2. RÓWNOWAGA PRZESTRZENNEGO UKŁADU SIŁ
|
|
- Kornelia Mróz
- 8 lat temu
- Przeglądów:
Transkrypt
1 . RÓWOWG PRZETRZEEGO UKŁDU IŁ Zadaie. Wyzaczyć siły siwe w trzech prętach przegubwych twrzących wysięgik przedstaw a rysuku.. Wysięgik bciąży jest piwą siłą przyłżą w pukcie. Rys.. Rzwiązaie Zakładamy iewiadme siły siwe w prętach,, i. Przyjmujemy układ współrzędych pczątku w pukcie. Jak widać z rysuku siły iewiadme i siła przeciają się w jedym pukcie, mamy więc d czyieia z przestrzeym zbieżym układem sił. Dla takieg układu mża ułżyć trzy rówaia rówwagi rówaia rzutów a sie x, y, z. Rówaia rówwagi: ) ) ix ; cs cs ; cs cs cs, ) ; cs. z (), z (), cs
2 wstawiając d () cs cs Pieważ wartści wszystkich iewiadmych są ddatie złże zwrty sił,, i były prawidłwe. iły i były skierwae d węzła, są więc siłami rzciągającymi. iła skierwaa d węzła jest ściskająca. Zadaie. Jedrda płyta w kształcie półkla prmieiu r zawiesza jest a trzech piwych likach, jak pkaza a rysuku.. Ciężar płyty wysi G i jest skup w śrdku ciężkści płyty C. Wyzaczyć reakcje w puktach pdwieszeia liek. Dae: G k, α. Rys.. Rzwiązaie: Zakładamy iewiadme pdprwe którymi w tym przypadku są siły siwe w likach R, R B, i R C. Pieważ płyta jest bciąża tylk piwą siłą ciężkści G, mamy d czyieia z przestrzeym rówległym układem sił. Dla takieg szczególeg przypadku mamy d
3 dyspzycji trzy rówaia rówwagi: rówaie rzutów a ś piwą i dwa rówaia mmetów względem si leżących w płaszczyźie prstpadłej d si piwej. Rówaia rówwagi:. ; R + R + R G B D. M ix ; R D r csα G OC. M ; R r + R r si α R r B D Oc zacza dległść śrdka ciężkści C półkla d śrdka krzywy krzywy półkla O, która wysi: r OC ; π Z rówaia () trzymujemy wartść reakcji R D : G OC G r R D,9G,9[k], r si α π r z rówaia () R G,9G R B,G R B, Wstawiając d rówaia (): R r +,9G r, (,G R ) R,G B B B R B,G,[k] R G,9G,G,77G,77[k] R,77k; R B,k; R D,9k., Zadaie. Prsty pręt B umieszcz w łżyskach: stpwym i szyjym B i bciąż jak a rysuku... Wyzaczyć ddziaływaie w łżyskach raz kąt α jaki utwrzy z piem pręt w płżeiu rówwagi. Dae: Q, G, R, a, l.
4 Rys... Przykład te rzwiążemy a daych gólych. Przyjmujemy układ współrzędych xyz, raz zakładamy iewiadme pdprwe których dstarczają łżyska stpwe i szyje, rys. Rówaia rówwagi: rówaia rzutów a sie x, y, z ix,,, R R R x y z + R + R By Bz Q G rówaia mmetów względem si x,y,z M M M ix,,, Q R G l siα R R Bz By a G a Q a a Z rówań wyliczmy R x ; R y ; R By R Bz + ( G Q) Q R z G + Q G ( G + Q)
5 Q R si α G l Q R α arcsi G l Zadaie. a rysuku.. przedstawi kstrukcję przestrzeą złżą z -ciu prętów,,,,,. iła P działa a węzeł w płaszczyźie prstkąta BDC, przy czym jej prsta działaia twrzy z prstą piwą C kąt. EK MB. Kąty trójkątów rówramieych EK, BM i DB przy wierzchłkach, B, i D są prste. Obliczyć siły w prętach jeżeli P. Rys... Zadaie t będziemy rzwiązywali jak dwa iezależe zadaia.. Ptraktujemy układ prętów jak kratwicę przestrzeą. I wyzaczymy siły w prętach kratwicy. Zastsujemy metdę węzłów, która plega a tym, że każdy z węzłów, w aszym przykładzie i B musi spełiać waruki rówwagi dla przestrzeeg zbieżeg układu sił. Rysujemy więc każdy z węzłów sb (rys... i..) i zakładamy w prętach iewiadme siły siwe biegące wzdłuż si tych prętów dwlych zwrtach (p. wszystkie d węzła). Pieważ pręt występuje w bu węzłach siła w im występująca musi w każdym z węzłów mieć przeciwy zwrt, tak aby p płączeiu kstrukcji siła ta stawała się siłą wewętrzą. Waruki rówwagi dla zbieżeg przestrzeeg układu sił:
6 dla węzła Rys... Rys... ix ; P cs,77p,77, ; cs cs, ; si + si P cs,p,, dla węzła B ; cs ix P ; cs cs ; si + si + si,p, Wszystkie pszukiwae siły (,... ) miały zwrty przyjęte dwlie. Zak mius przy wyiku mówi, że zwrt siły jest przeciwy d załżeg. Przypmiamy, że siła skierwaa d węzła jest siłą ściskającą zaczaą zakiem, siła d węzła siłą rzciągającą zak +. Pieważ wszystkie siły iewiadme w aszym przykładzie przyjęliśmy jak ściskające, trzymae zaki mówią, że siły i są ddatie. Pzstałe złżyliśmy dbrze, są więc ujeme.
7 Mża zestawić wyiki w astępujący spsób, pkazujący który z prętów jest rzciągay a który ściskay:,,,,,77, +,, +,,. W drugiej wersji ptraktujmy pręt B jak ieważką belkę pdpartą pięcima prętami przegubwymi,,..., i bciążą w pukcie siłą P, rysuek... Wyzaczyć reakcje w puktach K, E, M,, i. Przyjmujemy długść prętów m, a belki B l m. C jak zbaczymy ie ma wpływu a wyiki. Teraz traktujemy biekt jak całść i będziemy krzystali z sześciu rówań rówwagi dla przestrzeeg dwleg układu sił Rys.... ix ; P cs P cs. ; cs + cs cs cs + +. ; si + si + si + si + si P si P. Mix ; a + a a a
8 T rówaie jest tżsame z rówaiem ze względu a symetrię układu względem płaszczyzy Cxz.. M M ; si P cs a + a si si a + si (a + a cs ) p wstawieiu: + P. M ; cs a cs a Z rówań tych trzymamy te same wyiki c pprzedi bez siły, b jest a w tym przypadku siłą wewętrzą. P, P, P. W tym przypadku zak przed wartścią sił mówi tym, że siła ma zwrt przeciwy iż załży. Zadaie. Ciężar P jest zawieszy w pukcie D, jak pkaza a rysuku... Pręty w puktach, B, C i D zamcwae są przegubw. Wyzaczyć reakcje w puktach, B, i C. Rys...
9 Rzwiązaie Jest t przestrzey zbieży układ sił. W puktach, B, C zakładamy iewiadme pdprwe R, R B, R C, działające wzdłuż si prętów przegubwych. Zwrty mżemy dbrać dwlie (rys...). Rys... W celu wyzaczeia iewiadmych pdprwych układamy trzy rówaia rzutów a sie przyjęteg dwlie układu współrzędych,x,y,z.. Przypmiamy: gdy zamy kąt pmiędzy siłą i sią układu współrzędych t rzutem siły a daą ś jest wektr długści rówej ilczywi długść siły i csiusa kąta pmiędzy ddatim zwrtem si a wektrem siły. W przypadku gdy kąt pmiędzy siłą a sią jest iezay musimy przeprwadzić pdwóje rzutwaie (siłę rzutwać a tę płaszczyzę z którą twrzy a zay kąt a astępie dpier a ś układu. Dla lepszej przejrzystści a rysuku.. pkaza kleje etapy rzutwaia reakcji R B, (ajpierw a prstą OD a astępie a si y i z).
10 Rys... ix ; R cs R B cs stąd R R B R si cs + R B si cs R C cs stąd R C ( R si cs ),8R cs R si si + R B si si R C si P R R si R B si,8r,p, si P R C,P, Zadaie. Płyta prstkąta wymiarach a b, ciężarze G, jest pdparta a pdprze przegubwej w pukcie i a łżysku szyjym w pukcie B. Ddatkw w pukcie C jest pdwiesza a lice zaczepiej d ściay w pukcie E,( rys...). Lika twrzy z płaszczyzą płyty kąt, a przekąta płyty biegie pd kątem d bku B. Wyzaczyć iewiadme pdprwe.
11 Rys... Rzwiązaie Jest t przestrzey dwly układ sił. Przyjmujemy układ współrzędych pczątku w pukcie (rys...). Rys... Zakładamy iewiadme pdprwe: ) w pdprze przegubwej reakcję R, rzkładając ją a składwe w kierukach si układu współrzędych X, Y, Z, ) w pukcie B łżysk szyje dstarcza dwóch składwych X B i Z B, ) atmiast siła w lice T przechdzi przez pukt C i biegie wzdłuż liki.
12 Rys... D wyzaczeia iewiadmych pdprwych dyspujemy sześcima rówaiami rówwagi: ). ). ). ix ;,, X Y Z + X T cs + Z B B T cs + T si cs si, G,, ). M, Z b + T si b b G ix B a ). M, G T si a ). M, XB b z () X B, z () T G, G G z () Z B, G G z () Z G,
13 z () Y G G, z () X T G. Zadaie.7. Płyta prstpadłściea BCD ciężarze G pdparta jest a lekkich przegubwych prętach, rys..7.. Wzdłuż krawędzi D i B płyty działają siły i. Wymiary kstrukcji wyszą a m, b m, c m.. Wyzaczyć siły w prętach, czyli iewiadme pdprwe utrzymujące płytę w płżeiu rówwagi. Rys..7. Rys..7. Przystępując d rzwiązaia przyjmujemy układ diesieia O xyz, dwlie, lecz kierując się zasadą, aby sie teg układu były rówległe d mżliwie dużej liczby sił działających w aszym układzie i by mżliwie duż sił przeciał sie, rys... D wyzaczeia rówwagi przestrzeeg układu sił działająceg a ciał sztywe mamy d dyspzycji w ajgóliejszym przypadku rówań rówwagi. ix,,, M M M ix,,.
14 W aszym zadaiu ciałem sztywym jest płyta BCD. Płytę w staie rówwagi utrzymują prste pręty przegubwe, które spełiają rlę pdpór. W pdprach tych występują iewiadme pdprwe (reakcje). W każdym pręcie zakładamy iewiadmą siłę rmalą i kieruku si pręta i dwlym zwrcie p. wszystkie w kieruku płyty. Rzutujemy klej wszystkie siły a sie x, y, z. D teg jedak są am ptrzebe pewe fukcje trygmetrycze kątów α i β siα csα siβ csβ h h + a a h + a h h h + b b + b,,8,8, () + csβ ix () si α si α () si α + si β + csα G Układamy rówaia mmetów względem si x, y,z. () a M ix a + a + si α a + si β a + si α a G h () b M b b siα b + G + h () b csα b cs β a M Z rówaia () csβ, wstawiając d rówaia () csβ a a csα csα b csα csα b,8,8, wstawiając d rówaia (), csα,8
15 z rówaia () h G + b, si α +,, Z rówaia () G h + a,, 9,9 si α si β si α + +, +,8 wstawiając d rówaia (), + si α 9,9 + si β si α + G,, +,8 +, + Tak więc zestawiając wyiki:,; ; 9,9;,; -; -. Pieważ wszystkie iewiadme siły w prętach zstały przyjęte za ściskające, trzymae w wyikach zaki ujeme mówią przeciwym zwrcie siły. więc siły w prętach, i są ściskające, w prętach i rzciągające, w pręcie siła jest zerwa. Zadaie.8 Zaleźć siły w prętach przegubwych twrzących kstrukcję przedstawią a rysuku.8.. Kstrukcja jest bciąża piwą siłą Q przyłżą w pukcie i siłą P działającą wzdłuż prstej przechdzącej przez pukty B i C. Dae: Q, P, a m, b m, c m.
16 Rys..8. Rys..8. W zadaiach teg typu, gdy mamy d czyieia tylk z układem samych prętów przegubwych, ajlepiej jest stswać metdę węzłów. Pieważ cały układ zajduje się w staie rówwagi, a więc i każdy węzeł jak układ przestrzey zbieży musi też być w rówwadze. Przeciamy pszczególe pręty i przykładamy w każdym przecięciu iewiadmą siłę siwą i dwlym zwrcie. iła skierwaa d węzła zakłada, że te pręt jest ściskay, zaś siła d węzła mówi rzciągaiu pręta. Rzwiązaie rzpczyamy d węzła w którym zbiegają się ajwyżej trzy iewiadme siły. W rówaiach rówwagi uwzględiamy czywiście rówież działające w węzłach siły zewętrze czye. W aszym przykładzie przy pewej wprawie mża zauważyć, że siły i muszą być zerwe, c zaczie upraszcza zadaie. Dla celów dydaktyczych ie skrzystamy z teg ułatwieia i ptraktujemy przykład jak góly. Przyjmujemy układ współrzędych Oxyz jak a rys..8. i wyzaczamy fukcje trygmetrycze kątów α i β. d a + c + b + d + e c si α,89 d a cs α,7 d d si β,8 e 9 9
17 Przystępujemy d rzpatrywaia rówwagi I węzła ix ;,, P cs α P si α stąd:,7,7k,89 8,9k Rówaia rówwagi dla węzła II ix ;,, + + cs α csβ si α Q + si βcs α si βsi α stąd: Q,k si α,89 csα,, k Otrzymae w wyikach zaki mówią tym, że załże w tych prętach ściskaie trzeba zmieić a rzciągaie lub dwrtie.
Przykład 3.1. Wyznaczanie prędkości i przyśpieszenia ruchu płaskim
Przykład 31 Wyzaczaie prędkści i przyśpieszeia ruchu płaskim Prędkść chwilwa i przyśpieszeie chwilwe puktu pręta w płżeiu przedstawiym a rysuku 1 wyszą: = a = a, Zaleźć prędkść i przyśpieszeie puktu pręta
ANALIZA MECHANIZMU DŹWIGNIOWEGO. 1. Synteza strukturalna i geometryczna mechanizmu
NLIZ MECHNIZMU DŹWIGNIOWEGO 1. Syteza strukturala i gemetrycza mechaizmu 1. 1. Budwa łańcucha kiematyczeg schemat idewy. Symbliczy zapis struktury i parametrów prjektwaeg mechaizmu przedstawia tabela 1
Egzamin ustny semestr piąty. Słuchacz
Egzami usty semestr piąty Słuchacz 4 5 blicza średią ważą i dchyleie stadardwe zestawu daych zlicza biekty w prstych sytuacjach kmbiatryczych blicza prawdpdbieństwa w prstych sytuacjach, stsując klasyczą
OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD
OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie
VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.
KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski
KO OF Szczecin:
OF_III_T KO OF Szczeci: wwwfszcpl Źródł: XI OLIMPIADA FIZYCZNA (96/96) Stpień III zadaie teretycze T Nazwa zadaia: Działy: Słwa kluczwe: Kmitet Główy Olimpiady Fizyczej; Czesław Ścisłwski Fizyka w Szkle
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Egzamin maturalny z matematyki CZERWIEC 2011
Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr
FUNKCJA KWADRATOWA. 2. Rozwiąż nierówności: na przedziale x < 2; 3. Wyznacz wartość najmniejszą i największą funkcji f ( x)
FUNKCJA KWADRATOWA. Rzwiąż równanie: a) 0 +,5 0 b) ( + )( ) 0. Rzwiąż nierównści: < ( )( ) > 0 a) b). Wyznacz wartść najmniejszą i największą funkcji na przedziale < ; 5 >. Przekształć z pstaci gólnej
Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.
Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)
Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy
Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Schemat oceiaia Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B
Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy
Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B C A B A A A B D
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
6. POWIERZCHNIOWE MOMENTY BEZWŁADNOŚCI
6. POWERZCHNOWE MOMENTY BEZWŁADNOŚC Zadanie 6. Dla figury przedstawinej na rysunku 6.. wyznaczyć płżenie głównh centralnh si bezwładnści i kreślić względem nich główne centralne mmenty bezwładnści. Rys.6..
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)
ZESTAW 1. A) 2 B) 3 C) 5 D) 7
ZESTAW Zadanie Punkty A = (,) i B = (, ) są klejnymi wierzchłkami kwadratu. Obwód teg kwadratu jest równy A) 4 6 B) 6 C) 4 4 D) 4 6 Zadanie Zbirem rzwiązań nierównści x + 5 > jest zbiór A) ( 7, ) B) (,
P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny
Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład
MAJ LUBELSKA PRÓBA PRZED MATURĄ 2013 klasa druga. MATEMATYKA - poziom podstawowy. Czas pracy: 170 minut. Instrukcja dla zdającego
LUBELSKA PRÓBA PRZED MATURĄ 03 klasa druga MATEMATYKA - pzim pdstawwy MAJ 03 Instrukcja dla zdająceg. Sprawdź, czy arkusz zawiera 4 strn.. Rzwiązania zadań i dpwiedzi zamieść w miejscu na t przeznacznym.
T R Y G O N O M E T R I A
T R Y G O N O M E T R I A Lekcja 8-9 Temat: Pwtórzenie trójkąty prstkątne. Str. 56-57. Teria Twierdzenie Pitagrasa i dwrtne Suma kątów w trójkącie Wyskść Obwód i ple Zad.,,,, 5, 6 str. 56 Zad. 7, 8, 9,
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
Rzwiązie ) Trpez jest pisy kle Z włsści czwrkąt piseg kle mmy: AB + CD AD + BC + r+ r+ 8 Pdt w trójkącie EBC: ( r) + Otrzymliśmy ukłd rówń: r+ 8 (r) +
Siedem zdń iterutów Zdie - pzim wymgń: pdstwwy Współczyiki fukcji kwdrtwej f(x) x + bx+ c twrzą w klejści,b, c ciąg gemetryczy Wyzcz wrtść współczyików b i c, jeżeli widm, że sią symetrii wykresu fukcji
Zadania do rozdziału 4. Zad.4.1. względem osi obrotu krążka o promieniu
Zadaia d rzdziału. Zad... Obliczyć et siły M dla siły r0 c, jeżeli działa a styczie d rąża. Rzwiązaie: F 0 N względe si brtu rąża prieiu M r x F M M r F si α α 90 si α M r F 0 N 0, M N Wetr etu siły M
I. Podzielność liczb całkowitych
I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc
x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem
9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3
201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.
Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych
Zadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
EGZAMIN MATURALNY MATEMATYKA
EGZAMIN MATURALNY MATEMATYKA Poziom rozszerzoy ZBIÓR ZADAŃ Materiały pomocicze dla ucziów i auczycieli Cetrala Komisja Egzamiacyja 05 Zadaia 5 Zadaia Liczby rzeczywiste i wyrażeia algebraicze Rówaia i
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość
Zadanie 3. Na jednym z poniższych rysunków przedstawiono fragment wykresu funkcji. Wskaż ten rysunek.
FUNKCJA KWADRATOWA. Zadaia zamkięte. Zadaie. Wierzchołek paraboli, która jest wykresem fukcji f ( x) ( x ) ma współrzęde: A. ( ; ) B. ( ; ) C. ( ; ) D. ( ; ) Zadaie. Zbiorem rozwiązań ierówości: (x )(x
MATEMATYKA POZIOM PODSTAWOWY
EGZAMIN MATURALNY W ROKU SZKOLNYM 05/06 FORMUŁA OD 05 ( NOWA MATURA ) FORMUŁA DO 04 ( STARA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 06 Klucz puktowaia
Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik
Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem
Materiał ćwiczeniowy z matematyki Marzec 2012
Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć
Internetowe Kółko Matematyczne 2004/2005
Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,
Zadania z algebry liniowej - sem. I Liczby zespolone
Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C
M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych Moment zginający w punkcie B [M xb /pl ]
M. Guminiak Analiza płyt cienkich metdą elementów brzegwych... 44 600 500 400 300 200 100 Mment zginający w punkcie B [M xb /pl 2 10 4 ] 700 600 500 400 300 200 100 Mment zginający w punkcie B [M yb /pl
x 2 5x + 6, (i) lim 9 + 2x 5 lim x + 3 ( ) 9 Zadanie 1.4. Czy funkcjom, (c) h(x) =, (b) g(x) = x x, (c) h(x) = x + x.
Zadaie.. Obliczyć graice x 2 + 2x 3 (a) x x x2 + x2 + 25 5 (d) x 0. Graica i ciągłość fukcji x 2 5x + 6 (b) x x 2 x 6 4x (e) x 0si 2x (g) x 0 cos x x 2 (h) x 8 Zadaie.2. Obliczyć graice (a) (d) (g) x (x3
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy
Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19
47. W każdym z zadań 47.-47.5 podaj wzór a fukcję różiczkowalą f :D f R o podaym wzorze a pochodą oraz o podaej wartości w podaym pukcie. 47.. f x 4x 5 54 f D f R 4x 555 fx + 47.. f x x+ f D f, + fx 9
Egzaminy. na wyższe uczelnie 2003. zadania
zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia
Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:
Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego
Prawo odbicia i załamania. Autorzy: Zbigniew Kąkol Piotr Morawski
Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol Piotr Morawski 207 Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol, Piotr Morawski Jeżeli światło pada a graicę dwóch ośrodków, to ulega zarówo odbiciu a
( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.
Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr
21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,
CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre
MARIUSZ KAWECKI zbiór zadań dla zainteresowanego matematyką licealisty
MARIUSZ KAWECKI zbiór zadań dla zaiteresowaego matematyką licealisty Copyright by M. Kawecki 07 Spis treści Wstęp 3. Logika w praktyce 5. Liczby i działaia 0 3. Rówaia i układy rówań 6 4. Własości fukcji
Równe kąty = (180 <) ACO <) CAO) = (180 2<) ACO) = <) ACO.
Równe kąty Równe kąty ichał Kieza rzykład 1. rzyjmijmy znaczenia jak na rysunku 1 (przyjmujemy też załżenie, że kąt jest stry; w przeciwnym razie pdbna własnść także jest prawdziwa, a dwód jest analgiczny).
c 2 + d2 c 2 + d i, 2
3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Płaskie układy obciąŝeń. Opis analityczny wielkości podstawowych. wersory. mechanika techniczna i wytrzymałość materiałów 1 statyka 2
Opis aalitcz wielkości podstawowch wersor e x, e Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B ) ) Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B )
CZERWIEC MATEMATYKA - poziom podstawowy. Czas pracy: 170 minut. Instrukcja dla zdającego
MATEMATYKA - pzim pdstawwy CZERWIEC 014 Instrukcja dla zdająceg 1. Sprawdź, czy arkusz zawiera 14 strn.. Rzwiązania zadań i dpwiedzi zamieść w miejscu na t przeznacznym.. W zadaniach d 1 d są pdane 4 dpwiedzi:
Raytracing: krok po kroku cz. 6 - model Phonga
Raytracig: krok po kroku cz. 6 - model Phoga I. Co/Dlaczego? Model oświetleia Phoga, którym będziemy się zajmować w tej części, został przedstawioy przez Phog Bui- Tuoga w jego rozprawie doktorskiej w
CZAS TRWANIA ZDERZENIA KUL
Mechaika, Elektryczść i magetyzm CZAS TRWANIA ZDERZENIA KUL Opis teretyczy d ćwiczeia zamieszczy jest a strie wwwwtcwatedupl w dziale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE Opis układu pmiarweg Celem
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
Mec Me han a ik i a a o gólna Wyp W a yp dko dk w o a w do d w o o w l o ne n g e o g o ukł uk a ł du du sił.
echaika ogóla Wkład r 2 Wpadkowa dowolego układu sił. ówowaga. odzaje sił i obciążeń. odzaje ustrojów prętowch. Wzaczaie reakcji. Wpadkowa układu sił rówoległch rzłożeie układu zerowego (układ sił rówoważącch
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce a aklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-RAP-06 POZIOM ROZSZERZONY Czas pracy 0 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy zawiera 4 stro (zadaia
Materiał ćwiczeniowy z matematyki marzec 2012
Materiał ćwiczeiowy z matematyki marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych dla iewidomych POZIOM PODSTAWOWY Klucz puktowaia do zadań zamkiętych Nr zad 3 4 6 7
0, co implikuje tezę. W interpretacji geometrycznej: musi istnieć punkt, w którym styczna ( f (c)
RACHUNEK RÓŻNCZKOWY cd Twierdzeie Lagrage a: Jeżeli jest ciągła w [a,b], jest różiczkwala w a,b), t ca,b) : b)-a)= c) b-a) b) Dwód Wystarczy rzpatrzyć ukcję t) t) t a), t[a,b], która b a spełia załżeia
Metody Obliczeniowe w Nauce i Technice laboratorium
Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony
Wymagaia edukacyje a poszczególe ocey z matematyki w klasie III poziom rozszerzoy Na oceę dopuszczającą, uczeń: zazacza kąt w układzie współrzędych, wskazuje jego ramię początkowe i końcowe wyzacza wartości
W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch
Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi
Numeryczny opis zjawiska zaniku
FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej
Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski
olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...
dr inż. Paweł Szeptyński - MECHANIKA BUDOWLI 01. Statyka TEORIA
. STATYKA Statyka jest działem fizyki, który zajmuje się rówowagą układów sił waruki określające sta rówowagi zdefiiujemy dopiero późiej. Siłą azywać będziemy wielkość wektorową, będącą miarą oddziaływaia
Zadania domowe z Analizy Matematycznej III - czȩść 2 (funkcje wielu zmiennych)
Zadaia domowe z AM III dla grup E7 (semestr zimow 07/08) Czȩść Zadaia domowe z Aaliz Matematczej III - czȩść (fukcje wielu zmiech) Zadaie. Obliczć graice lub wkazać że ie istiej a: (a) () (00) (b) + ()
Blok 3: Zasady dynamiki Newtona. Siły.
Blk : Zasady dynamiki Newtna. Siły. I. Śrdek masy układu ciał Płżenie śrdka masy pisane jest wektrem: RSM xsm î ysm ĵ zsm kˆ. Dla daneg, nieruchmeg układu ciał, śrdek masy znajduje się zawsze w tym samym
Wprowadzenie. metody elementów skończonych
Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów
Poziom rozszerzony. 5. Ciągi. Uczeń:
PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia
3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ
3. ÓWNOWG PŁSKIEGO UKŁDU SIŁ Zadanie 3. elka o długości 3a jest utwierdzona w punkcie zaś w punkcie spoczywa na podporze przegubowej ruchomej, rysunek 3... by belka była statycznie wyznaczalna w punkcie
Planimetria, zakres podstawowy test wiedzy i kompetencji ZADANIA ZAMKNIĘTE. [ m] 2 cm dłuższa od. Nr pytania Odpowiedź
Planimetria, zakres pdstawwy test wiedzy i kmpetencji. Imię i nazwisk, klasa.. data ZADANIA ZAMKNIĘTE W zadaniach d 1-4 wybierz i zapisz czytelnie jedną prawidłwą dpwiedź. Nieczytelnie zapisana dpwiedź
LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Liczba punktów Wyznaczenie pierwszej współrzędnej wierzchołka paraboli: x.
LUBELSKA PRÓBA PRZED MATURĄ 05 poziom podstawowy ZESTAW A ZADANIA ZAMKNIĘTE 5 6 7 8 9 0 5 6 7 8 9 0 A B D D A D B D A B C D C B A C A C B C A B D C ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI zadaia 5 6 7 puktów
3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d.
Jarosław Wróblewski Matematyka dla Myślących 009/10 3 Wzory skrócoego możeia działaia a wielomiaach Procety Elemety kombiatoryki: dwumia Newtoa i trójkąt Pascala (cd) paździerika 009 r 0 Skometować frgmet
= n ESTYMACJA PUNKTOWA. 1. Estymacja punktowa dla wartości średniej - określanie błędu standardowego s s sˆ n
ESTYMACJA PUNKTOWA 1. Estymacja puktwa dla wartści średiej - kreślaie błędu stadardweg s s sˆ s( x) = = 1 k k 1 s( p*) = = p * q * Zad. 1. Oblicz średi błąd szacwaia s raz przecięty błąd względy v dla
I kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4
Przykładowe zadania dla poziomu rozszerzonego
Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,
Wyk lad 2 W lasności cia la liczb zespolonych
Wyk lad W lasości cia la liczb zespoloych 1 Modu l, sprz eżeie, cz eść rzeczywista i cz eść urojoa Niech a, b bed a liczbami rzeczywistymi i iech z = a bi. (1) Przypomijmy, że liczba sprzeżo a do z jest
Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N
OBWODY SYGNAŁY 1 5. OBWODY NELNOWE 5.1. WOWADZENE Defiicja 1. Obwodem elektryczym ieliiowym azywamy taki obwód, w którym występuje co ajmiej jede elemet ieliiowy bądź więcej elemetów ieliiowych wzajemie
WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ
Ć w i c z e i e 6 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ 6.1 Opis teoretyczy W ośrodkach sprężystych wytrąceie pewego obszaru z położeia rówowagi powoduje drgaia wokół tego położeia.
Definicja interpolacji
INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję
Twierdzenie Cayleya-Hamiltona
Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest
Przykładowy arkusz z rozwiązaniami. Arkusz II poziom rozszerzony
Przykładowy arkusz z rozwiązaiai Arkusz II pozio rozszerzoy ( pkt) Pukt A( -, -) jest wierzchołkie robu, którego jede z boków zawiera się w prostej k o rówaiu x - y - 0 Środkie syetrii tego robu jest pukt
Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1
1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych
Metody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
Szkic do wykładów z mechaniki analitycznej
Szkic do wykładów z mechaiki aalityczej prof. dr hab. Bogda Maruszewski pokój 408 BM e-mail: bogda.maruszewski@put.poza.pl www: http://tm.am.put.poza.pl kosultacje: poiedziałek 11 00 12 00 Politechika
Rysunek 1: Fale stojące dla struny zamocowanej na obu końcach; węzły są zaznaczone liniami kropkowanymi, a strzałki przerywanymi
Aaliza fal złożoych Autorzy: Zbigiew Kąkol, Bartek Wiedlocha Przyjrzyjmy się drgaiu poprzeczemu struy. Jeżeli strua zamocowaa a obu końcach zostaie ajpierw wygięta, a astępie puszczoa, to wzdłuż struy
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz
Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE.
W S E i Z WYDZIAŁ. L A B O R A T O R I U M F I Z Y C Z N E Nr ćwicz. 9 Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE. Semestr Grupa Zespół Ocea Data / Podpis Warszawa,
Lista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Techikum Nr 2 im. ge. Mieczysława Smorawińskiego w Zespole Szkół Ekoomiczych w Kaliszu Wymagaia edukacyje iezbęde do uzyskaia poszczególych śródroczych i roczych oce klasyfikacyjych z obowiązkowych zajęć
Katalog wymagań programowych z matematyki od absolwenta II klasy (poziom rozszerzony).
Katalog wymagań programowych z matematyki od absolweta II klasy (poziom rozszerzoy). LICZBY RZECZYWISTE Na poziomie wymagań koieczych lub podstawowych a oceę dopuszczającą () lub dostateczą (3) uczeń wykorzystać
M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych... 44
M. Guminiak Analiza płyt cienkich metdą elementów brzegwych... 44 Mment zginający w śrdku [M x /pa 2 10 4 ] Mment zginający w śrdku [M y /pa 2 10 4 ] 600 500 400 300 200 100 0 0 2,5 5 7,5 10 12,5 15 17,5
IX POWIATOWY KONKURS MATEMATYCZNY SZKÓŁ GIMNAZJALNYCH W POGONI ZA INDEKSEM ZADANIA PRZYGOTOWAWCZE ROZWIĄZANIA I ODPOWIEDZI rok szkolny 2017/2018
rk szklny 017/018 1. Niech pierwsza sba dstanie 1, druga następni dpwiedni 3, 4 aż d n mnet. Więc 1++3+4+.+n 017, n( n 1) 017 n(n+1) 4034, gdzie n(n+1) t ilczyn klejnych liczb naturalnych. Warunek spełnia
Wyznaczyć prędkości punktów A i B
Wyzaczaie prędkości i przyspieszeia puku ciała w ruchu płaskim (a) Wyzaczyć prędkości puków i Dae: rad/s; ε 0; 5 cm; 5 cm 48 mechaika echicza kiemayka 3 Wyzaczaie prędkości i przyspieszeia puku ciała w
ALGEBRA LINIOWA Informatyka 2015/2016 Kazimierz Jezuita. ZADANIA - Seria 1. Znaleźć wzór na ogólny wyraz ciągu opisanego relacją rekurencyjną: x
Iformatyka 05/06 Kazimierz Jezuita ZADANIA - Seria. Relacja rekurecyja kowecja sumacyja suma ciągu geometryczego. Zaleźć wzór a ogóly wyraz ciągu opisaego relacją rekurecyją: x sprowadzając problem do
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji
Chemia Teoretyczna I (6).
Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez
Moduł 4. Granica funkcji, asymptoty
Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae