Wykład 21: Studnie i bariery cz.1.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 21: Studnie i bariery cz.1."

Transkrypt

1 Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po Wydział Informatyi, Eletronii i

2 Równanie Schrödingera - przypomnienie Wydział Informatyi, Eletronii i Ogólne równanie Schrödingera dla cząsteczi swobodnej o stałej energii inetycznej E nie uwzględniamy energii spoczynowej. t t i t m,, t t i t V t m +,,, Równanie Schrödingera dla cząsteczi poruszającej się w potencjale V. E V d d m + Równanie Schrödingera niezależne od czasu energia potencjalna V jest stała w czasie t E i n n n e t, me i me i Be Ae + lub dla cząsteczi swobodnej

3 Zastosowanie równania Schrödingera dla bariery potencjału Cząstecza o masie m i energii E porusza się w ierunu dodatnim osi X, napotyając w potencjał schodowy o wysoości V ja na rysunu. Przyjąć E < V. Z równań lasycznych wynia że: energia cząsteczi E E p + E p E + dla < I E V V VV V m p p E + V V V m m cząstecza nie może wejść w obszar >!! II Wydział Informatyi, Eletronii i 3

4 równanie Schrödingera dla obszaru I: d m d E ja dla cząsteczi swobodnej Rozwiązaniem ogólnym jest funcja własna fala bieżąca: I i i Ae + Be fala bieżąca w ierunu + osi X fala odbita w ierunu - osi X Funcja falowa odpowiadająca funcji własnej: gdzie obliczamy podstawiając rozwiązanie do równania dla obszaru I: me, t Ae i e Et i + Be i e Et i Ae i Et + Be i Et

5 równanie Schrödingera dla obszaru II: d > + V E m d Rozwiązaniem jest podobna funcja własna fala bieżąca: II i i Ce + De gdzie m E V ale: gdy + rozbieżne więc C II De Funcja własna i jej pierwsza pochodna dla całego obszaru osi X musi być wszędzie sończona, ciągła i jednoznaczna, zatem:

6 dla zszycie tzn. I II A + B D oraz d I d d II d A B i D A D i + B D i D De + i e i D + dla i e i dla * D * De!! D można obliczyć z warunu normalizacji Wydział Informatyi, Eletronii i 6

7 3.6.8 Wydział Informatyi, Eletronii i 7

8 Padająca na barierę cząstecza ma energię E > V lasycznie przejdzie bez problemu, z pędem wantowo p II m E V może się odbić. I E V V VV II Dla obszaru I: I d m d i E i Ae + Be Dla obszaru II: bra odbicia d m d E II Vo i Ce p II

9 dla zszycie tzn. I II A + B C oraz d I d d II d A B C Ae i + A + A e i + e i dla dla

10 Sończona bariera potencjału Energia potencjalna eletronu ma postać: dla <-a region I V V dla a<<a region II dla >+a region III Kiedy cząsta mająca oreślony pęd i energię zbliża się do bariery potencjału może zostać rozproszona. Wyni, tóry otrzymujemy w fizyce lasycznej transmisja lub odbicie zależy od relacji pomiędzy energią cząsti i wysoością bariery. W mechanice wantowej wyni jest inny i nieoczeiwany. szeroość bariery a wysoość bariery V Wydział Informatyi, Eletronii i Fizya II dla Eletronii, lato

11 Klasycznie: Jeżeli E>V, wtedy cząsta przechodzi przez barierę Jeżeli E<V, wtedy cząsta odbija się od bariery p me p' m E V p me pęd zmienia się iedy cząsta jest ponad barierą i wraca do wartości początowej dla a Wydział Informatyi, Eletronii i Fizya II dla Eletronii, lato

12 W mechanice wantowej : Jeżeli E>V, to cząsta przechodzi ponad barierą lub odbija się od niej Jeżeli E<V, wtedy istnieje niezerowe prawdopodobieństwo, że cząsta przejdzie przez barierę; jest to tunelowanie Długość fali de Broglie;a, λ p me jest rzeczywista i taa sama dla >a i <-a Dla a<<a, λ j est urojona -a a m E V Klasycznie mamy falę zaniającą evanescent wave, espotencjalny zani wraz z, dlatego amplituda fali dla >a jest zmniejszona Wydział Informatyi, Eletronii i Fizya II dla Eletronii, lato

13 Funcje falowe w zagadnieniu sończonej bariery potencjału Funcje falowe można otrzymać jao rozwiązania równania Schrödingera niezależnego od czasu d m d + V E I II III Wydział Informatyi, Eletronii i Fizya II dla Eletronii, lato 3 3

14 W obszarach I i III, iedy V : d d m + E W obszarze II równanie Schrödingera : I II III d d m V E W obszarach tych rozwiązania są w formie fal płasich poruszających w prawo lub w lewo Wydział Informatyi, Eletronii i 4

15 Obszar I i i e + R e me fala padająca fala odbita Obszar II Ae iq + B e iq q m E V współczynnii A i B można oreślić formułując odpowiednie waruni fizyczne Obszar III Te i tylo fala przechodząca I II III Wydział Informatyi, Eletronii i Fizya II dla Eletronii, lato 5 5

16 Waruni ciągłości R Soro gęstość prawdopodobieństwa musi być funcją ciągłą a rzeczywisty potencjał nigdy nie jest niesończony, funcja falowa i jej pierwsza pochodna muszą być ciągłe w ażdym puncie Po zastosowaniu warunów ciągłości w -a i a na zadanie domowe otrzymujemy: i q sinqa sin ia qcosqa i + q sinqa R jest miarą odbicia T q ep ia qcosqa i + q sinqa T jest miarą transmisji Wydział Informatyi, Eletronii i Fizya II dla Eletronii, lato 6 6

17 Własności rozwiązania dla E>V me Przyjęto: m q E V. Jeżeli E>V, q jest rzeczywiste i V, q stąd R R i q sinqa sin ia qcosqa i + q sinqa W zaresie energii, w tórym lasycznie cząsta nie będzie odbijana od bariery, w mechanice wantowej będzie istniało sończone prawdopodobieństwo, że cząsta zostanie odbita. V R oraz T E Zawsze: T + R oraz R. Kiedy E>>V, wtedy q, i Wydział Informatyi, Eletronii i Fizya II dla Eletronii, lato 7 7

18 Tunelowanie przez barierę potencjału Rozwiązania dla E<V Klasycznie, cząsta będzie odbijała się od bariery. W mechanice wantowej cząsta może tunelować przez barierę, zwłaszcza gdy bariera jest ciena. W taim przypadu: m V E Wydział Informatyi, Eletronii i q q jest urojone i współczynni transmisji T wyazuje zani espotencjalny 6 4a T e + m V E a jest szeroością bariery Fizya II dla Eletronii, lato 8 8

19 Współczynni transmisji oreśla prawdopodobieństwo, z tórym cząsta przechodzi przez barierę, czyli prawdopodobieństwo tunelowania. Przyład: T Jeżeli T., to oznacza, że z cząste eletronów zbliżających się do bariery, średnio będzie tunelowało przez nią a 98 ulegnie odbiciu. m T ep 4a V E Z powodu zależności espotencjalnej, współczynni transmisji jest bardzo czuły na niewielie zmiany: szeroości bariery a, różnicy energii V -E. Współczynni ten zależy również od masy cząsti Wydział Informatyi, Eletronii i Fizya II dla Eletronii, lato 9 9

20 Niesończona studnia potencjału Niesończenie duży potencjał na rawędziach studni nie pozwala eletronom opuścić obszaru <<L; w tym obszarze eletron jest swobodny. na zewnątrz studni, gęstość prawdopodobieństwa znalezienia V V eletronu wynosi zero L Potencjał wynosi zero wewnątrz i zmierza do niesończoności na zewnątrz studni Wydział Informatyi, Eletronii i W obszarze wewnątrz studni, tj. dla <<L, niezależne od czasu równanie Schrödingera ma postać: Waruni brzegowe: L E Fizya II dla Eletronii, lato d m d

21 Proponowane rozwiązanie wygodniejsze w przypadu ruchu ograniczonego: Asin + B cos Stosując warune brzegowy: dla, A + B cos B pozostaje Asin po podstawieniu do równania będzie to rozwiązaniem gdy: E m Wydział Informatyi, Eletronii i Fizya II dla Eletronii, lato

22 Stosując waruni brzegowe: dla L, dysretne poziomy energetyczne Stąd: sin L L n n L dla n,, Energia eletronu przyjmuje tylo wartości dysretne Energia jest swantowana Wydział Informatyi, Eletronii i

23 Relacja dyspersji Zależność pomiędzy energią E a liczbą falową nazywamy relacją dyspersji, E. Relacja dyspersji dla cząsti swobodnej jest wadratowa paraboliczna E m Energia eletronu przyjmuje tylo wartości dysretne w studni niesończonej i relacja dyspersji ma postać: Najniższa wartość energii E stan podstawowy dla n, energia drgań zerowych E ml Wydział Informatyi, Eletronii i Fizya II dla Eletronii, lato 3 3

24 Energy Energia drgań zerowych jest to najniższa energia całowita jaą może mieć cząsta ograniczona w swoim ruchu do obszaru: <<L Cząsta ta nie może mieć energii równej zero, E. Jest to wyniiem obowiązywania zasady nieoznaczoności Heisenberga: L Dla zgodnie z zasadą Heisenberga otrzymujemy p L Cząsta związana w studni niesończonej nie może mieć E bo oznaczałoby to p a zatem p Tymczasem, najmniejsza wartość pędu dla n wynosi 4 studnia niesończona p me m ml L Wydział Informatyi, Eletronii i Fizya II dla Eletronii, lato 4 4

25 Niesończona studnia potencjału c.d. Rozwiązania równania Schrödingera n n Asin L odpowiadają falom stojącym z różną liczbą n węzłów wewnątrz studni Amplituda A jest obliczana z normalizacji funcji falowej A L Funcje własne n dla niesończonej studni Dozwolone mody drgań dla lasycznej struny z węzłami na ońcach Wydział Informatyi, Eletronii i Fizya II dla Eletronii, lato 5 5

gęstością prawdopodobieństwa

gęstością prawdopodobieństwa Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)

Bardziej szczegółowo

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Studnie i bariery. Fizyka II, lato

Studnie i bariery. Fizyka II, lato Studnie i bariery Fizyka II, lato 017 1 Nieskończona studnia potencjału Nieskończenie duży potencjał na krawędziach studni nie pozwala elektronom opuścić obszaru 0

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe

Bardziej szczegółowo

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Jak matematycznie opisać własności falowe materii? Czym są fale materii? Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, Funkcja falowa

Bardziej szczegółowo

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Jak matematycznie opisać własności falowe materii? Czym są fale materii? Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, t ) Tutaj upraszczamy

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Elementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 1923) De Broglie zaproponował, że każdy

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

Zadania do rozdziału 5

Zadania do rozdziału 5 Zadania do rozdziału 5 Zad.5.1. Udowodnij, że stosując równię pochyłą o dającym się zmieniać ącie nachylenia α można wyznaczyć współczynni tarcia statycznego µ o. ozwiązanie: W czasie zsuwania się po równi

Bardziej szczegółowo

Wykład 21: Studnie i bariery

Wykład 21: Studnie i bariery Wykład 1: Studnie i bariery Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 01.06.017 Wydział Informatyki, Elektroniki i 1 Równanie

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 193) De Broglie zaproponował, że każdy

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Studnie i bariery. Nieskończona studnia potencjału

Studnie i bariery. Nieskończona studnia potencjału 11-4-13 Studnie i bariery Fizyka II dla lektroniki, lato 11 1 Nieskończona studnia potencjału Nieskończenie duży potencjał na krawędziach studni nie pozwala elektronom opuścić obszaru

Bardziej szczegółowo

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego Kyongju, Kora, April 999 W-4 (Jaroszwicz) slajdy Na podstawi przntacji prof. J. Rutowsigo Fizya wantowa 3 Cząsta w studni potncjału sończona studnia potncjału barira potncjału barira potncjału o sończonj

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]

Bardziej szczegółowo

Równanie Fresnela. napisał Michał Wierzbicki

Równanie Fresnela. napisał Michał Wierzbicki napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)

Bardziej szczegółowo

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

Rozwiązania zadań z podstaw fizyki kwantowej

Rozwiązania zadań z podstaw fizyki kwantowej Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze

Bardziej szczegółowo

Wykład 21: Studnie i bariery

Wykład 21: Studnie i bariery Wykład 1: Studnie i bariery Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 6.05.019 1 Równanie Schrödingera - przypomnienie Równanie

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Fizyka 2 Wykład 3 1 Równanie Schrödingera Chcemy znaleźć dopuszczalne wartości energii układu fizycznego, dla którego znamy energię potencjalną. Z zasady odpowiedniości znamy postać hamiltonianu. Wybieramy

Bardziej szczegółowo

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x. Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)

Bardziej szczegółowo

r. akad. 2012/2013 wykład III-IV Mechanika kwantowa Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa

r. akad. 2012/2013 wykład III-IV Mechanika kwantowa Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa r. akad. 01/013 wykład III-IV Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa Zakład Zakład Biofizyki Biofizyki 1 Falowa natura materii Zarówno fale elektromagnetyczne (fotony) jaki i

Bardziej szczegółowo

Wykład FIZYKA II. 12. Mechanika kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 12. Mechanika kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II. Mechanika kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ MECHANIKA KWANTOWA Podstawę mechaniki kwantowej stanowi

Bardziej szczegółowo

Podstawy rachunku prawdopodobieństwa (przypomnienie)

Podstawy rachunku prawdopodobieństwa (przypomnienie) . Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń

Bardziej szczegółowo

A. Cel ćwiczenia. B. Część teoretyczna

A. Cel ćwiczenia. B. Część teoretyczna A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów

Bardziej szczegółowo

Metody rozwiązania równania Schrödingera

Metody rozwiązania równania Schrödingera Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Zasada nieoznaczoności Heisenberga

Zasada nieoznaczoności Heisenberga Fale materii paczki falowe o różnej szerokości Dwa gaussowskie rozkład amplitud fal armonicznc o różnc szerokościac σ p i różnc wartościac średnic pędu p. Części rzeczwista ReΨ i urojona mψ funkcji falowc

Bardziej szczegółowo

Koła rowerowe malują fraktale

Koła rowerowe malują fraktale Koła rowerowe malują fratale Mare Berezowsi Politechnia Śląsa Rozważmy urządzenie sładającego się z n ół o różnych rozmiarach, obracających się z różnymi prędościami. Na obręczy danego oła, obracającego

Bardziej szczegółowo

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 ) Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz

Bardziej szczegółowo

Rozdział 4 Równanie Schrödingera

Rozdział 4 Równanie Schrödingera Rozdział 4 Równanie Schrödingera 4.1 Równanie falowe Schrödingera 4. Obserwable, stany stacjonarne, wartości średnie 4.3 Nieskończona studnia potencjału 4.4 Skończona studnia potencjału 4.5 Trójwymiarowa

Bardziej szczegółowo

Energia wiązania słaba rzędu 10-2 ev J. Energia cieplna 3/2 k B. T J. Energia ruchu cieplnego powoduje rozerwanie wiązań cząsteczkowych.

Energia wiązania słaba rzędu 10-2 ev J. Energia cieplna 3/2 k B. T J. Energia ruchu cieplnego powoduje rozerwanie wiązań cząsteczkowych. Ciała stałe - o struturze rystalicznej wyazują daleo zasięgowe uporządowanie atoowe, są to onoryształy i poliryształy. - o struturze bezpostaciowej (aorficznej), wyazują bra uporządowania atoowego daleiego

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

Struktura energetyczna ciał stałych. Fizyka II dla EiT oraz E, lato

Struktura energetyczna ciał stałych. Fizyka II dla EiT oraz E, lato Struktura energetyczna ciał stałych Fizyka II dla EiT oraz E, lato 016 1 Struktura kryształu Doskonały kryształ składa się z uporządkowanych atomów w sieci krystalicznej, opisanej przez trzy podstawowe

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 6 ułady dysretne o wielu stopniach swobody Poniższe

Bardziej szczegółowo

Mechanika kwantowa Schrödingera

Mechanika kwantowa Schrödingera Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny

Bardziej szczegółowo

V. RÓWNANIA MECHANIKI KWANTOWEJ

V. RÓWNANIA MECHANIKI KWANTOWEJ V. RÓWNANIA MECHANIKI KWANTOWEJ 1 1 Postulaty mechaniki kwantowej Istota teorii kwantowej może być sformułowana za pomocą postulatów, których spełnienie postulujemy i których nie można wyprowadzić z żadnych

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12

Bardziej szczegółowo

Chemia ogólna - część I: Atomy i cząsteczki

Chemia ogólna - część I: Atomy i cząsteczki dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane

Bardziej szczegółowo

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu

Bardziej szczegółowo

Stany stacjonarne w potencjale centralnym

Stany stacjonarne w potencjale centralnym 3.10.2004 14. Stany stacjonarne w potencjale centralnym 149 Rozdział 14 Stany stacjonarne w potencjale centralnym 14.1 Postawienie problemu 14.1.1 Przypomnienie lasycznego problemu Keplera Rozważmy cząstę

Bardziej szczegółowo

Dualizm korpuskularno falowy

Dualizm korpuskularno falowy Dualizm korpuskularno falowy Fala elektromagnetyczna o długości λ w pewnych zjawiskach zachowuje się jak cząstka (foton) o pędzie p=h/λ i energii E = h = h. c/λ p Cząstki niosą pęd p Cząstce o pędzie p

Bardziej szczegółowo

Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie

Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie Schrödingera, zasada nieoznaczoności Heisenberga, ruch cząstki swobodnej,

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

(U.3) Podstawy formalizmu mechaniki kwantowej

(U.3) Podstawy formalizmu mechaniki kwantowej 3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

WYKŁAD 15. Rozdział 8: Drgania samowzbudne

WYKŁAD 15. Rozdział 8: Drgania samowzbudne WYKŁAD 5 Rozdział 8: Drgania samowzbudne 8.. Istota uładów i drgań samowzbudnych W tym wyładzie omówimy właściwości drgań samowzbudnych [,4], odróżniając je od poznanych wcześniej drgań swobodnych, wymuszonych

Bardziej szczegółowo

Pomiary napięć przemiennych

Pomiary napięć przemiennych LABORAORIUM Z MEROLOGII Ćwiczenie 7 Pomiary napięć przemiennych . Cel ćwiczenia Celem ćwiczenia jest poznanie sposobów pomiarów wielości charaterystycznych i współczynniów, stosowanych do opisu oresowych

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych i ich charakterystyki

Wybrane rozkłady zmiennych losowych i ich charakterystyki Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych

Bardziej szczegółowo

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa) 37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd

Bardziej szczegółowo

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

Doświadczenie Younga Thomas Young. Dyfrakcja światła na dwóch szczelinach Światło zachowuje się jak fala - interferencja

Doświadczenie Younga Thomas Young. Dyfrakcja światła na dwóch szczelinach Światło zachowuje się jak fala - interferencja Doświadczenie Younga 1801 Thomas Young Dyfrakcja światła na dwóch szczelinach Światło zachowuje się jak fala - interferencja Doświadczenie Younga c.d. fotodetektor + głośnik fala ciągły sygnał o zmiennym

Bardziej szczegółowo

Statystyka nieoddziaływujących gazów Bosego i Fermiego

Statystyka nieoddziaływujących gazów Bosego i Fermiego Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,

Bardziej szczegółowo

Poniższe eseje zostały opublikowane w Encyklopedii Szkolnej - Fizyka, która została wydana w marcu 2006 r. przez:

Poniższe eseje zostały opublikowane w Encyklopedii Szkolnej - Fizyka, która została wydana w marcu 2006 r. przez: Poniższe eseje zostały opubliowane w Encylopedii Szolnej - Fizya, tóra została wydana w marcu 6 r przez: Wydawnictwo Zielona Sowa Sp z o o PL--45 Kraów, ul Wadowica 8A, POLAND Tel/Fax: +(48-) 66-694; Tel:

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8)

Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8) Zaliczenie wyładu Technia Analogowa Przyładowe pytania (czas zaliczenia 3 4 minut, liczba pytań 6 8) Postulaty i podstawowe wzory teorii obowdów 1 Sformułuj pierwsze i drugie prawo Kirchhoffa Wyjaśnij

Bardziej szczegółowo

M.A. Karpierz, Fizyka

M.A. Karpierz, Fizyka 5. Ruch falowy Fale Poruszać mogą się nie tylo obiety materialne, ale taże rozłady wartości różnych wielości fizycznych. Przemieszczające się zaburzenie (odstępstwa od wartości średniej) nazywane jest

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g zares rozszerzony 1. Wielomiany bardzo zna pojęcie jednomianu jednej zmiennej; potrafi wsazać jednomiany podobne; potrafi

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

1. Struktura pasmowa from bonds to bands

1. Struktura pasmowa from bonds to bands . Strutura pasmowa from bonds to bands Wiązania owalencyjne w cząsteczach Pasma energetyczne w ciałach stałych Przerwa energetyczna w półprzewodniach Dziura w paśmie walencyjnym Przybliżenie prawie swobodnego

Bardziej szczegółowo

Wykład 18: Elementy fizyki współczesnej -2

Wykład 18: Elementy fizyki współczesnej -2 Wykład 18: Elementy fizyki współczesnej - Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Efekt fotoelektryczny 1887 Hertz;

Bardziej szczegółowo

Wykład Budowa atomu 2

Wykład Budowa atomu 2 Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ Za dzień narodzenia mechaniki kwantowej jest uważany 14 grudnia roku 1900. Tego dnia, na posiedzeniu Niemieckiego Towarzystwa Fizycznego w Instytucie Fizyki Uniwersytetu Berlińskiego

Bardziej szczegółowo

Wykład 8. Stany elektronowe molekuł dwuatomowych

Wykład 8. Stany elektronowe molekuł dwuatomowych Wyład 8 Stany eletronowe moleuł dwuatomowych Całowita energia cząsteczi: E t E e E V E r E e energia eletronowa, E v energia oscylacji, E r energia rotacji Zares fal eletromagnetycznych obserwowanych przy

Bardziej szczegółowo

Q strumień objętości, A przekrój całkowity, Przedstawiona zależność, zwana prawem filtracji, została podana przez Darcy ego w postaci równania:

Q strumień objętości, A przekrój całkowity, Przedstawiona zależność, zwana prawem filtracji, została podana przez Darcy ego w postaci równania: Filtracja to zjawiso przepływu płynu przez ośrode porowaty (np. wody przez grunt). W więszości przypadów przepływ odbywa się ruchem laminarnym, wyjątiem może być przepływ przez połady grubego żwiru lub

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

Mechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II.

Mechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II. Próg potencjału Mecanika klasyczna zasada zacowania energii mvi mv E + V W obszarze I cząstka biegnie z prędkością v I, E > V w obszarze cząstka biegnie z prędkością v Cząstka przecodzi z obszaru I do.

Bardziej szczegółowo

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach:

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia skończona Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: V z Okazuje się, że zamiana nie jest dobrym rozwiązaniem problemu

Bardziej szczegółowo

Układ termodynamiczny

Układ termodynamiczny Uład terodynaiczny Uład terodynaiczny to ciało lub zbiór rozważanych ciał, w tóry obo wszelich innych zjawis (echanicznych, eletrycznych, agnetycznych itd.) uwzględniay zjawisa cieplne. Stan uładu charateryzuje

Bardziej szczegółowo

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe

Bardziej szczegółowo

Koła rowerowe kreślą fraktale

Koła rowerowe kreślą fraktale 26 FOTON 114, Jesień 2011 Koła rowerowe reślą fratale Mare Berezowsi Politechnia Śląsa Od Redacji: Fratalom poświęcamy ostatnio dużo uwagi. W Fotonach 111 i 112 uazały się na ten temat artyuły Marcina

Bardziej szczegółowo

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Bangkok, Thailand, March 011 W-3 (Jaroszewicz) 0 slajdów Na odstawie rezentacji rof. J. Rutkowskiego Fizyka kwantowa fale rawdoodobieństwa funkcja falowa aczki falowe materii zasada nieoznaczoności równanie

Bardziej szczegółowo

Podstawy fizyki wykład 2

Podstawy fizyki wykład 2 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Materiały dydaktyczne. Matematyka. Semestr III. Wykłady

Materiały dydaktyczne. Matematyka. Semestr III. Wykłady Materiały dydatyczne Matematya Semestr III Wyłady Aademia Morsa w Szczecinie ul. Wały Chrobrego - 70-500 Szczecin WIII RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE PIERWSZEGO RZĘDU. Pojęcia wstępne. Równania różniczowe

Bardziej szczegółowo

Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku.

Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku. Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku. Definicje: promień fali kierunek rozchodzenia się fali powierzchnia falowa powierzchnia,

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

Numeryczne rozwiązanie równania Schrodingera

Numeryczne rozwiązanie równania Schrodingera Numeryczne rozwiązanie równania Schrodingera Równanie ruchu dla cząstki o masie m (elektron- cząstka elementarna o masie ~9.1 10-31 kg) Mechanika klasyczna - mechanika kwantowa 1. Druga zasada dynamiki

Bardziej szczegółowo

IV. Transmisja. /~bezet

IV. Transmisja.  /~bezet Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

Fala na sprężynie. Projekt: na ZMN060G CMA Coach Projects\PTSN Coach 6\ Dźwięk\Fala na sprężynie.cma Przykład wyników: Fala na sprężynie.

Fala na sprężynie. Projekt: na ZMN060G CMA Coach Projects\PTSN Coach 6\ Dźwięk\Fala na sprężynie.cma Przykład wyników: Fala na sprężynie. 6COACH 43 Fala na sprężynie Program: Coach 6 Cel ćwiczenia - Pokazanie fali podłużnej i obserwacja odbicia fali od końców sprężyny. (Pomiar prędkości i długości fali). - Rezonans. - Obserwacja fali stojącej

Bardziej szczegółowo

11 Przybliżenie semiklasyczne

11 Przybliżenie semiklasyczne 11 Przybliżenie semiklasyczne W tym rozdziale rozważymy rachunek przybliżony, który opiera się na rozwinięciu funkcji falowej w szereg potęg stałej Plancka. Zakłada się przy tym jawnie, że h jest małym

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max.

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. 10 stron na jeden z listy tematów + rozmowa USOS! 1 Model

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie = Rozwiąż układ równań: (( + 1 ( + 2 = = 1

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie  = Rozwiąż układ równań: (( + 1 ( + 2 = = 1 Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/). Rozwiąż układ równań: (( + ( + 2 = 3 = 4. http://www.zadania.info/d38/2287 2. Rozwiąż układ równań: ( + 2 (

Bardziej szczegółowo