Teoria miary. WPPT/Matematyka, rok II. Wykład 5
|
|
- Natalia Podgórska
- 5 lat temu
- Przeglądów:
Transkrypt
1 Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F dla każdego a R 3. {x X : f(x) < a} F dla każdego a R 4. {x X : f(x) a} F dla każdego a R Dowód. (1 2) (2 3) ( f 1 ([a, + ]) = f 1 (a 1 ) n, + ]) = f 1 ( (a 1 n, + ]) ) F f 1 ([, a)) = f 1 (R \ [a, ]) = X \ f 1 ([a, ]) F Pozostałe wynikania mają podobne uzasadnienie. Polecam jako ćwiczenie. Definicja 1. Funkcja f : X R jest mierzalna, gdy zachodzi dowolny z powyższych warunków. Inaczej, f jest mierzalna, gdy f 1 ((a, + ]) F dla każdego a R, gdy f 1 ([a, + ]) F itd. Uwaga. Dlaczego definicja wygląda w taki sposób? Rozważmy następujący przykład: rzucamy monetą sprawiedliwą tak długo aż wypadnie nam orzeł. Możliwe do zaobserwowania wyniki takiego eksperymentu zapisujemy jako: O, RO, RRO, RRRO,... Rozważamy więc przestrzeń X wszystkich takich ciągów. W naturalny sposób określamy miarę na tej przestrzeni (na σ-ciele wszystkich podzbiorów) prawdopodobieństwo orła w pierwszym rzucie to 1/2, prawdopodobieństwo ciągu RO to 1/4 itd. Niech f(x) oznacza liczbę wykonanych rzutów. Naturalne jest na przykład pytanie: jakie jest prawdopodobieństwo, że wykonamy nie więcej niż n (np.)5 rzutów, czyli jaka jest miara zbioru {x : f(x) n}. Czyli chcemy, by zbiór tego typu był mierzalny! Tu nie ma z tym problemu, bo w naszej przestrzeni miara jest określona na wszystkich podzbiorach przestrzeni. Ale w bardziej skomplikowanym przypadku f(x) może oznaczać cenę pewnego papieru wartościowego i zmieniać się w sposób ciągły (a przynajmniej tak jest wygodnie przyjąć). Naturalne jest pytanie, jakie jest prawdopodobieństwo, że cena przekroczy wartość a, czyli pytanie o miarę zbioru {x : f(x) a}. Zbiory w definicji mierzalności funkcji formalizują w istocie najprostsze pytania, jakie można zadawać na temat funkcji rzeczywistych. Chcemy umieć odpowiadać na te pytania, tzn. chcemy, by odpowiadające im zbiory były mierzalne. 1
2 Fakt 1. f 1 ([a, b]) F dla dowolnych a, b R. Dowód. f 1 ([a, b]) = f 1 ([a, ] [, b]) = f 1 ([a, ]) f 1 ([, b]) F Fakt 2. f 1 ({a}) F dla każdego a R. f 1 ({ }) F i f 1 ({+ }) F. Dowód. Pierwsze stwierdzenie wynika z poprzedniego faktu, bo {a} = [a, a]. ( ) f 1 ({ }) = f 1 [, n] = f 1 ([, n]) F Podobnie dla f 1 ({ }). Fakt 3. f 1 ((a, b)), f 1 ([a, b]), f 1 ((a, b]), f 1 ([a, b)) F dla dowolnych a, b R. Dowód. Wynika z poprzednich faktów. Przykładowo, f 1 ((a, b]) = f 1 ([a, b]) \ f 1 ({a}), a różnica zbiorów mierzalnych jest zbiorem mierzalnym. Uwaga: Wszystie powyższe stwierdzenia działają, gdy funkcja przyjmuje tylko wartości rzeczywiste (bez nieskończoności), bo każda funkcja o wartościach rzeczywistych jest jednocześnie funkcją w zbiór R. Wtedy na przykład f 1 ([a, + ]) = f 1 ([a, + )). Twierdzenie 2. Funkcja f : X R jest mierzalna wtedy i tylko wtedy, gdy f 1 (B) F dla każdego B B(R). Dowód. Warunek jest wystarczający, bo półprosta {y R: y > a} = (a, + ) jest zbiorem borelowskim. Na odwrót, rozważmy rodzinę A = {B B(R): f 1 (B) F}. Można pokazać, że jest to σ-ciało. Z powyższych faktów, A zawiera odcinki otwarte, zatem A = B(R). Czyli f 1 (B) F dla każdego B B(R). Twierdzenie 3. Niech f i g będą mierzalnymi funkcjami rzeczywistymi o tej samej dziedzinie i niech c R. Wtedy funkcje f + c, cf, f + g, f g, fg są również mierzalne. Dowód. Ustalmy a R. 1) Pokażemy najpierw mierzalność f + c, c R, gdy f jest mierzalna. {x: f(x) + c > a} = {x: f(x) > a c} F 2) Podobnie dla cf, ale rozumowanie trzeba podzielić na przypadki. Jeśli c = 0, to cf 0, więc X, gdy a 0 {x : cf(x) > a} =, gdy a > 0 Zarówno X jak i są mierzalne, więc zbiór {x : cf(x) > a} musi być mierzalny. Dla c > 0 mamy {x : cf(x) > a} = {x : f(x) > a } F, a dla c < 0 zachodzi {x : cf(x) > a} = {x : c f(x) < a} F. c 2
3 3) Rozważmy sumę funkcji mierzalnych f i g. {x: (f + g)(x) > a} = {x: f(x) > a g(x)} = {x: f(x) < r < a g(x)} r Q = {x: f(x) < r} {x: r < a g(x)} F, r Q bo {x: f(x) < r} F oraz {x: r < a g(x)} = {x: g(x) < a r} F dla dowolnej liczby r, a przekrój oraz suma przeliczalna nie wyprowadzają poza σ-ciało. Dla f g wystarczy pokazać, że g jest mierzalna. 4) Teraz fg. Zauważmy, że fg = 1((f + 2 g)2 f 2 g 2 ), więc wystarczy pokazać, że f 2 jest mierzalna. {x : f 2 X, gdy a 0 (x) > a} = {x : f(x) < a} {x : f(x) > a}, gdy a > 0 W obu przypadkach otrzymujemy zbiór mierzalny. 5) Aby pokazać mierzalność ilorazu, należy najpierw uzasadnić, że jeśli g jest mierzalna i różna od zera, to także 1/g jest mierzalna. Następnie korzystamy z uzasadnionej już mierzalności iloczynu funkcji mierzalnych, w tym wypadku f i 1/g. Twierdzenie 4. Niech (X, F) będzie przestrzenią mierzalną, a (f n ) n N będzie ciągiem funkcji mierzalnych X R. Wtedy funkcje inf,...,n f n, sup,...,n f n, inf n N f n, sup n N f n, lim inf n f n, lim sup n f n (a więc też lim n f n, jeśli istnieje) są mierzalne. Dowód. {x : inf,...,n f n(x) < a} = {x : n {1,..., N} f n (x) < a} = Pozostałe na ćwiczeniach. Przykłady N {x : f n (x) < a} F 1. Funkcja charakterystyczna 1 A jest mierzalna wtedy i tylko wtedy, gdy A jest zbiorem mierzalnym. W szczególności funkcja charakterystyczna zbioru Vitalego jest niemierzalna. 2. Rozważmy R z σ-ciałem zbiorów przeliczalnych i koprzeliczalnych. Wtedy f(x) = x nie jest mierzalna, bo np. {x : f(x) > 0} = (0, ) nie jest zbiorem mierzalnym. Niech µ będzie miarą na przestrzeni mierzalnej (X, F). Definicja 2. Mówimy, że pewna własność zachodzi prawie wszędzie, gdy zbiór, na którym ta własność nie zachodzi ma miarę zero. Innymi słowy, istnieje E F taki, że µ(e) = 0 i własność zachodzi na E c. W szczególności, funkcje f : X R i g : X R są równe prawie wszędzie, gdy µ({x X : f(x) g(x)}) = 0. Będziemy wtedy pisać: f = g µ-p.w. 3
4 Fakt 4. Relacja równości prawie wszędzie jest relacją równoważności na zbiorze wszystkich funkcji mierzalnych na ustalonej przestrzeni X. Dowód. Sprawdzimy tylko przechodniość tej relacji. Jeśli f = g µ-p.w., to istnieje zbiór E, µ(e) = 0, taki że f(x) = g(x) dla wszystkich x E c. Podobnie, jeśli g = h µ- p.w., to istnieje zbiór F, µ(f ) = 0, taki że g(x) = h(x) dla wszystkich x F c. Wtedy dla x E c F c mamy f(x) = h(x). Przy tym, µ((e c F c ) c ) = µ(e F ) µ(e)+µ(f ) = 0. Twierdzenie 5. Załóżmy, że miara µ jest zupełna na (X, F) (tzn. jeśli µ(e) = 0 i F E, to F F). Jeśli f = g µ-p.w. i f jest mierzalna, to g jest również mierzalna. Dowód. Niech E = {x X : f(x) g(x)}. Z założenia µ(e) = 0. Wtedy dla dowolnego a R mamy {x: g(x) > a} = {x E c : g(x) > a} {x E : g(x) > a} = (E c {x X : f(x) > a}) {x E : g(x) > a} Pierwszy składnik sumy to przekrój dwóch zbiorów mierzalnych jest więc mierzalny a drugi jest mierzalny jako podzbiór zbioru E miary zero. Rozważając funkcje f : R R przez funkcję mierzalną będziemy domyślnie rozumieć funkcję mierzalną względem σ-ciała L(R) zbiorów mierzalnych w sensie Lebesgue a. Dlatego na przykład powyższe twierdzenie zachodzi w szczególności dla funkcji f : R R. Ponieważ jednak na R mamy dwa ważne σ-ciała, wprowadzimy drugą definicję: Definicja 3. Funkcja f : R R jest borelowska, gdy {x: f(x) > a} jest borelowski. Twierdzenie 6. Każda funkcja borelowska jest mierzalna w sensie Lebesgue a. Dowód. Wiemy, że B(R) L(R), więc jeśli {x: f(x) > a} jest borelowski, to tym bardziej mierzalny w sensie Lebesgue a. Uwaga. Funkcje borelowskie to po prostu funkcje mierzalne względem σ-ciała borelowskiego, więc mają wszystkie powyższe włąsności: suma, różnica, iloczyn i iloraz (o ile mianownik różny od zera) funkcji borelowskich jest funkcją borelowską; warunkiem równoważnym borelowskości jest warunek B B(R) zbiór f 1 (B) jest borelowski. Twierdzenie 7. Jeśli f : X R jest funkcją mierzalną, a g : R R funkcją borelowską, to złożenie g f : X R, g f(x) = g(f(x)), jest funkcją mierzalną. Dowód. {x X : g f(x) > a} = {x: f(x) g 1( (a, ) ) } = f 1( g 1 ((a, )) ) Funkcja g jest borelowska, więc zbiór g 1 ((a, )) jest borelowski, a stąd wobec mierzalności f zbiór f 1( g 1 ((a, )) ) jest mierzalny. Twierdzenie 8. Każda funkcja ciągła jest borelowska. 4
5 Dowód. Jeśli wiemy coś niecoś z topologii, to wystarczy zauważyć, że B(R) jest generowane przez zbiory otwarte, a przeciwobraz każdej półprostej otwartej (lub odcinka otwartego) przez funkcję ciągła jest zbiorem otwartym. My udowodnimy, że dla dowolnej liczby a R przeciwobraz półprostej {x: f(x) > a} jest przeliczalną sumą odcinków otwartych, zatem jest borelowski. Istotnie, jeśli y (a, + ), to istnieje ɛ y > 0, dla którego odcinek (y ɛ y, y + ɛ y ) zawiera się w (a, + ). Niech x należy do {x: f(x) > a}. Z ciągłości (definicja Cauchy ego) znajdujemy δ > 0, dla której (x δ, x + δ) f 1 (f(x) ɛ f(x), f(x) + ɛ f(x) ). Wobec gęstości liczb wymiernych przedział wokół x można zmniejszyć tak, by uzyskać końce wymierne: x (q x, r x ) f 1 (f(x) ɛ f(x), f(x)+ɛ f(x) ), q x, r x Q. Ponieważ przedziałów o końcach wymiernych jest tylko przeliczalnie wiele, a {x: f(x) > a} = x(q x, r x ) otrzymujemy, że {x: f(x) > a} jest borelowski. Naturalne jest pytanie o odwrotne relacje: jak daleko leży dowolna funkcja borelowska, czy mierzalna od funkcji ciągłej? Niedaleko, a formalną odpowiedź zapewnia twierdzenie Łuzina. Twierdzenie 9 (Łuzin). Niech f : [a, b] R będzie funkcją mierzalną. Dla każdego ɛ > 0 istnieje zbiór domknięty (zwarty) E taki, że obcięcie f do E jest funkcją ciągłą i λ(e c ) < ɛ. Inne sformułowanie, dla każdego ɛ > 0 istnieje funkcja ciągła g : [a, b] R, taka że λ({x [a, b]: f(x) g(x)}) < ɛ. To twierdzenie można uogólniać, ale nie zawsze te dwa sformułowania są równoważne (drugie jest wyraźnie silniejsze). Aby zrozumieć różnicę, warto rozważyć funkcję Dirichleta na [0, 1]. Jasne jest że spełnia drugą tezę - funkcja stale równa zero jest tu odpowiednią funkcją ciągłą. Ale trudno się dopatrzyć odpowiedniego zbioru domkniętego. Do dowodu być może jeszcze wrócimy, ale najpierw przejdziemy do pytań o zbiory - jak daleko leżą zbiory mierzalne od borelowskich. Albo inaczej, co trzeba dorzucić do σ-ciała borelowskiego, by uzyskać σ-ciało zbiorów Lebesgue a. Definicja 4. Rodzinę I podzbiorów X nazywamy ideałem, gdy 1. φ I 2. jeśli E F i F I, to E I, 3. jeśli E I i F I, to E F I. I jest σ-ideałem, gdy ostatni warunek zastąpimy przez E 1, E 2,... I E n I. Definicja 5. Zbiór F X nazwiemy µ-zerowym, gdy istnieje E F taki, że F E oraz µ(e) = 0. Twierdzenie 10. Rodzina N wszystkich zbiorów µ-zerowych jest σ-ideałem. Dowód. Dowód przez sprawdzenie aksjomatów. 5
6 Niech (X, F, µ) będzie przestrzenią miarową, a N rodziną zbiorów µ-zerowych. Definiujemy F = σ(f N ) (tzn. σ ciało generowane przez rodziny F i N ), F 1 = {E X : A, B F A E B µ(b \ A) = 0}, F 2 = {E X : C F E C N }. Twierdzenie 11. F 1 = F 2 = F, a µ można przedłużyć do miary µ na F w taki sposób, aby otrzymana przestrzeń miarowa (X, F, µ) była zupełna (tzn. tak aby każdy podzbiór zbioru miary zero był mierzalny i miał także miarę zero). Powyższą konstrukcję nazywa się uzupełnianiem miary. Twierdzenie 12. Uzupełnieniem σ-ciała borelowskiego B R na prostej R jest σ-ciało L R zbiorów mierzalnych względem miary Lebesgue a. 6
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie
7. Miara, zbiory mierzalne oraz funkcje mierzalne.
7. Miara, zbiory mierzalne oraz funkcje mierzalne. Funkcję rzeczywistą µ nieujemną określoną na ciele zbiorów S będziemy nazywali miarą, gdy dla dowolnego ciągu A 0, A 1,... zbiorów rozłącznych należących
Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.
3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X
n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :
4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,
Robert Kowalczyk. Zbiór zadań z teorii miary i całki
Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące
Teoria miary. Matematyka, rok II. Wykład 1
Teoria miary Matematyka, rok II Wykład 1 NAJBLIŻSZY CEL: Nauczyć się mierzyć wielkość zbiorów. Pierwsze przymiarki: - liczność (moc) zbioru - słabo działa dla zbiorów nieskończonych: czy [0, 1] powinien
Zadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista.
Literatura P. Billingsley, Miara i prawdopodobieństwo, PWN, Warszawa 1997, P. R. Halmos, Measure theory, Springer-Verlag, 1994, W, Kołodziej, naliza matematyczna, PWN, Warszawa 1978, S. Łojasiewicz, Wstęp
2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy
5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń
Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,
Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych
Teoria miary i całki
Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane
Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.
Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej
(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α
FUNKCJE BORELOWSKIE Rodzinę F podzbiorów zbioru X (tzn. F X) będziemy nazywali ciałem gdy spełnione są warunki: (1) Jeśli zbiór Y F, to dopełnienie X \ Y też należy do rodziny F. (2) Jeśli S F jest skończoną
Wykłady... b i a i. i=1. m(d k ) inf
Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Jakubowski, Sztencel:
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
7 Twierdzenie Fubiniego
M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz
Rozdział 6. Ciągłość. 6.1 Granica funkcji
Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz
Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń
Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:
jest ciągiem elementów z przestrzeni B(R, R)
Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)
Ciągłość funkcji f : R R
Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
Informacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Rozważmy eksperymenty 1 gra Bolka w ruletkę w kasynie;
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Funkcje mierzalne, całka z funkcji nieujemnej, twierdzenia o przechodzeniu do granicy pod znakiem całki
Funkcje mierzalne, całka z funkcji nieujemnej, twierdzenia o przechodzeniu do granicy pod znakiem całki Ostatnio poprawiłem 25 stycznia 2015 r. Nadeszła pora na całkowanie. Pierwsza rzecza jest zdefiniowanie
Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ
f(t) f(x), D f(x) = lim sup t x oraz D f(x) = lim inf
9. Różniczkowanie. Jeśli f jest funkcją rzeczywistą, to granice D + f(x) = lim sup t x + f(t) f(x), D f(x) = lim sup t x t x f(t) f(x), t x f(t) f(x) f(t) f(x) D + f(x) = lim inf oraz D f(x) = lim inf
A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
Metody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
1 Nierówność Minkowskiego i Hoeldera
1 Nierówność Minkowskiego i Hoeldera Na państwa użytek załączam precyzyjne sformułowania i dowody nierówności Hoeldera i Minkowskiego: Twierdzenie 1.1 Nierówność Hoeldera). Niech p, q będą takimi liczbami
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 3 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Schemmat Bernouliego Rzucamy 10 razy moneta, próba Bernouliego jest pojedynczy
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.
Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie
1. Funkcje monotoniczne, wahanie funkcji.
1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.
1 Przestrzenie metryczne
1 Przestrzenie metryczne Definicja 1.1 (metryka) Niech będzie niepustym zbiorem. Funkcję d: R + nazywamy metryką, jeśli spełnia warunki: 1 o d(x, y) = d(y, x) (symetria) 2 o d(x, y) + d(y, z) d(x, z) (nierówność
Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013
Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej
Granice funkcji-pojęcie pochodnej
Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Informacja o przestrzeniach Hilberta
Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,
Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone
Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013
Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Wprowadzenie Przykład 1 Bolek, Lolek i Tola
Definicja odwzorowania ciągłego i niektóre przykłady
Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)
IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I
IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:
Analiza Funkcjonalna - Zadania
Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.
Dekompozycje prostej rzeczywistej
Dekompozycje prostej rzeczywistej Michał Czapek michal@czapek.pl www.czapek.pl 26 X AD MMXV Streszczenie Celem pracy jest zwrócenie uwagi na ciekawą różnicę pomiędzy klasami zbiorów pierwszej kategorii
Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,
Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa
Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5
Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................
Metody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
020 Liczby rzeczywiste
020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie
Funkcje rzeczywiste jednej. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Funkcje rzeczywiste jednej zmiennej rzeczywistej Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Definicje Funkcją (odwzorowaniem) f, odwzorowującą zbiór D w zbiór P nazywamy
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21
Granice funkcji XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granica funkcji Definicje Granica właściwa funkcji w punkcie wg Heinego Liczbę g nazywamy granicą właściwą funkcji f w punkcie
Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem),
Granica funkcji wykład 4
Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie
O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych)
(niekoniecznie ograniczonych) Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza, Poznań Będlewo, 25-30 maja 2015 Funkcje prawie okresowe w sensie Bohra Definicja Zbiór E R nazywamy względnie
FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.
FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga
Kurs wyrównawczy - teoria funkcji holomorficznych
Kurs wyrównawczy - teoria funkcji holomorficznych wykład 1 Gniewomir Sarbicki 15 lutego 2011 Struktura ciała Zbiór par liczb rzeczywistych wyposażamy w działania: { + : (a, b) + (c, d) = (a + c, b + d)
Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
LX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
Podstawy metod probabilistycznych. dr Adam Kiersztyn
Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku
21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126
Mocna własność Markowa procesu Wienera Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 21 maja, 2012 Mocna własność Markowa W = (W 1,..., W d ) oznaczać
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
6. Zmienne losowe typu ciagłego ( ) Pole trapezu krzywoliniowego
6. Zmienne losowe typu ciagłego (2.04.2007) Pole trapezu krzywoliniowego Przypomnienie: figurę ograniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją ciągłą; proste x = a, x = b, a < b, oś OX
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;
Zajęcia nr. 3 notatki
Zajęcia nr. 3 notatki 22 kwietnia 2005 1 Funkcje liczbowe wprowadzenie Istnieje nieskończenie wiele funkcji w matematyce. W dodaktu nie wszystkie są liczbowe. Rozpatruje się funkcje które pobierają argumenty
granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N
14. Określenie ciągu i szeregu funkcyjnego, zbieżność punktowa i jednostajna. Własności zbieżności jednostajnej. Kryterium zbieżności jednostajnej szeregu funkcyjnego. 1 Definicja Ciąg funkcyjny Niech
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach.
Wykład 3 Generatory liczb losowych o dowolnych rozkładach.. Metoda odwracania Niech X oznacza zmienna losowa o dystrybuancie F. Oznaczmy F (t) = inf (x : t F (x)). Uwaga Zauważmy, że t [0, ] : F ( F (t)
Wykład 21 Funkcje mierzalne. Kostrukcja i własności całki wzglȩdem miary przeliczalnie addytywnej
Wykład 2 Funkcje mierzalne. Kostrukcja i własności całki wzglȩdem miary przeliczalnie addytywnej czȩść II (opracował: Piotr Nayar) Definicja 2.. Niech (E, E) bȩdzie przestrzenia mierzalna i niech λ : E
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
1. Definicja granicy właściwej i niewłaściwej funkcji.
V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,
Łatwy dowód poniższej własności pozostawiamy czytelnikowi.
Rozdział 3 Logarytm i potęga 3.1 Potęga o wykładniku naturalnym Definicja potęgi o wykładniku naturalnym. Niech x R oraz n N. Potęgą o podstawie x i wykładniku n nazywamy liczbę x n określoną następująco:
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Pochodna funkcji: definicja, podstawowe własności wykład 6
Pochodna funkcji: definicja, podstawowe własności wykład 6 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu r. akad. 2016/2017 Problem obliczanie prędkości chwilowej Droga
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Zmienna losowa i jej
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Prawdopodobieństwo geometryczne