IX POWIATOWY KONKURS MATEMATYCZNY SZKÓŁ GIMNAZJALNYCH W POGONI ZA INDEKSEM ZADANIA PRZYGOTOWAWCZE ROZWIĄZANIA I ODPOWIEDZI rok szkolny 2017/2018
|
|
- Mikołaj Ryszard Marek
- 5 lat temu
- Przeglądów:
Transkrypt
1 rk szklny 017/ Niech pierwsza sba dstanie 1, druga następni dpwiedni 3, 4 aż d n mnet. Więc n 017, n( n 1) 017 n(n+1) 4034, gdzie n(n+1) t ilczyn klejnych liczb naturalnych. Warunek spełnia dla największeg n, n=63 a n+1=64 (b 63*64= ). Odp. Zgdnie z zasadami mżna bdarwać 63 sby, nadliczbwe mnety mżna dać temu, kt dstał ich najwięcej.. Odp i Odp Odp. Reszta 3 5. Budujemy równanie 1887 (1+8+x+y)= x +y, gdzie x i y 9 78=11x+y x=6, y=6 Odp. Urdził się w 1866 rku i ma 1 lat 6. Rycerzwi nie uda się zabić smka. Przy każdym cięciu przyrst głów jest liczbą pdzielną przez 3. Niezależnie d spsbu cięcia, różnica między liczbą głów, które wyrsły smkwi, jest pdzielna przez 3, a więc nie mże na być równa Odp Odp. P= a ( -1) 10. x- wiek p. Walenteg w 1845 rku (x-15)(x+15) = 1845 x P przekształceniu równania trzymamy x(x+1)= 070 a z teg x=45 Odp. Jubilat ma 45 lat. 11. x- liczba nauczycieli w ubiegłym rku x - suma lat wszystkich nauczycieli w ubiegłym rku x + x - suma lat wszystkich nauczycieli w tym rku x + x suma lat wszystkich nauczycieli w tym rku p dejściu jedneg na emeryturę Odp. W tym rku w szkle pracwał 0 nauczycieli. 1. Odp. O 10,5 % 13. Odp. 76 kg 14. x- liczba bankntów 100zł y - liczba bankntów 00zł x + y - liczba wszystkich bankntów taki % wszystkich bankntów stanwią banknty 100zł
2 rk szklny 017/018 Z teg równania x=4y Zatem Odp. 80 % 15. x- cena twaru k- szukany prcent bniżki x- k%x -cena twaru p pierwszej bniżce x- k%x k% (x- k%x ) -cena twaru p pierwszej bniżce x- k%x k% (x- k%x )= 0,64x x= 0% Odp. Cenę każdrazw bniżan 0% 16. Odp.0% 17. Odp Odp. P gdzinach. 19. Odp. 1 szklankę 0. Rzkład liczby 7: 7 = 3 3. Rk urdzenia i śmierci jest liczbą cztercyfrwą, więc mżemy brać pd uwagę następujące czwórki cyfr: 1,, 4, 9; 1,3,4, 6; 1,, 6, 6 raz 1, 1, 8, 9. Jeśli kbieta żyła 90 lat, t nie mgła się urdzić i umrzeć na przestrzeni teg sameg wieku, gdyż rk jej urdzenia zawierałby wówczas cyfrę 0, a c za tym idzie ilczyn cyfr wynsiłby 0. Birąc również pd uwagę fakt, że śrdkwe cyfry są klejnymi liczbami naturalnymi, mżemy brać pd uwagę tylk dwie czwórki cyfr: 1,3,4, 6 raz 1, 1, 8, 9. Kbieta ta mgła urdzić się w rku 1891 i umrzeć w 1981 lub urdzić się w rku 1346 i umrzeć w Odp. O 56,5%. Tak Niech kł ma prmień r. Ple bczne stżka wynsi, więc r=l. Pdstawa teg stżka ma prmień, zatem z drugieg półkla mżna wyciąć pdstawę teg stżka Oznaczmy bk kwadratu przez a, a dległść punktu M d wierzchłka A przez x. Stsując twierdzenie Pitagrasa d trójkąta AME dstajemy: ( 0,5a) ( a x) x
3 rk szklny 017/018 5 x a 8 3 a x a 8 Teraz mżemy liczyć ple trójkąta ABM P a a a Zakładamy, ze pierwszy punkt przywiązania kzy znajduje się w rgu łąki znacznym przez A. Część łąki która ma w zasięgu kza ma kształt wycinka kła prmieniu 10 m i kącie śrdkwym 90. Pwierzchnia teg wycinka wynsi Kza zjadła trawę z teg bszaru w ciągu 75 dni, więc dziennie zjadała w przybliżeniu 90 5 P1 10 m m m 1,047 m P 75 dniach kza zstała przywiązana w punkcie B i miała w zasięgu trawę w bszarze granicznym łukami miedzy punktami A i C raz punktami C i E raz granicą łąki. Część łąki, która zstanie p dwiązaniu kzy graniczna jest łukami miedzy punktami C i D i punktami C i E raz górną granicą działki. Ple tej części łąki
4 rk szklny 017/018 mżna bliczyć dejmując d pla całkwiteg łąki ple trójkąta równbczneg ABC i pla dwóch wycinków kła prmieniu 10m i kącie śrdkwym 30 (na rysunku są t wycinki ACD i BCE). Tak więc, ple pwierzchni łąki z trawą p dwiązaniu kzy jest równe : P 10 m m 10 m... 4,4m Dzieląc tę pwierzchnię przez ilść trawy którą kza zjada dziennie trzymujemy 4 całe dni cm h=cm
5 rk szklny 017/ Obliczenie wyskści zbirnika wdy 13 5 = 169 5=1 dm - wyskść stżka 4 dm wyskść walca 4 dm + 1 dm = 36 dm wyskść zbirnika wdy Obliczenie wyskści słupa wdy na pczątku raz p 10 dniach /3 36 dm=4 dm wyskść słupa wdy na pczątku 1/6 36 dm=6 dm wyskść słupa wdy p 10 dniach Obliczenie bjętści wdy na pczątku Vwalca+Vstżka=3, /3 5 3,14 1=3, =3,14 400=156 dm 3 Obliczenie bjętści wdy p 10 dniach Z pdbieństwa trójkątów prstkątnych: 1/6=5/r, wtedy r =,5 Vstżka=1/3 (,5) 3,14 6=6,5 3,14 =39,5 dm3 Wyznaczenie średnieg zużycia wdy dziennie 156 dm 3 39,5 dm 3 =116,75 dm 3 116,75 dm 3 :10=11,675 l Odp. Średnie zużycie wdy dziennie w tym czasie t 11,675 l Długści dcinków GD i AG Pnieważ dwlny punkt jest równdległy d kręgu, więc dcinki DG i DH maja długść x. Pdbnie dcinki AG i AF są równej długści wynszącej 5-x gdyż dcinek AD ma długść 5. Długść dcinka AE Z trójkąta prstkątneg ADE bliczamy, że dcinek AE ma długść 3. Długść dcinka EF Pnieważ DEFH jest prstkątem, więc EF ma długść x. Ile wynsi długść dcinka x Zatem z dcinka AF mamy równść: 3+x = 5-x x = x = 1 Długść bku AB
6 rk szklny 017/018 AB = = 9 Obwód równległbku Ob = * (9+5) = * 14 = 8 3. P=11/1
ZESTAW 1. A) 2 B) 3 C) 5 D) 7
ZESTAW Zadanie Punkty A = (,) i B = (, ) są klejnymi wierzchłkami kwadratu. Obwód teg kwadratu jest równy A) 4 6 B) 6 C) 4 4 D) 4 6 Zadanie Zbirem rzwiązań nierównści x + 5 > jest zbiór A) ( 7, ) B) (,
Bardziej szczegółowoPlanimetria, zakres podstawowy test wiedzy i kompetencji ZADANIA ZAMKNIĘTE. [ m] 2 cm dłuższa od. Nr pytania Odpowiedź
Planimetria, zakres pdstawwy test wiedzy i kmpetencji. Imię i nazwisk, klasa.. data ZADANIA ZAMKNIĘTE W zadaniach d 1-4 wybierz i zapisz czytelnie jedną prawidłwą dpwiedź. Nieczytelnie zapisana dpwiedź
Bardziej szczegółowoT R Y G O N O M E T R I A
T R Y G O N O M E T R I A Lekcja 8-9 Temat: Pwtórzenie trójkąty prstkątne. Str. 56-57. Teria Twierdzenie Pitagrasa i dwrtne Suma kątów w trójkącie Wyskść Obwód i ple Zad.,,,, 5, 6 str. 56 Zad. 7, 8, 9,
Bardziej szczegółowoCZERWIEC MATEMATYKA - poziom podstawowy. Czas pracy: 170 minut. Instrukcja dla zdającego
MATEMATYKA - pzim pdstawwy CZERWIEC 014 Instrukcja dla zdająceg 1. Sprawdź, czy arkusz zawiera 14 strn.. Rzwiązania zadań i dpwiedzi zamieść w miejscu na t przeznacznym.. W zadaniach d 1 d są pdane 4 dpwiedzi:
Bardziej szczegółowoKONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH
...... kd pracy ucznia pieczątka nagłówkwa szkły KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY Drgi Uczniu, witaj na I etapie knkursu matematyczneg. Przeczytaj uważnie instrukcję i
Bardziej szczegółowoMAJ LUBELSKA PRÓBA PRZED MATURĄ 2013 klasa druga. MATEMATYKA - poziom podstawowy. Czas pracy: 170 minut. Instrukcja dla zdającego
LUBELSKA PRÓBA PRZED MATURĄ 03 klasa druga MATEMATYKA - pzim pdstawwy MAJ 03 Instrukcja dla zdająceg. Sprawdź, czy arkusz zawiera 4 strn.. Rzwiązania zadań i dpwiedzi zamieść w miejscu na t przeznacznym.
Bardziej szczegółowo!Twoje imię i nazwisko... Numer Twojego Gimnazjum.. Tę tabelę wypełnia Komisja sprawdzająca pracę. Nazwisko Twojego nauczyciela...
XVIII KONKURS MTEMTYCZNY im. ks. dra F. Jakóbczyka 15 marca 01 r. wersja!twje imię i nazwisk... Numer Twjeg Gimnazjum.. Tę tabelę wypełnia Kmisja sprawdzająca pracę. Nazwisk Twjeg nauczyciela... Nr zad.
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.
Bardziej szczegółowoVII POWIATOWY KONKURS MATEMATYCZNY SZKÓŁ GIMNAZJALNYCH W POGONI ZA INDEKSEM ZADANIA PRZYGOTOWAWCZE ROZWIĄZANIA I ODPOWIEDZI. rok szkolny 2016/2017
1. 30. Tak 3. ----- 4. Równanie nie ma rozwiązania. Lewa strona nie równa się prawej dla żadnej pary liczb, y ponieważ prawa strona jest nieparzysta a prawa parzysta. Należy wykazać parzystości stron równania
Bardziej szczegółowoWOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2018/2019 Schemat punktwania zadania zamknięte Za każdą pprawną dpwiedź uczeń trzymuje 1 punkt. Numer zadania Pprawna dpwiedź
Bardziej szczegółowoPSO matematyka III gimnazjum. Szczegółowe wymagania edukacyjne na poszczególne oceny
PSO matematyka III gimnazjum Szczegółwe wymagania edukacyjne na pszczególne ceny POZIOMY WYMAGAŃ EDUKACYJNYCH: K knieczny cena dpuszczająca DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE pjęcie liczby naturalnej,
Bardziej szczegółowoWYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne d uzyskania pszczególnych śródrcznych i rcznych cen klasyfikacyjnych z MATEMATYKI w klasie III gimnazjum str. 1 Wymagania edukacyjne niezbędne d
Bardziej szczegółowoBadanie wyników nauczania z matematyki
Agnieszka Zielińska aga70ziel@wp.pl Nauczyciel matematyki w III Liceum Ogólnkształcącym w Zamściu... ( Nazwisk i imię ucznia ) Pkt.... Ocena... Badanie wyników nauczania z matematyki klasa I - pzim pdstawwy
Bardziej szczegółowoKryteria przyznawania ocen z matematyki uczniom klas III Publicznego Gimnazjum nr 1 w Strzelcach Opolskich
Kryteria przyznawania cen z matematyki ucznim klas III Publiczneg Gimnazjum nr 1 w Strzelcach Oplskich Na cenę dpuszczającą uczeń: zna pjęcie ntacji wykładniczej zna spsób zakrąglania liczb rzumie ptrzebę
Bardziej szczegółowoRozwiązania zadań z numeru 36
Rzwiązania zadań z numeru 36 Trudna gemetria Zadanie 1. Dany jest krąg śrdku O i prmieniu r. Średnica AB teg kręgu przecina pewną jeg cięciwę CD w punkcie M. kąt CMB jest równy 75, a kąt śrdkwy teg kręgu
Bardziej szczegółowoFUNKCJA KWADRATOWA. 2. Rozwiąż nierówności: na przedziale x < 2; 3. Wyznacz wartość najmniejszą i największą funkcji f ( x)
FUNKCJA KWADRATOWA. Rzwiąż równanie: a) 0 +,5 0 b) ( + )( ) 0. Rzwiąż nierównści: < ( )( ) > 0 a) b). Wyznacz wartść najmniejszą i największą funkcji na przedziale < ; 5 >. Przekształć z pstaci gólnej
Bardziej szczegółowopotrafi przybliżać liczby (np. ) K
Anna Włszyn Klasa 1 LO wymagania na egzamin pprawkwy Uczeń: I. Liczby rzeczywiste stsuje cechy pdzielnści liczb przez: K-P zna pjęcia: K cyfry, liczby parzystej i nieparzystej, liczby pierwszej i złżnej,
Bardziej szczegółowoProblemy i zadania na egzamin ustny dla klasy 3B:
Prblemy i zadania na egzamin ustny dla klasy 3B: Zasady: Lsujesz dwa z pniżej zamieszcznych zadań. Masz 5 minut na przygtwanie zarysu dpwiedzi. Na dpwiedź ustną masz 10 minut. Swje rzwiązania prezentujesz
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2015 Rozwiązania zadań
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2015 Rozwiązania zadań ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Gwiazda sześcioramienna ma wszystkie boki równe i składa się
Bardziej szczegółowoVII POWIATOWY KONKURS MATEMATYCZNY SZKÓŁ GIMNAZJALNYCH W POGONI ZA INDEKSEM ZADANIA PRZYGOTOWAWCZE ROZWIĄZANIA I ODPOWIEDZI rok szkolny 2015/2016
3. Pierwszy piechur w ciągu minuty przebywa 1/a drogi, drugi 1/b drogi. Obaj piechurzy przebywają 1/a+1/b czyli (b+a)/ab b a ab Odp. Piechurzy spotkają się po 1 : minut ab b a 4. (5a+1) 4 (5b+4) 4 = (
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 6 lutego 208 Czas 90 minut Rozwiązania i punktacja ZADANIA ZAMKNIĘTE Zadanie. ( punkt) Odległość między miastami A i B na mapie wynosi
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 018 Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną
Bardziej szczegółowoPROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =?
PROPAGACJA BŁĘDU Zad 1. Rzpuszczalnść gazów w rztwrach elektrlitów pisuje równanie Seczenwa: S ln = k c S Gdzie S i S t rzpuszczalnści gazu w czystym rzpuszczalniku i w rztwrze elektrlitu stężeniu c. Obliczy
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny Rozwiązania i punktacja ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Symbol n! oznacza iloczyn liczb naturalnych od 1 do n tzn. n! = 1 3...
Bardziej szczegółowoKlasa druga: Stopień dopuszczający otrzymuje uczeń, który:
Klasa druga: Stpień dpuszczający trzymuje uczeń, który: zna pjęcie ptęgi wykładniku naturalnym, umie zapisywać ptęgi w pstaci ilczynów mnży i dzieli ptęgi tych samych pdstawach w parciu pznany wzór zna
Bardziej szczegółowoRówne kąty = (180 <) ACO <) CAO) = (180 2<) ACO) = <) ACO.
Równe kąty Równe kąty ichał Kieza rzykład 1. rzyjmijmy znaczenia jak na rysunku 1 (przyjmujemy też załżenie, że kąt jest stry; w przeciwnym razie pdbna własnść także jest prawdziwa, a dwód jest analgiczny).
Bardziej szczegółowoKRYTERIA OCENIANIA - MATEMATYKA - klasa 3
KRYTERIA OCENIANIA - MATEMATYKA - klasa 3 Ocenę niedstateczną trzymuje uczeń, który: Nie spełnia kryteriów ceny dpuszczającej Nie panwał nawet teretycznie pdstawwych wiadmści z prgramu klasy drugiej Nie
Bardziej szczegółowoZasiłek rodzinny oraz dodatki
Zasiłek rdzinny raz ddatki Zasiłek rdzinny ma na celu częściwe pkrycie wydatków na utrzymanie dziecka. Praw d świadczeń rdzinnych ustala się na kres zasiłkwy tj. kres d dnia 1 listpada d dnia 31 października
Bardziej szczegółowoMATURA Przygotowanie do matury z matematyki
MATURA 2012 Przygotowanie do matury z matematyki Część VII: Planimetria ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,
Bardziej szczegółowoUniwersytet Wrocławski Wydział Matematyki i Informatyki Instytut Matematyczny specjalność: matematyka nauczycielska.
Uniwersytet Wrcławski Wydział Matematyki i Infrmatyki Instytut Matematyczny specjalnść: matematyka nauczycielska Mateusz Suwara PARKIETAŻE PLATOŃSKIE I SZACHOWNICE ARCHIMEDESOWSKIE W GEOMETRII HIPERBOLICZNEJ
Bardziej szczegółowoUzasadnienie tezy. AB + CD = BC + AD 2
LUBELSKA PRÓBA PRZED MATURĄ MARZEC 06 ODPOWIEDZI I PROPOZYCJA OCENIANIA ZAMKNIĘTE ODPOWIEDZI Nr zadania 5 Odpowiedź C D C B B ZADANIE Z KODOWANĄ ODPOWIEDZIĄ Zadanie 6 cyfra dziesiątek jedności OTWARTE
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy
KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom podstawowy Marzec 09 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. D 8 9 8 7. D. C 9 8 9 8 8 9 8 9 8 ( 89 )
Bardziej szczegółowoWarmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl styczniowy Poziom: szkoły ponadgimnazjalne, 10 punktów za każde zadanie
Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl styczniowy oziom: szkoły ponadgimnazjalne, 0 punktów za każde zadanie Zadanie Znajdź dwa dzielniki pierwsze liczby - Można skorzystać z artykułu
Bardziej szczegółowoKONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM
KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM Klucz odpowiedzi do ETAPU WOJEWÓDZKIEGO Zadania zamknięte: Nr zadania 3 4 5 6 7 8 9 0 Poprawna odpowiedź D C B A C C B D C A Zadania otwarte:. Zadania
Bardziej szczegółowoPROGRAM ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI
PROGRAM ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA KL. I III GIMNAZJUM Opracwał: mgr Artur Maj WSTĘP Prezentwany prgram zajęć wyrównawczych pwstał w parciu nwą Pdstawę Prgramwą kształcenia gólneg z dnia 23 grudnia
Bardziej szczegółowoWOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 08/09 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje punkt. Numer zadania Poprawna odpowiedź...
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2014/2015 Etap II - rejonowy
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2014/2015 Etap II - rejonowy W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę rozwiązania
Bardziej szczegółowocz. 1. dr inż. Zbigniew Szklarski
Wykład 1: lektrstatyka cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Kwantyzacja ładunku Każdy elektrn ma masę m e ładunek -e i Każdy prtn ma masę m p ładunek
Bardziej szczegółowoINFORMACJA o ELEKTRONICZNEJ LEGITYMACJI STUDENCKIEJ
dla studentów przyjętych na pierwszy rk studiów w rku akademickim 2008/2009 1 INFORMACJA ELEKTRONICZNEJ LEGITYMACJI STUDENCKIEJ dla studentów przyjętych na pierwszy rk studiów w rku akademickim 2008/2009
Bardziej szczegółowo( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.
Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr
Bardziej szczegółowoPRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2
Bardziej szczegółowoPRÓBNY EGZAMIN GIMNAZJALNY OMÓWIENIE ODPOWIEDZI
RÓBNY EGZAMIN GIMNAZJALNY 01 11 1 OMÓWIENIE ODOWIEDZI Zdnie z pgrnicz chemii i mtemtyki, mżemy skrzystć ze wzru: ms C 100% m R Ms substncji wynsi jednstki, które jedncześnie, twrzą już msę cłeg rztwru,
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 24 listopada 2016 Rozwiązania zadań z punktacją
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 24 listopada 2016 Rozwiązania zadań z punktacją ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Pole koła κ 1 wynosi P 1 = 20 cm 2. Ile wynosi
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 15 lutego 2019 Czas 90 minut Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 15 lutego 2019 Czas 90 minut Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi
Bardziej szczegółowoTest 2. Mierzone wielkości fizyczne wysokość masa. masa walizki. temperatura powietrza. Użyte przyrządy waga taśma miernicza
Test 2 1. (3 p.) W tabeli zamieszczn przykłady spsbów przekazywania ciepła w życiu cdziennym i nazwy prcesów przekazywania ciepła. Dpasuj d wymieninych przykładów dpwiednie nazwy prcesów, wstawiając znak
Bardziej szczegółowoMATURA Powtórka do matury z matematyki. Część VII: Planimetria ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto.pl
MATURA 2012 Powtórka do matury z matematyki Część VII: Planimetria ODPOWIEDZI Organizatorzy: MatmaNa6.pl, naszemiasto.pl Witaj, otrzymałeś już siódmą z dziesięciu części materiałów powtórkowych do matury
Bardziej szczegółowoDOKUMENTACJA WYPEŁNIANIA DEKLARACJI ELEKTRONICZNYCH ONLINE
DOKUMENTACJA WYPEŁNIANIA DEKLARACJI ELEKTRONICZNYCH ONLINE Deklaracje elektrniczne nline są dstępne pd adresem internetwym https://deklaracje.mp.krakw.pl Deklaracje pwinny być wypełniane za pmcą przeglądarki
Bardziej szczegółowoVademecum stypendysty
Vademecum stypendysty w prgramie w rku szklnym 2015/16, czyli jak ubiegać się stypendium I. Kt mże ubiegać się stypendium?... 2 II. Jak ubiegać się stypendium krk p krku?... 2 III. Jakie są terminy składania
Bardziej szczegółowoElżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki
Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut
Zadanie 1-10 11 12 13 14 15 suma punkty Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5 zadań
Bardziej szczegółowoIII OLIMPIADA FIZYCZNA (1953/1954). Stopień I, zadanie doświadczalne D
Źródł: III OLIMPIADA FIZYCZNA (1953/1954). Stpień I, zadanie dświadczalne D Nazwa zadania: Działy: Słwa kluczwe: Kmitet Główny Olimpiady Fizycznej; Stefan Czarnecki: Olimpiady Fizyczne I IV. PZWS, Warszawa
Bardziej szczegółowoBlok 3: Zasady dynamiki Newtona. Siły.
Blk : Zasady dynamiki Newtna. Siły. I. Śrdek masy układu ciał Płżenie śrdka masy pisane jest wektrem: RSM xsm î ysm ĵ zsm kˆ. Dla daneg, nieruchmeg układu ciał, śrdek masy znajduje się zawsze w tym samym
Bardziej szczegółowoObozowa liga zadaniowa (seria I wskazówki)
Obozowa liga zadaniowa (seria I wskazówki) 1. Rozstrzygnij, która liczba jest większa: 9 czy 3 1? 9 < 30 8 10 < 9 10 3 0 < 3 1.. Rozstrzygnij, która liczba jest większa: 81 czy 3 49? 81 > 80 56 10 > 43
Bardziej szczegółowoZajęcia wyrównawcze z fizyki -Zestaw 3 dr M.Gzik-Szumiata
Prjekt Inżynier mehanik zawód z przyszłśią współfinanswany ze śrdków Unii Eurpejskiej w ramah Eurpejskieg Funduszu Spłezneg Zajęia wyrównawze z fizyki -Zestaw 3 dr M.Gzik-Szumiata Kinematyka,z.. Ruhy dwuwymiarwe:
Bardziej szczegółowoPraktyczne obliczanie wskaźników efektywności zużycia gazu ziemnego w gospodarstwach domowych Józef Dopke
Praktyczne bliczanie wskaźników efektywnści zużycia gazu ziemneg w gspdarstwach dmwych Józef Dpke Odbircy gazu ziemneg mgą kntrlwać jeg zużycie spisując pierwszeg dnia każdeg miesiąca wskazania gazmierza.
Bardziej szczegółowoOgólne kryteria oceniania z matematyki KLASA I. Klasa I
Ogólne kryteria ceniania z matematyki KLASA I Uczeń trzymuje ceny za: Wypwiedź ustną, Pracę klaswą Badanie wyników Kartkówkę, Aktywnść pdczas lekcji, Pracę dmwą, referat, gazetki, mdele brył Długterminwy
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 145743 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Odcinki AD i CE sa
Bardziej szczegółowoLICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV
LICZBY POWTÓRKA ZADANIE (3 PKT) W tabeli zapisano cztery liczby. I (0, 2) 0 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E)
Bardziej szczegółowoKujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Nr zad Odp. 1 4 5 6 7 8 9 10 11 1 1 14 B B C A D D A B C A B D C C Nr zad Odp. 15
Bardziej szczegółowoUstalanie dochodu rodziny: ustawa z dnia 28 listopada 2003 r. o świadczeniach rodzinnych. (Dz. U. z 2015 poz. 114 t. j.)
Ustalanie dchdu rdziny: ustawa z dnia 28 listpada 2003 r. świadczeniach rdzinnych Czym jest dchód rdziny? (Dz. U. z 2015 pz. 114 t. j.) Dchód rdziny w rzumieniu ustawy świadczeniach rdzinnych t przeciętny
Bardziej szczegółowoRegulamin Promocji Kieruj się na oszczędzanie
Regulamin Prmcji Kieruj się na szczędzanie 1. Organizatr Prmcji Organizatrem Prmcji Kieruj się na szczędzanie jest Tyta Bank Plska S.A. z siedzibą w Warszawie, ul. Pstępu 18B, 02-676 Warszawa, wpisana
Bardziej szczegółowoBank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną)
Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Zadania zamknięte (jedna poprawna odpowiedź) 1 punkt Wyrażenia algebraiczne Zadanie 1. Wartość wyrażenia 3 x 3x
Bardziej szczegółowo36/42 WPŁ YW PARAMETRÓW TECHNOLOGICZNYCH PROCESU GTAW NA KSZTAŁTOWANIE WARSTWY WIERZCHNIEJ ODLEWÓW ŻELIWNYCH STRESZCZENIE:
3642 Slidificatin f Metais and Allys, Year 2000, Vlume 2, Bk N 42 Krzepnięcie Metali i Stpów, Rk 2000, Rcznik 2, Nr 42 FAN-Katwice, PL ISSN 0208-9386 WPŁ YW PARAMETRÓW TECHNOLOGICZNYCH PROCESU GTAW NA
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2014 Rozwiązania zadań
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 014 Rozwiązania zadań ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Jaka jest cyfra jedności liczby 3 014 + 3 01? a) 0 b) 1 c) 3
Bardziej szczegółowoODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania
Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:
Bardziej szczegółowoKrążek Mac Cready'ego zawsze przydatny
Krążek Mac Cready'eg zawsze przydatny Autr: Tmasz Rubaj Krążek Mac Cready'eg (nazywany dalej skrótem K.M.) jest jednym z pdstawwych przyrządów niezbędnych d pdejmwania prawidłwych decyzji taktycznych pdczas
Bardziej szczegółowoSekcja B. Okoliczności powodujące konieczność złożenia deklaracji.
III. Deklaracja DJ Sekcja A. Adresat i miejsce składania deklaracji. Uwaga! Ple uzupełnine autmatycznie. Sekcja B. Oklicznści pwdujące kniecznść złżenia deklaracji. Wsekcji B, należy w jednym z dstępnych
Bardziej szczegółowoZadania otwarte krótkiej odpowiedzi na dowodzenie
Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadanie 1. Na bokach trójkąta równobocznego ABC tak wybrano punkty E, F oraz D, że AE = BF = CD = 1 AB (rysunek obok). a) Udowodnij, że trójkąt EFD jest
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 78353 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 4 jest
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 4 MARCA 205 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Liczba 3 25 2 : 5
Bardziej szczegółowoWOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/2019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje 1 punkt. Numer zadania Poprawna odpowiedź
Bardziej szczegółowof (x)=mx 2 +(2m 2)x+m+1 ma co najmniej jedno
Zadanie 1 x 2 2mx+4m 3=0 ma dwa różne pierwiastki? Odp: m ( ; 1) (3 ; ) Zadanie 2 mx 2 +(2m 2) x+m+1=0 ma dwa różne pierwiastki? Odp: m ( ;0) (0; 1 3 ) Zadanie 3 ma jeden pierwiastek? Odp: m = -2, m =
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 18 KWIETNIA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) 2+1 Liczba
Bardziej szczegółowoWOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI dla uczniów gimnazjum woj. łódzkiego w roku szkolnym 2016/2017 zadania eliminacji wojewódzkich.
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Wypełnia Przewdniczący Wjewódzkiej Kmisji Knkurswej kd pracy Imię i nazwisk ucznia... Punkty uzyskane Prcent max. liczby pkt...... Zad
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów 19 luty 2013 Czas 90 minut
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 19 luty 01 Czas 90 minut ZADANIA ZAMKNIĘTE Rozwiązania zadań W zadaniach od 1. do 10. właściwe odpowiedzi zostały zaznaczone Zadanie 1. (1 punkt) Ile
Bardziej szczegółowoInformacja na temat stypendiów ministra za wybitne osiągnięcia dla studentów na rok akademicki 2015/2016
Infrmacja na temat stypendiów ministra za wybitne siągnięcia dla studentów na rk akademicki 2015/2016 Kwestie przyznawania stypendiów ministra za wybitne siągnięcia dla studentów regulują przepisy: art.
Bardziej szczegółowoTest z matematyki. Małe olimpiady przedmiotowe. Imię i nazwisko. Drogi Uczniu,
Małe olimpiady przedmiotowe Test z matematyki ORGANIZATORZY: Wydział Edukacji Urzędu Miasta w Koszalinie Centrum Edukacji Nauczycieli w Koszalinie Imię i nazwisko. Szkoła Szkoła Podstawowa nr 7 w Koszalinie
Bardziej szczegółowo***************************************************************************
*************************************************************************** REGULAMIN ROZLICZANIA KOSZTÓW GOSPODARKI ZASOBAMI LOKALOWYMI SPÓŁDZIELNI I USTALANIA OPŁAT ZA KORZYSTANIE Z LOKALI ***************************************************************************
Bardziej szczegółowoWykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 8
WYKŁAD 8 8. RUCH WÓD GRUNTOWYCH 8.1. Właściwści gruntu, praw Darcy Ruch wód gruntwych w śrdku prwatym nazywamy filtracją. D śrdków prwatych zaliczamy grunt, skały, betn itp. Wda zawarta w gruncie występuje
Bardziej szczegółowoPrzykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa
Przykładowe zadania z rozwiązaniami: poziom podstawowy 1. Przykładowe zadania z matematyki na poziomie podstawowym Zadanie 1. (0 1) Liczba 8 3 3 2 3 9 jest równa A. 3 3 B. 32 3 9 C. 3 D. 5 3 Zadanie 2.
Bardziej szczegółowoMatematyka rozszerzona matura 2017
Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem
Bardziej szczegółowoZadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
Bardziej szczegółowoCZAS ZDERZENIA KUL SPRAWDZENIE WZORU HERTZA
Ćwiczenie Nr CZAS ZDRZNIA KUL SPRAWDZNI WZORU HRTZA Literatura: Opracwanie d ćwiczenia Nr, czytelnia FiM LDLandau, MLifszic Kurs fizyki teretycznej, tm 7, Teria sprężystści, 9 (dstępna w biblitece FiM,
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2016/2017 Etap II etap rejonowy- klucz odpowiedzi
liczba uczniów Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 016/017 Etap II etap rejonowy- klucz odpowiedzi W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi.
Bardziej szczegółowoProjektowanie dróg i ulic
Plitechnika Białstcka Zakład Inżynierii Drgwej Jan Kwalski 1/11 Ćwiczenie prjektwe z przedmitu Prjektwanie dróg i ulic strna - 1 -.3. Przepusty Na prjektwanym dcinku A-B-C-D trasy zaprjektwan 4 przepusty
Bardziej szczegółowoPSO matematyka I gimnazjum Szczegółowe wymagania edukacyjne na poszczególne oceny
PSO matematyka I gimnazjum Szczegółwe wymagania edukacyjne na pszczególne ceny POZIOM WYMAGAŃ EDUKACYJNYCH: K knieczny cena dpuszczająca spsób zakrąglania liczb klejnść wyknywania działań pjęcie liczb
Bardziej szczegółowostworzyliśmy najlepsze rozwiązania do projektowania organizacji ruchu Dołącz do naszych zadowolonych użytkowników!
Wrcław, 29.08.2012 gacad.pl stwrzyliśmy najlepsze rzwiązania d prjektwania rganizacji ruchu Dłącz d naszych zadwlnych użytkwników! GA Sygnalizacja - t najlepszy Plski prgram d prjektwania raz zarządzania
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 5 MARCA 016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 3 4 3 + 3 9 jest
Bardziej szczegółowoSzkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na
Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na www.swiatmatematyki.pl 1. Wypiszmy początkowe potęgi liczby Zestaw podstawowy
Bardziej szczegółowoGazetka klasy I a. Numer 1 Jesień Collegium Gostomianum
Gazetka klasy I a Numer 1 Jesień 018 Collegium Gostomianum Rok 018 wyznacza rocznicę szczególną jest to bowiem już setna rocznica odzyskania przez Polskę niepodległości. Odbudowa państwowości, po 13 latach
Bardziej szczegółowoPompy ciepła. Podział pomp ciepła. Ogólnie możemy je podzielić: ze wzgledu na sposób podnoszenia ciśnienia i tym samym temperatury czynnika roboczego
Pmpy ciepła W naszym klimacie bardz isttną gałęzią energetyki jest energetyka cieplna czyli grzewanie. W miesiącach letnich kwestia ta jest mniej isttna, jednak z nadejściem jesieni jej znaczenie rśnie.
Bardziej szczegółowoPrzedmiotowe Zasady Oceniania z matematyki dla Zespołu Szkolno Przedszkolnego w Daleszycach
Przedmitwe Zasady Oceniania z matematyki dla Zespłu Szkln Przedszklneg w Daleszycach Przedmitwy System Oceniania jest zgdny z rzprządzeniem Ministra Edukacji Nardwej w sprawie warunków i spsbu ceniania,
Bardziej szczegółowoPole trójkata, trapezu
Pole trójkata, trapezu gr. A str. 1/6... imię i nazwisko...... klasa data 1. Poprowadź wysokość do boku AB. Zmierz długości odpowiednich odcinków i oblicz pole trójkąta ABC. 2. W obydwu trójkątach dorysuj
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KL. IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI KL. IV LICZBY I DZIAŁANIA Ocena dpuszczająca Ocena dstateczna Ocena dbra Ocena bardz dbra Ocena celująca Uczeń : Zna pjęcie składnika i sumy Zna pjęcie djemnej, djemnika
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 18 KWIETNIA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dla każdej liczby
Bardziej szczegółowoWOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2017/2018 04.01.2018 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
Bardziej szczegółowoLublin, sierpień 2013 r.
Lublin, sierpień 2013 r. OFERTA SPECJALNA Ubezpieczenia Następstw Nieszczęśliwych Wypadków dzieci, młdzieży raz persnelu w placówkach światw-wychwawczych na rk szklny 2013/2014 dla ZESPOŁU SZKÓŁ NR 1 w
Bardziej szczegółowoMiędzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut
Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź
Bardziej szczegółowoKONKURS MATEMATYCZNY STOŻEK 2007/2008. 1. Na rozwiązanie 5 zadań masz 90 minut. 2. Dokładnie czytaj treści zadań i udzielaj odpowiedzi.
KONKURS MATEMATYCZNY STOŻEK 007/008 1. Na rozwiązanie 5 zadań masz 90 minut.. Dokładnie czytaj treści zadań i udzielaj odpowiedzi. 3. W rozwiązaniach zadań przedstawiaj swój tok rozumowania. 4. Rozwiązania
Bardziej szczegółowo