użyteczości u est wyrówaa, gdy ma astępuącą własość: dla dowole ieueme liczby a istiee zbiór domkięty i ograiczoy C a R taki, że Id (u, a) est brzegiem (topologiczym) zbioru C a = {x R istiee y C a takie, że y x }. Zauważmy, że rówież C a = {x R u(x) a }, a więc Id(u, a) = C \ C. a b Dla fukci użyteczości u określamy, ak zwykle, odpowiadaącą e multifukcę popytu D : R (R \ {0}) R wzorem (przez multifukcę rozumiemy tu fukcę, która każde wielkości argumetu przyporządkowue ie poedyczą wartość, ale zbiór możliwych wartości): D U b>a (przy dochodzie I i układzie ce π, D( I, π ) est to zbiór fiasowo dostępych i abardzie pożądaych wiązek towarowych, we wzorze poawia się iloczy skalary π, x = π x... π x ). Uwaga. Jeżeli fukca użyteczości u est wyrówaa to wszystkie wartości odpowiadaące e multifukci popytu są zbiorami iepustymi. Jeżeli multifukca popytu D est taka, że każdy zbiór albo zawiera dokładie ede elemet, albo est w im elemet amieszy ze względu a częściowy porządek w R, to przez D ozaczymy (edowartościową) fukcę popytu D : R (R \{0}) R określoą tak, że dla dowolych I oraz π, D ( I, π ) est edyym elemetem D ( I, π ) lub amieszym elemetem D ( I, π ) w sesie częściowego porządku w R. Operaca obciaia fukci użyteczości ( I, π ): = {x R π, x I oraz eśli dla iego z R est π, z I, to u(z) u(x)} Dla dae ciągłe i mootoicze fukci użyteczości u: R R oraz ciągłe fukci ϕ:r R takie, że

4 54 ELIPTYCZNE FUNKCJE UŻYTECZNOŚCI ϕ est rosąca, tz. a < b implikue ϕ ( a) < ϕ ( b), dla każdego x R istiee a R takie, że x ϕ ( a ) oraz dla każdego a R zbiór x R takich, że u (ϕ( a )) < u(x) = a est iepusty i ograiczoy, defiiuemy obcięcie u wyzaczoe przez ϕ, u ϕ :R R, w astępuący sposób: u ϕ u(x) (x) = u( ϕ( u(x))) eżeli x ϕ( u( x)), w przeciwym wypadku. W tym kotekście fukcę ϕ moża azwać fukcą wiodącą. Dla dowolego x R ozaczmy x = : {y R x y oraz x i = y i dla pewego i}. Nietrudo zauważyć, że hiperpowierzchia oboętości fukci a poziomie a składa się z tych elemetów x zbioru u ϕ Z = Id( u, a) ϕ ( a), dla których ie istiee z Z takie, że x < z. Przykład: obcięte fukce Cobba-Douglasa W praktyce procedura obciaia użyteczości może przebiegać, ze względów czysto techiczych, w sposób odmiey od opisaego wcześie, ale oczywiście rówoważy. W poiższym przykładzie zamiemy się fukcami typu Cobba-Douglasa przy =. Pukty modyfikaci a poszczególych krzywych oboętości wyzaczoo za pomocą stożka, poieważ mamy =, w tym przypadku faktyczie są to dwie proste ograiczaące stożek. Oczywiście odpowiedią fukcę wiodącą moża tu bez trudu zdefiiować, edak ie est to koiecze. Obcięta fukca użyteczości wyraża się wzorem: 0, a a e x u( x, x ) = a e x a a x x, a, a a, gdy x x gdy x gdy x gdy e x = 0, w pozostałych przypadkach : > e < e x ; x x ; e x,

5 Maria Ekes, Adrze Wieczorek 55 gdzie parametry a, a, e, e są dodatie, przy czym e < e. W tym wypadku wyściowe użyteczości są fukcami typu Cobba Douglasa x a x a (ie zakładamy tu, że wykładiki a i a sumuą się do, więc mówimy o fukcach typu Cobba-Douglasa, a ie po prostu o fukcach Cobba-Douglasa ). Pukty modyfikaci krzywych oboętości leżą a prostych x =e x oraz x =e x. Rysuek. Przykładowe krzywe oboętości dla obciętych fukci użyteczości typu Cobba-Douglasa. x x x = e x e x = x odpowiadaąca powyższe fukci użyteczości wy- Fukca popytu raża się wzorami: D e ( I, I ), π π e π π e a a D( I, π ) = ( I, I ), π( a a) π ( a a) e ( I, I ), π π e π π e π ae gdy <, π a ae π ae gdy, a π a π ae gdy > π a alboπ = 0. Aalogiczą kostrukcę moża też przeprowadzić dla 3. W tym wypadku odpowiedie wzory są bardzie skomplikowae; pukty modyfikaci mogą być wyzaczoe przez odpowiedio dopasoway stożek wypukły.

6 56 ELIPTYCZNE FUNKCJE UŻYTECZNOŚCI Eliptycze fukce użyteczości Eliptyczą fukcę użyteczości w R wyzaczaą dwa wektory a, b R takie, że a > 0 i b > 0 (liczbą iezależych parametrów est tu faktyczie ). Formalie, eliptyczą fukcę użyteczości wyzaczaą hiperpowierzchie oboętości skostruowae w astępuący sposób. Elipsoida E est wpisaa w rówoległościa P o wierzchołkach {c,...,c }, gdzie kolee c i to wszystkie wektory postaci a ( δ b,..., δ b ), przy ( δ,..., δ ) będących wszystkimi możliwy ciągami o wyrazach 0 lub. Rówaiem E est: a x a x... =. b b Środkiem te elipsoidy est a b, atomiast długością e -te osi ( =,..., ) est b. Hiperpowierzchia defiiuąca L to, z defiici, brzeg zbioru E R, który oczywiście est rówy: Zbiór L moża przedstawić ako sumę mogościową astępuących zbiorów L T, ideksowaych iepustymi podzbiorami T zbioru {,...,}: T L : {x R x a b dla T, x a b dla T oraz x~ E} = (w powyższe defiici ~ x określaą wzory ~ x = x dla T oraz ~ x = a b dla T). Wartością defiiowae fukci użyteczości u dla dowolych x L t est u (x) : ( a ) dla x t L, t >0; b u(x) : = ; (x) : = a b u = kiedy x... x = 0 (dla liczby rzeczywiste t i zbioru L R, t L ozacza { } ( I { x R a x a b} ) R. E tx x R ).Tę fukcę użyteczości ozaczymy przez u ab. Zauważmy, że u ab = t u ta,tb dla wszystkich t > 0. Fukca użyteczości u ab est dobrze określoa, edak potrzeby może być awy wzór a u(x). Powyższy rozkład zbioru L będzie w tym pomocy. Wyprowadzimy apierw bezpośredi wzór, w przypadku kiedy a = b = (,,..., ); zamiemy się tylko przypadkiem x x... x (z symetrii wyika, że przypadki iych uporządkowań są aalogicze). Jeżeli x = 0 to u(x) = 0. W przeciwym wypadku azwiemy dokładie = = ( ) 0

7 Maria Ekes, Adrze Wieczorek 57 ede spośród wskaźików,...,, krytyczym: ie est krytyczy, dla t =,...,, t est krytyczy, gdy t ie est krytyczy oraz xt g( x, x,..., xt ), gdzie g ( x, x,..., x t ) est większym spośród dwóch rozwiązań rówaia: czyli, g x, x,..., x t = x xt x xt t x xt t Jeżeli,, oraz ie są krytycze, to przymiemy, że est krytycze. Defiiuemy u(x) ako g x, x,..., x ), gdzie t est krytycze. Dla uproszczeia powyższą kostrukcę przeprowadziliśmy dla a = b = (,,..., ); est oa edak aalogicza w ogólym przypadku, z tym tylko, że powyższy wzór a g ( x, x,..., xt ) musi zostać odpowiedio zmodyfikoway. Z kostrukci wyika, że zdefiiowae fukce użyteczości są wyrówae. Wyzaczymy teraz fukce popytu idukowae przez eliptycze fukce popytu. Dla dowolego układu ce π oraz dochodu I zaduemy pukt x L taki, że hiperpłaszczyza budżetowa { z R π, z = I} est rówoległa do hiperpłaszczyzy stycze do L w pukcie x. Przy π > 0 est dokładie ede taki pukt, w przeciwym wypadku takich puktów est ieskończeie wiele, wybieramy wówczas pukt miimaly w sesie częściowego porządku w R. W obu przypadkach wybray pukt x ależy do elipsoidy E. Popyt D ( I,π ) est proporcoaly do x (możymy x przez I x, π ). Fukca popytu dla asze fukci użyteczości wyraża się więc ako gdzie: ( g x ) ( g x )... ( g xt ) =, g ( ) ( ) ( ) ( )( ). D ( I, π ) D = I ( t ( I, π ) = ( D ( I, π ),..., D ( I, π )) a b b π a b b π i= ( π b ) m= ( π mbm ) m= m m. π i

8 58 ELIPTYCZNE FUNKCJE UŻYTECZNOŚCI Rysuek. Przykładowe krzywe oboętości dla eliptycze fukci użyteczości w przypadku = i elipsa służąca do e kostrukci. Rysuek 3. Przykładowa powierzchia oboętości P dla eliptycze fukci użyteczości w przypadku = 3. Pozostałe powierzchie oboętości maą postać α P = α x x P, α 0 przyα = 0 powierzchia degeerue się do puktu (0,0,0). { } ;

9 Maria Ekes, Adrze Wieczorek 59 Przypisy W zastosowaiach często wygodie est stosować alteratywą parametryzacę ( e x f )... ( e x f ). Nowe parametry wyrażaą się przy pomocy poprzedich parametrów wzorami e = oraz f =, dla =,,. Środkiem elipsoidy przy te otaci est = b f f,..., e e, długością -te osi est a b e Bibliografia [] Chipma, J. S. (red.). 97. Prefereces, Utility ad Demad. Miesota Symposium, Harcourt, Brace, Jovaovich. [] Katzer, D.W Static Demad Theory. [3] Scarf, H., Hase, T The Computatio of Ecoomic Equilibria. Yale Uiversity Press. [4] Theil, H Theory ad Measuremet of Cosumer Demad. North-Hollad. [5] Thomas, R.L Applied Demad Aalysis. Logma. [6] Trockel, W Market Demad: a Aalysis of Large Ecoomies with No- Covex Prefereces. Spriger Verlag. [7] Wold, H. (with Juree, L.) Demad Aalysis. A Study i Ecoometrics. Wiley.

10

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Ekonomia matematyczna - 1.1

Ekonomia matematyczna - 1.1 Ekoomia matematycza - 1.1 Elemety teorii kosumeta 1. Pole preferecji Ozaczmy R x x 1,...,x : x j 0 x x, x j1 j. R rozpatrujemy z ormą x j 2. Dla x x 1,...,x,p p 1,...,p Ip x, p x j p j x 1 p 1 x 2 p 2...x

Bardziej szczegółowo

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład

Bardziej szczegółowo

Ekonomia matematyczna 2-2

Ekonomia matematyczna 2-2 Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204. Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb

Bardziej szczegółowo

Analiza matematyczna dla informatyków 4 Zajęcia 5

Analiza matematyczna dla informatyków 4 Zajęcia 5 Aaliza matematycza dla iformatyków Zajęcia 5 Twiereie (auchy ego) Niech Ω bęie otwartym pobiorem oraz f : Ω fukcją holomorficzą Wtedy dla dowolego koturu całkowicie zawartego w Ω zachoi f(z) = 0 Zadaie

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

Ekonomia matematyczna - 2.1

Ekonomia matematyczna - 2.1 Ekoomia matematycza - 2.1 Przestrzeń produkcyja Zakładamy,że w gospodarce występuje towarów, każdy jako akład ( surowiec ) lub wyik ( produkt ) w procesach produkcji. Kokrety proces produkcji jest reprezetoway

Bardziej szczegółowo

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,, PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy

Bardziej szczegółowo

Model Lesliego. Oznaczmy: 0 m i liczba potomstwa pojawiającego się co jednostkę czasu u osobnika z i-tej grupy wiekowej, i = 1,...

Model Lesliego. Oznaczmy: 0 m i liczba potomstwa pojawiającego się co jednostkę czasu u osobnika z i-tej grupy wiekowej, i = 1,... Model Lesliego Macierze Lesliego i Markowa K. Leśiak Wyodrębiamy w populaci k grup wiekowych. Po każde edostce czasu astępuą arodziy i zgoy oraz starzeie (przechodzeie do astępe grupy wiekowe). Chcemy

Bardziej szczegółowo

Wykład 19. Matematyka 3, semestr zimowy 2011/ grudnia 2011

Wykład 19. Matematyka 3, semestr zimowy 2011/ grudnia 2011 Wykład 9 Matematyka 3, semestr zimowy 0/0 3 grudia 0 Zajmiemy się teraz rozwiięciem fukcji holomorficzej w szereg Taylora. Przypomijmy podstawowe fakty związae z szeregami potęgowymi o wyrazach rzeczywistych.

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

Joanna JASZUŃSKA, Warszawa. Centrum Studiów Zaawansowanych, Politechnika Warszawska

Joanna JASZUŃSKA, Warszawa. Centrum Studiów Zaawansowanych, Politechnika Warszawska Artykuł związay jest z odczytem Nie)zależie od liczby wymiarów, wygłoszoym podczas L Szkoły Matematyki Poglądowej Nie)zależość w stycziu 2013 r w Nadarzyie Podziały Joaa JASZUŃSKA, Warszawa Cetrum Studiów

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE WARTOŚĆ BEZWZGLĘDNA LICZBY Wartość bezwzględą liczby rzeczywistej x defiiujemy wzorem: { x dla x 0 x = x dla x < 0 Liczba x jest to odległość a osi liczbowej

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

Rozmieszczenie liczb pierwszych

Rozmieszczenie liczb pierwszych Rozmieszczeie liczb pierwszych Euler Pierwszy owoczesy wyik pochodzi od Eulera: TWIERDZENIE: Szereg p primes p est rozbieży. Szkic dowodu: Dla s > zachodzi rówość ( ) = s = i= ( + p s i ) + p 2s i +....

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. II. ZBIORY OTWARTE I DOMKNIĘTE.

ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. II. ZBIORY OTWARTE I DOMKNIĘTE. ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. 1. Niech (X, ρ) będzie przestrzeią metryczą zaś a liczbą rzeczywistą dodatią. Wykaż, że fukcja σ: X X R określoa wzorem σ(x, y) = mi {ρ(x, y), a} jest metryką

Bardziej szczegółowo

lim a n Cigi liczbowe i ich granice

lim a n Cigi liczbowe i ich granice Cigi liczbowe i ich graice Cigiem ieskoczoym azywamy dowol fukcj rzeczywist okrelo a zbiorze liczb aturalych. Dla wygody zapisu, zamiast a() bdziemy pisa a. Elemet a azywamy -tym wyrazem cigu. Cig (a )

Bardziej szczegółowo

Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M)

Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M) Operatory zwarte Niech X będzie przestrzeią Baacha. Odwzorowaie liiowe T azywa się zwarte, jeśli obraz kuli jedostkowej T (B) jest zbiorem warukowo zwartym. Przestrzeń wszystkich operatorów zwartych a

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochode wyższych rzędów 1.1 Defiicja i przykłady Def. Drugą pochodą fukcji f azywamy pochodą pochodej tej fukcji. Trzecia pochoda jest pochodą drugiej pochodej; itd. Ogólie, -ta pochoda fukcji jest pochodą

Bardziej szczegółowo

c 2 + d2 c 2 + d i, 2

c 2 + d2 c 2 + d i, 2 3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym

Bardziej szczegółowo

Temat 17. Model elektronów prawie swobodnych.

Temat 17. Model elektronów prawie swobodnych. Temat 7. Model elektroów prawie swobodych. 7.. Braki modelu elektroów swobodych Model elektroów swobodych pozwala dość dobrze opisać p. ciepło właściwe, przewodość cieplą i rozszerzalość cieplą. Model

Bardziej szczegółowo

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.

Bardziej szczegółowo

Szkic do wykładów z mechaniki analitycznej

Szkic do wykładów z mechaniki analitycznej Szkic do wykładów z mechaiki aalityczej prof. dr hab. Bogda Maruszewski pokój 408 BM e-mail: bogda.maruszewski@put.poza.pl www: http://tm.am.put.poza.pl kosultacje: poiedziałek 11 00 12 00 Politechika

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi, 7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechika dańska Wydział Elektrotechiki i Automatyki Katedra Iżyierii Systemów Sterowaia Podstawy Automatyki Charakterystyki częstotliwościowe Nyquist'a i Bode'a Materiały pomocicze do ćwiczeń termi

Bardziej szczegółowo

Materiały do wykładu Matematyka Stosowana 1. Dariusz Chrobak

Materiały do wykładu Matematyka Stosowana 1. Dariusz Chrobak Materiały do wykładu Matematyka Stosowaa Dariusz Chrobak 7 styczia 207 Spis treści Zbiory liczbowe i fukcje 2. Zbiór liczb wymierych Q...................... 2.2 Liczby iewymiere.........................

Bardziej szczegółowo

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N OBWODY SYGNAŁY 1 5. OBWODY NELNOWE 5.1. WOWADZENE Defiicja 1. Obwodem elektryczym ieliiowym azywamy taki obwód, w którym występuje co ajmiej jede elemet ieliiowy bądź więcej elemetów ieliiowych wzajemie

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie

Bardziej szczegółowo

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości

Bardziej szczegółowo

Funkcja wykładnicza i logarytm

Funkcja wykładnicza i logarytm Rozdział 3 Fukcja wykładicza i logarytm Potrafimy już defiiować potęgi liczb dodatich o wykładiku wymierym: jeśli a > 0 i x = p/q Q dla p, q N, to aturalie jest przyjąć a x = a 1/q) p = a 1/q } {{... a

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych

Bardziej szczegółowo

1. Granica funkcji w punkcie

1. Granica funkcji w punkcie Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem

Bardziej szczegółowo

CIĄGI LICZBOWE. Poziom podstawowy

CIĄGI LICZBOWE. Poziom podstawowy CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy

Bardziej szczegółowo

Materiały do ćwiczeń z Analizy Matematycznej I

Materiały do ćwiczeń z Analizy Matematycznej I Materiały do ćwiczeń z Aalizy Matematyczej I 08/09 Maria Frotczak Ludwika Kaczmarek Katarzya Klimczak Maria Michalska Beata Osińska-Ulrych Tomasz Rodak Adam Różycki Grzegorz Skalski Staisław Spodzieja

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska Zestaw zadań do skryptu z Teorii miary i całki Katarzya Lubauer Haa Podsędkowska Ciała σ - ciała. Zbadaj czy rodzia A jest ciałem w przestrzei X=[0] a) A = X 0 b) A = X 0 3 3 c) A = { X { }{}{ 0}{ 0 }

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

Fraktale - ciąg g dalszy

Fraktale - ciąg g dalszy Fraktale - ciąg g dalszy Koleja próba defiicji fraktala Jak Madelbrot zdefiiował fraktal? Co to jest wymiar fraktaly zbioru? Układy odwzorowań iterowaych (IFS Przykład kostrukcji pewego zbioru. Elemety

Bardziej szczegółowo

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

1 Twierdzenia o granicznym przejściu pod znakiem całki

1 Twierdzenia o granicznym przejściu pod znakiem całki 1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae

Bardziej szczegółowo

STATYSTKA I ANALIZA DANYCH LAB II

STATYSTKA I ANALIZA DANYCH LAB II STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.

Bardziej szczegółowo

Poziom rozszerzony. 5. Ciągi. Uczeń:

Poziom rozszerzony. 5. Ciągi. Uczeń: PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia

Bardziej szczegółowo

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3. KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski

Bardziej szczegółowo

2. Nieskończone ciągi liczbowe

2. Nieskończone ciągi liczbowe Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia Wy lad 8 Zasadicze twierdzeie algebry. Poj ecie pierścieia 1 Zasadicze twierdzeie algebry i jego dowód Defiicja 8.1. f: C C postaci Wielomiaem o wspó lczyiach zespoloych azywamy fucj e f(x) = a x + a 1

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12 Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

dr inż. Paweł Szeptyński - MECHANIKA BUDOWLI 01. Statyka TEORIA

dr inż. Paweł Szeptyński - MECHANIKA BUDOWLI 01. Statyka TEORIA . STATYKA Statyka jest działem fizyki, który zajmuje się rówowagą układów sił waruki określające sta rówowagi zdefiiujemy dopiero późiej. Siłą azywać będziemy wielkość wektorową, będącą miarą oddziaływaia

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań Aaliza Matematycza I dla Iżyierii Biomedyczej Lista zadań Jacek Cichoń, WPPT PWr, 205/6 Logika, zbiory i otacja matematycza Zadaie Niech p, q, r będą zmieymi zdaiowymi. Pokaż, że:. = ( (p p)), 2. = (p

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Elementy geometrii analitycznej w R 3

Elementy geometrii analitycznej w R 3 Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

METODYKA OCENY EKONOMICZNEJ MAGAZYNOWANIA ENERGII ELEKTRYCZNEJ

METODYKA OCENY EKONOMICZNEJ MAGAZYNOWANIA ENERGII ELEKTRYCZNEJ Józef PASKA, Mariusz KŁOS, Karol PAWLAK Politechika Warszawska METODYKA OCENY EKONOMICZNEJ MAGAZYNOWANIA ENERGII ELEKTRYCZNEJ Magazyowaie eergii w ostatich latach cieszy się coraz większym zaiteresowaiem,

Bardziej szczegółowo

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I) Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod

Bardziej szczegółowo

Numeryczny opis zjawiska zaniku

Numeryczny opis zjawiska zaniku FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA 00-BO5, rok akademicki 08/9 OPTYKA GOMTRYCZNA I INSTRUMNTALNA dr hab. Raał Kasztelaic Wykład 5 Bieg promiei przez powierzchię Przedmiot w ieskończoości 3 Odległość przedmiot-obraz D = a + b d = D a = b

Bardziej szczegółowo

( ) WŁASNOŚCI MACIERZY

( ) WŁASNOŚCI MACIERZY .Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

Dydaktyka matematyki III-IV etap edukacyjny (wykłady)

Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Dydaktyka matematyki III-IV etap edukacyjy (wykłady) Wykład r 12: Fukcja wykładicza cd. Ciągłość fukcji. Pochoda fukcji Semestr zimowy 2018/2019 Fukcja wykładicza (cd.) propozycja Podobie jak w przykładach

Bardziej szczegółowo

ELEMENTY OPTYKI GEOMETRYCZNEJ

ELEMENTY OPTYKI GEOMETRYCZNEJ ELEMENTY OPTYKI GEOMETRYCZNEJ Optyka to dział fizyki, zajmujący się badaiem atury światła, początkowo tylko widzialego, a obecie rówież promieiowaia z zakresów podczerwiei i adfioletu. Optyka - geometrycza

Bardziej szczegółowo

Twierdzenie Cayleya-Hamiltona

Twierdzenie Cayleya-Hamiltona Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo