Zbiory. Zadanie 5. Wykaza to»samo±ci (a) A (B \ C) = [(A B) \ C] (A C), (b) A \ [B \ (C \ D)] = (A \ B) [(A C) \ D],

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zbiory. Zadanie 5. Wykaza to»samo±ci (a) A (B \ C) = [(A B) \ C] (A C), (b) A \ [B \ (C \ D)] = (A \ B) [(A C) \ D],"

Transkrypt

1 x FAQ ANALIZA R c ZADANIA Zbiory Zadaie 1. Opisa zbiory A B, A B, A \ B, B \ A je±li A = {x R : x 3x < 0, }; B = {x R : x 3x + 4 0} Zadaie. Niech A, B, C, D b d podzbiorami przestrzei X. Udowodi,»e A \ D zawiera si w A \ D D \ B. Zadaie 3. Upro±ci waruki a A 1 B A B = B, b A \ C B = A B, c [A B C] \ A = A B \ C. Zadaie 4. Wyrazi poprzez teoriomogo±ciowe operacje a zbiorach A, B, C X ast puj ce zbiory a {x X : x A x B}, b {x X : x A x B}, c {x X : x A albo x B}, d {x X : x A x B x C}. Zadaie 5. Wykaza to»samo±ci a A B \ C = [A B \ C] A C, b A \ [B \ C \ D] = A \ B [A C \ D], c A 1 A A = A 1 \ A A \ A 3 A 1 \ A A, dla, d A 1 A A = [A 1 \ A A 3 A ] [A 1 \ A ] A, e A 1 A A = A 1 \ A A \ A 3 A 1 \ A A \ A 1 A 1 A A. Zadaie 6. Wykaza,»e a i I A i \ B i i I A i \ i I B i, lecz rówo± ie musi zachodzi. b i I A i B i i I A i i I B i. Poda przykªad, gdy zawieraie ie jest rówo±ci. Data: 8 wrze±ia 016 r. 1

2 FAQ ANALIZA R c ZADANIA Zadaie 7. Niech k, l, N takie,»e + 1 = k + 1 oraz A 1,..., A dae zbiory. Wykaza,»e L = P je±li L = i 1<i <...i k A i1 A i A ik, P = j 1<j <...j l A j1 A j A jk. Zadaie 8. Wykaza,»e A B A C C B oraz,»e ast puj ce zdaia s rówowa»e: a skªadiki sumy po prawej stroie s rozª cze b ikluzja staje si rówo±ci, c A B C A. Zadaie 9. Dla daego ci gu zbiorów A 1, A,... okre±lmy lim if A = A k, lim sup A = N k A k. N k Wykaza,»e zawsze A lim if A lim sup A A. Przekoa si o tym dla [ 1 ] 4 15 A =, Zadaie 10. Wykaza,»e dla dowolych rodzi zbiorów A N, B N zachodz wzory a lim ifa B = lim if A lim if B, b lim ifa B lim if A lim if B, c lim supa B lim sup A lim sup B, d lim supa B = lim sup A lim sup B. Zadaie 11. Opisa i aszkicowa a pªaszczy¹ie zbiór X = { x, y R : x + y 3x + 4y 5 } N Zadaie 1. Zale¹ zbiór Y = A t, gdzie A t = { x, y : x + y tx t }. t [0,+ Zadaie 13. Naszkicowa zbiory a { Z x R : x 1 + x x 1 x } b { N x R : x 1 + x 3x 1 + 4x 0 }, c { } N x R : x x 1, Zadaie 14. Zale¹ zbiory t [0,1] A t i t [0,1]A t je±li A t = [t, t + 1] [ t, t + 1].

3 FAQ ANALIZA R c ZADANIA 3 Zadaie 15 zadaie Lewisa Carolla. W pewej bitwie co ajmiej 80% walcz - cych straciªo r k, co ajmiej 85% walcz cych straciªo og, co ajmiej 70% straciªo oko, co ajmiej 75% straciªo ucho. Oszacowa liczb tych uczestików bitwy, którzy odie±li wszystkie cztery obra»eia. Zadaie 16 Ilustracja do twierdzeia Catora-Bersteia-Schroedera. : Niech X = Y = {x =0, x i {0, 1}}. Niech tak»e ϕ : X Y, φx = 0, x 1, x,.... Przyjmuj c ψ = ϕ skostruowa bijekcj jak w dowodzie twierdzeia CBS. Relacje, odwzorowaia Zadaie 17. Niech R b dzie dowol relacj w zbiorze { 1, 0, 1} Okre±lmy fukcj d R : R R R wzorem { x y gdy sgx, sgy R d R x, y := x + y w przeciwym przypadku gdzie x := x 1 + x. Wykaza,»e: a d R x, y = 0 x = y R jest zwrota, b d R jest symetrycza, tz. d R x, y = d R y, x R jest symetrycza, c d R speªia ierówo± trójk ta R jest przechodia. Zadaie 18. Zbada ijektywo± i surjektywo± odwzorowaia, opisa jego zbiór warto±ci i poziomice: f : R R 1 t, ft = t 1+t, 1+t, g : R \ {0, 0} R, gx, y = x x +y, h : Z Z, hk = k 3k + 1. Zadaie 19. Odwzorowaie f : X X speªia waruek x X N f x = x. Udowodi,»e odwzorowaie f jest bijekcj. Symbol f ozacza tu krote zªo»eie odwzorowaia f ze sob, tz f f f }{{} Zadaie 0. Poda przykªad bijekcji mi dzy zbiorami X i Y je±li a X = [0, 1[, Y = [0, 1], b X =]0, 1[, Y = [, ] \ { 1, }, c X = N N, Y = N. Zadaie 1. Zale¹ ajmiejsz relacj rówowa»o±ci w {a, b, c, d} zawieraj c a, c oraz a, d.

4 4 FAQ ANALIZA R c ZADANIA Zadaie. W N N wprowadzamy relacj, m m, m + = m +. Sprawdzi,»e jest to relacja rówowa»o±ci. W przestrzei N N/ klas abstrakcji wprowadzi dziaªaia dodawaia i mo»eia tak, aby zbiór te byª izomorczy z Z. Zadaie 3. Podobie skostruowa mo»a Q, wprowadzaj c stosow relacj w Z N. Zdeiowa t relacj. Zadaie 4. W zbiorze Q deiujemy relacj R = {x, y : N 10 x y Z}. Sprawdzi,»e jest to relacja rówowa»o±ci. Opisa klasy rówowa»o±ci. Zadaie 5. Wykaza,»e odwzorowaie f : R + R + R + R, fx, y = x + y, 1 x 1 y jest bijekcj. Wyliczy f 1. Idukcja Zasada idukcji matematyczej Zasada idukcji wyra»a jed z podstawowych wªaso±ci zbioru liczb aturalych N. Jest oa b d¹ aksjomatem, b d¹ twierdzeiem, zale»ie od tego jak deioway jest zbiór N. A oto podstawowe sformuªowaie zasady idukcji ZI: Je»eli T jest podzbiorem N speªiaj cym waruki 1 1 T, N T +1 T, to T jest caªym zbiorem liczb aturalych, tz T = N. ZI ozacza,»e ka»d liczb atural mo»a osi g wychodz c od 1 i poruszaj c si odpowiedio dªugo w prawo z krokiem rówym 1. Dokªadiej: N jest ajmiejszym zbiorem liczb, który zawiera 1 i wraz z ka»dym elemetem zawiera jego ast pik + 1 Zadaie 6. Udowodi,»e dla wszystkich N = 1 Zadaie 7. Niech x b dzie ci giem okre±loym ast puj cymi warukami: Wykaza,»e x 1 = 0, x +1 = N : 5 4 x dla N. x = 5 x 4 x.

5 FAQ ANALIZA R c ZADANIA 5 Rozwi zaie Idukcja: Nale»y sprawdzi,»e x = gx x + = gx +1 ; je±li ozaczymy fx := 5 5 x 4 x, gx := 4 x, to ostatia rówo± ozacza f fx = g fx, wystarczy wi c sprawdzi rówo± f f gx = g fx. Šatwy rachuek pokazuje,»e oba te wyra»eia s rówe 5x 40x x 4x x+4, gdy» fx = 11 4x. Uwaga. x 1 = 0, x = 5 4, x 3 = 0 11, x 4 = 55 4, x 5 = 10 41, x 6 = ; ci g x jest rozbie»y! Zadaie 8. Dowie±,»e je±li x 1 jest ci giem, okre±loym rekurecyjie: x 1 = 1, to x m+ = +xmx x m+x dla ka»dej pary m, N. x +1 = + x 1 + x dla N, Rozwi zaie: Ustalmy m N i zastosujmy idukcj wzgl dem N: Dla = 1 wzór ma posta W : x m+ = + x mx x m + x x m+1 = + x m, 1 + x m wi c jest prawdziwy zgodie ze wzorem rekurecyjym. W W +1 : Wyka»emy implikacj wskutek W, wi c x m++1 = + x m+ = + +xmx x m+x 1 + x m xmx x m+x = x m + x + + x m x x m + x + + x m x + x m x +1 x m + x +1 = + x +x m 1+x = 1 + x + x m + x x m + +x x 1+x m 1 + x + + x = x m++1. Zadaie 9. Dowie±,»e je±li x 1 jest ci giem, okre±loym rekurecyjie: x 1 = 1, to x = +x x dla ka»dego N. x +1 = + x 1 + x dla N, Rozwi zaie: Idukcja: Dla = 1 wzór x = +x 1 x 1 jest prawdziwy, bo x 1 = 1, x = 3 ; je±li za± jest prawdziwy dla pewego N, to x +1 = x + = + x +1 = + +x 1+x = 4 + 3x 1 + x x 3 + x 1+x = x x 3 + +x x = 3x + 8x + 6 x + 6x + 4,

6 6 FAQ ANALIZA R c ZADANIA z drugiej za± stroy + x +1 x +1 = + +x 1+x +x 1+x = 1 + x + + x 1 + x + x = 3x + 8x + 6 x + 6x + 4, czyli x +1 = +x +1 x +1. Zadaie 30. Dowie±,»e je±li x 1 jest ci giem, okre±loym rekurecyjie: x 1 = 0, x +1 = to x = 1+x 1+x dla ka»dego N. 1 + x dla N, Rozwi zaie: Sprawdzeie kroku idukcyjego: Je±li x = 1+x 1+x, to x + = = + x = 4 + x = 41 + x x +x 5 + x 51 + x x, z drugiej za± stroy sk d wida,»e x +1 = 1+x +1 1+x x+1 = x 1 + x = + x + 1 +x + x 3 + x, Uwaga: Mo»a dowie± p. idukcyjie,»e x = a 1 b 1 a b, gdzie a := 1 +, b := 1 ; wykorzystaie tego wzoru do dowodu tezy zadaia jest mo»liwe, ale do± uci»liwe. Zadaie 31. Na pªaszczy¹ie le»y kóª o jedakowych promieiach i rozª czych w trzach. Wykaza,»e moza tak pokolorowa te koªa 4 barwami, by»ada para kóª styczych ie byªa w jedym kolorze. Liczby rzeczywiste. Zadaie 3. Zbada ograiczoo± i ewetualie wyzaczy kresy zbiorów m X = { + m, m, N}, Y = { E 1, N}, gdzie Ex ozacza ajwi ksz liczb caªkowit ie wi ksz od x. Zadaie 33. Udowodi ierówo± Beroulliego N x x 1 + x.

7 FAQ ANALIZA R c ZADANIA 7 Zadaie 34. Dla a 1, a,..., a > 0 deiujemy Udowodi ierówo±ci Aa 1, a,..., a = a 1 + a + + a, Ga 1, a,..., a = a 1 a a, Ha 1, a,..., a = 1 a a a Aa 1, a,..., a Ga 1, a,..., a Ha 1, a,..., a. Zadaie 35 Nierówo± Jesea. Fukcj f : I R azywamy wypukª a I, je±li dla dowolych a, b I oraz q [0, 1] zachodzi fqa + 1 qb qfa + 1 qfb. Udowodi,»e je±li f jest wypukªa, to dla a 1, a,..., a I oraz q 1, q,..., q [0, 1] takich,»e q 1 + q + + q = 1 zachodzi ierówo± fq 1 a 1 + q a + + q a q 1 fa 1 + q fa + + q fa. Zadaie 36. Dowie±,»e liczby Fiboacciego, zdeiowae rekurecj F 0 = F 1 = 1, F +1 = F + F 1, mog by otrzymae ze wzorów k F =. k Zwró my uwag,»e zgodie z deicj m mm 1... m k + 1 :=, dla k Z + m Z. k k! Skªadiki k k zikaj dla < k k=0 Rozwi zaie: Wida,»e dla = 0 i = 1 wzory s prawdziwe. Je±li 1 oraz F = k k=0 k i F 1 = 1 1 k k=0 k, to przemiaowuj c k a k 1 mamy F 1 = k k=1 k 1, wi c z elemetarej wªaso±ci m k + m k 1 = m+1 k dla m = k dostajemy F +1 = F + F 1 = k k=1 k =: R. Poiewa» 0 = 1 = +1 0 oraz +1 k k = 0 dla k = + 1, wi c mo»emy R zapisa jako. +1 k=0 +1 k k Zadaie 37. Zaªó»my,»e dla pewego a R, a 3 + a i a + a s wymiere. Udowodi,»e a jest wymiere.

Analiza Matematyczna I.1

Analiza Matematyczna I.1 Aaliza Matematycza I Seria, P Nayar, 0/3 Zadaie Niech a k >, (k =,, b d liczbami rzeczywistymi o tym samym zaku Udowodij,»e prawdziwa jest ierówo± ( + a ( + a ( + a + a + a + + a Czy zaªo»eie,»e liczby

Bardziej szczegółowo

Analiza Matematyczna I.1

Analiza Matematyczna I.1 Aaliza Matematycza I Seria, P Nayar, 0/ Zadaie Niech a k >, (k =,, ) b d liczbami rzeczywistymi o tym samym zaku Udowodij,»e prawdziwa jest ierówo± ( + a )( + a ) ( + a ) + a + a + + a Czy zaªo»eie,»e

Bardziej szczegółowo

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki. 7 Sumy i iloczyny uogólnione

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki. 7 Sumy i iloczyny uogólnione Aaliza matematycza Notatki do wykªadu Mateusz Kwa±icki 7 Sumy i iloczyy uogólioe Dla dowolych liczb a k, a k+, a k+,..., a l okre±lamy sum uogólio i iloczy uogólioy: a k + a k+ + a k+ +... + a l, l a k

Bardziej szczegółowo

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim.

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim. Wykªad 05 graice cd, przykªady Rozpocziemy od podaia kilku przykªadów obliczaia graic ci gów Niech a > Ozaczmy a = c > 0 Mamy Poiewa» c = +, wi c tak»e a = + c + c c a = + dla a > 5 Poadto, zauwa»amy,»e

Bardziej szczegółowo

Tw. 1. Je»eli ci g {a n } ma granic a i ci g {b n } ma granic b, to ci g {a n b n } ma granic a b. Tw. 2. b n. Tw. 3. Tw. 4.

Tw. 1. Je»eli ci g {a n } ma granic a i ci g {b n } ma granic b, to ci g {a n b n } ma granic a b. Tw. 2. b n. Tw. 3. Tw. 4. Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a + b } ma graic a+b. Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a b } ma graic a-b. Tw.. Je»eli ci g {a } ma graic

Bardziej szczegółowo

FAQ ANALIZA R c ZADANIA

FAQ ANALIZA R c ZADANIA FAQ ANALIZA R c ZADANIA Caªki wersja wst pa uwaga a bª dy!!! Fukcje pierwote Zadaie. Rozgrzewka. Obliczy caªki ieozaczoe, tz zale¹ fukcje pierwote. W awiasach wymieioe s arz dzia jakie mog by potrzebe

Bardziej szczegółowo

szereg jest szeregiem o wyrazach nieujemnych. Ponadto dla α (0; π ) zachodzi nierówno± sinα < α,

szereg jest szeregiem o wyrazach nieujemnych. Ponadto dla α (0; π ) zachodzi nierówno± sinα < α, .. si Poiewa» si < 1; 1 >, wi c zbadajmy szereg zªo»oy z warto±ci bezwzgl dych wyrazów szeregu daego w zadaiu: () si = si, ale si < 0; 1 > Zatem si 1 () Po prawej stroie powy»szej ierówo±ci mamy szereg

Bardziej szczegółowo

> 1), wi c na mocy kryterium porównawczego szereg sin(n n)

> 1), wi c na mocy kryterium porównawczego szereg sin(n n) .65. si() W szeregu tym wyst puj wyrazy dodatie i ujeme, ale ie a przemia. Zbadajmy wi c szereg: si() zªo»oy z warto±ci bezwzgl dych wyrazów szeregu daego w zadaiu. Poiewa» si(), wi c si() = Po prawej

Bardziej szczegółowo

A.1. Asymptotyka bez notacji asymptotycznej. Przykªad A.1. Zbada zachowanie asymptotyczne liczb Fibonacciego. Pokaza,»e. F n = round ( 1 5 Φ n )

A.1. Asymptotyka bez notacji asymptotycznej. Przykªad A.1. Zbada zachowanie asymptotyczne liczb Fibonacciego. Pokaza,»e. F n = round ( 1 5 Φ n ) A Notacjaasymptotycza Badaj c du»e obiekty kombiatorycze cz sto ie jest koiecze pozaie dokªadej warto±ci okre±loej wielko±ci (szczególie gdy wzór dokªady jest skomplikoway), a jedyie jej warto± przybli»o,

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

Funkcje tworz ce skrypt do zada«

Funkcje tworz ce skrypt do zada« Fukcje tworz ce skrypt do zada«mateusz Rapicki, Piotr Suwara 20 maja 2012 1 Kombiatoryka Deicja 1 (dwumia Newtoa) dla liczb caªkowitych ieujemych, k to liczba k sposobów wybraia k elemetów z -elemetowego

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Wykªad 2. Szeregi liczbowe.

Wykªad 2. Szeregi liczbowe. Wykªad jest prowadzoy w oparciu o podr czik Aaliza matematycza 2. Deicje, twierdzeia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 2. Szeregi liczbowe. Deicje i podstawowe twierdzeia Deicja Szeregiem liczbowym

Bardziej szczegółowo

wi c warunek konieczny zbie»no±ci szeregu jest speªniony. 12 = 9 12 = 3 4 k(k+1) k=1 ( k+1 k(k+1) n+1 = 1 1 n+1 = 1 0 = 1 36 = =

wi c warunek konieczny zbie»no±ci szeregu jest speªniony. 12 = 9 12 = 3 4 k(k+1) k=1 ( k+1 k(k+1) n+1 = 1 1 n+1 = 1 0 = 1 36 = = 32 (+) Jest to szereg o wyrazach dodatich Poadto wyraz ogóly tego szeregu jest zbie»y do 0, wi c waruek koieczy zbie»o±ci szeregu jest speªioy s (+) 2 s 2 s + 2 (2+) 2 + 2 3 2 + 6 3 6 + 6 4 6 2 3 s 3 s

Bardziej szczegółowo

GEOMETRIA I UŠAMKI PIOTR NIADY

GEOMETRIA I UŠAMKI PIOTR NIADY GEOMETRIA I UŠAMKI PIOTR NIADY Alicja raz czy dwa zajrzaªa do ksi»ki czytaej przez siostr, ale ie byªo tam ai ilustracji, ai kowersacji. A jaki mo»e by po»ytek z ksi»kipomy±laªa Alicjaw której ie ma ai

Bardziej szczegółowo

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki Aaliza matematycza 1 Notatki do wykªadu Mateusz Kwa±icki 1 Idukcja matematycza Przykªad 1. Pewego popoªudia Kubu± Puchatek kupiª pust beczk, która mie±ci 20 sªoików miodu, i wlaª do iej wszystkie swoje

Bardziej szczegółowo

Funkcje tworz ce - du»y skrypt

Funkcje tworz ce - du»y skrypt Fukcje tworz ce - du»y skrypt Mateusz Rapicki, Piotr Suwara 9 sierpia 202 Kombiatoryka ( ) Deicja (dwumia Newtoa). k dla liczb caªkowitych ieujemych, k to liczba sposobów wybraia k elemetów z -elemetowego

Bardziej szczegółowo

Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa

Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa Mare Be±a, Statystya matematycza, wyªad 3 38 3 Statystyi zupeªe 3. Wyªadicze rodziy rozªadów prawdopodobie«stwa Zacziemy od deicji Deicja 3. Rodzi rozªadów {µ θ } θ Θ azywamy wyªadicz rodzi rozªadów -

Bardziej szczegółowo

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że KILKA ZADAŃ O SZEREGACH Zbadać zbieżość i zbieżość bezwzgle da = a, jeśli a = a!! ; a + + ; c + ; ć! ; d +/ + 3 ; e! e 3 3+ ; f ; + g 000+ ; h ; + i! ; j k ; l 5 + l + 7 0 +3 6 0 + ; +3 ; ; m 3 + 3 ; +a

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Spis tre±ci 1. Wprowadzenie O matematyce O kursie Ci gªo± Pochodna Caªka Liczby rzeczywiste 6 2.

Spis tre±ci 1. Wprowadzenie O matematyce O kursie Ci gªo± Pochodna Caªka Liczby rzeczywiste 6 2. Spis tre±ci. Wprowadzeie 3.. O matematyce 3.. O kursie 3.3. Ci gªo± 3.4. Pochoda 5.5. Caªka 6.6. Liczby rzeczywiste 6. Liczby rzeczywiste 8.. Formala deicja 8.. Liczby aturale i zasada idukcji 9.3. Rozkªad

Bardziej szczegółowo

x + 1 dla x 2 (d) f(x) = + 2 dla x > 2; (3) Znajd¹ dziedzin oraz funkcj odwrotn (je±li jest to proste) do: 1 log 3 x, (log2 x 2 ) 1 log 2

x + 1 dla x 2 (d) f(x) = + 2 dla x > 2; (3) Znajd¹ dziedzin oraz funkcj odwrotn (je±li jest to proste) do: 1 log 3 x, (log2 x 2 ) 1 log 2 1. Fukcje elemetare (1) Zajd¹ wykres fukcji arcsi(si(x)). (2) Zajd¹ posªuguj c si wykresami fukcje odwrote do podaych i»ej, a ast pie sprawd¹,»e s to rzeczywi±cie odwrote. (a) f(x) = 2x; (b) f(x) = 3x

Bardziej szczegółowo

Konkurs Uczniowskich Prac z Matematyki. Urok zbioru µ. Michaª Mi±kiewicz. Opiekun pracy: dr Jerzy Bednarczuk

Konkurs Uczniowskich Prac z Matematyki. Urok zbioru µ. Michaª Mi±kiewicz. Opiekun pracy: dr Jerzy Bednarczuk Kokurs Ucziowskich Prac z Matematyki Urok zbioru µ Michaª Mi±kiewicz Opieku pracy: dr Jerzy Bedarczuk Warszawa 010 Streszczeie Tematem mojej pracy s pukty takie,»e suma kwadratów odlegªo±ci puktów z wcze±iej

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Równoliczno zbiorów. Definicja 3.1 Powiemy, e niepuste zbiory A i B s równoliczne jeeli istnieje. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~.

Równoliczno zbiorów. Definicja 3.1 Powiemy, e niepuste zbiory A i B s równoliczne jeeli istnieje. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~. 16 Rówoliczo zbiorów Defiicja 3.1 Powiemy, e iepuste zbiory A i B s rówolicze jeeli istieje f : A B. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~. Twierdzeie 3.1 (podstawowa właso rówoliczoci zbiorów)

Bardziej szczegółowo

1 Twierdzenia o granicznym przejściu pod znakiem całki

1 Twierdzenia o granicznym przejściu pod znakiem całki 1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

1. Pochodna funkcji. Twierdzenie Rolle'a i twierdzenie Lagrange'a.

1. Pochodna funkcji. Twierdzenie Rolle'a i twierdzenie Lagrange'a. SKRYPT A Jarosªaw Wróblewski. Pochoda fukcji. Twierdzeie Rolle'a i twierdzeie Lagrage'a. Kolokwium r : do zad. 473 Kolokwium r : do zad. 53 Kolokwium r 3: do zad. 538 Kolokwium r 4: do zad. 579 445. Niech

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji W poprzednim odcinku... Podstawy matematyki dla informatyków Rodzina indeksowana {A t } t T podzbiorów D to taka funkcja A : T P(D),»e A(t) = A t, dla dowolnego t T. Wykªad 3 20 pa¹dziernika 2011 Produkt

Bardziej szczegółowo

Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2

Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2 Zadania z PM II 010-011 A. Strojnowski str. 1 Zadania przygotowawcze z Podstaw Matematyki seria Zadanie 1 Niech A = {1,, 3, 4} za± T A A b dzie relacj okre±lon wzorem: (a, b) T, gdy n N a n = b. a) Ile

Bardziej szczegółowo

Spis tre±ci 1. Wprowadzenie Sprawy formalne O matematyce O kursie Ci gªo± Pochodna Caªka

Spis tre±ci 1. Wprowadzenie Sprawy formalne O matematyce O kursie Ci gªo± Pochodna Caªka Spis tre±ci 1. Wprowadzeie 3 1.1. Sprawy formale 3 1.. O matematyce 3 1.3. O kursie 3 1.4. Ci gªo± 3 1.5. Pochoda 5 1.6. Caªka 6 1.7. Liczby rzeczywiste 6 1.8. Ie iformacje 6. Liczby rzeczywiste 7.1. Formala

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na. Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da

Bardziej szczegółowo

Ekstremalna teoria grafów Filip Lurka V Liceum ogólnoksztaªc ce w Krakowie

Ekstremalna teoria grafów Filip Lurka V Liceum ogólnoksztaªc ce w Krakowie Ekstremala teoria grafów Filip Lurka V Liceum ogóloksztaªc ce w Krakowie 1 Ekstremala Teoria Grafów 1 Ekstremala Teoria Grafów Filip Lurka 1.1 Teoria Deicja 1.1 Klik azywamy graf peªy; ka»de dwa wierzchoªki

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Podstawy matematyki nansowej

Podstawy matematyki nansowej Podstawy matematyki asowej Omówimy tutaj odstawowe oj cia matematyki asowej. Jest to dobre miejsce, gdy» zagadieia te wi» si z ci gami, w szczególo±ci z ci giem arytmetyczym i geometryczym. Omówimy zagadieie

Bardziej szczegółowo

Podstawy logiki i teorii zbiorów wiczenia

Podstawy logiki i teorii zbiorów wiczenia Spis tre±ci 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Ró»nica symetryczna 4 5 Kwantykatory 5 6 Relacje 7 7 Relacje porz dku i równowa»no±ci 8 8 Funkcje

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematya dysreta dla iformatyów Cz ± I: Elemety ombiatoryi Jerzy Jaworsi Zbigiew Pala Jerzy Szyma«si Uiwersytet im Adama Miciewicza Poza«2007 3 Schematy wyboru i tożsamości ombiatorycze 31 Wariacje z

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy 12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!

Bardziej szczegółowo

Repetytorium z Matematyki Elementarnej Wersja Olimpijska

Repetytorium z Matematyki Elementarnej Wersja Olimpijska Repetytorium z Matematyi Elemetarej Wersja Olimpijsa Podae tutaj zadaia rozwiązywae były w jedej z grup ćwiczeiowych Są w więszości ieco trudiejsze od pozostałych zadań przygotowaych w ramach przedmiotu

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

Zadania. 4 grudnia k=1

Zadania. 4 grudnia k=1 Zadania 4 grudnia 205 Zadanie. Poka»,»e dla dowolnych liczb zespolonych z,..., z n istnieje zbiór B {,..., n}, taki,»e n z k π z k. k B Zadanie 2. Jakie warunki musz speªnia ci gi a n i b n, aby istniaªy

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

AM /2010. Zadania z wicze«18 i 22 I 2010.

AM /2010. Zadania z wicze«18 i 22 I 2010. AM 2009/200 Zadaia z wicze«8 i 22 I 200 Omówieie zada«z kolokwium i zada«domowych Zadaie Niech f : [a, + ) R b dzie fukcj ci gª Okre±lamy fukcj f wzorem f(t) = sup{f(x) : x t} Wyka»,»e f jest iemalej ca

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

3 Metody zliczania obiektów

3 Metody zliczania obiektów 3 Metody zliczaia obiektów Metoda bijektywa 3.1 Metoda bijektywa zliczaia obiektów kombiatoryczych polega a wskazaiu bijekcji pomi dzy badaym obiektem, a obiektem, którego ilo± elemetów jest am ju» zaa.

Bardziej szczegółowo

RAP pa¹dziernika S n = S 0 + i=1. p r q l = p r q l r. N n(a,b)

RAP pa¹dziernika S n = S 0 + i=1. p r q l = p r q l r. N n(a,b) RAP 4 5 pa¹dzierika 008 Wykªad : PSL metoda zliczaia ±cie»ek Wykªadowca: Adrzej Ruci«ski Pisarz:Bartosz Naskr cki i Marek Kaluba Wst p B dziemy dalej studiowa zachowaia osobika, którego gr zajmowali±my

Bardziej szczegółowo

ZADANIA. Maciej Zakarczemny

ZADANIA. Maciej Zakarczemny ZADANIA Maciej Zakarczemny 2 Spis tre±ci 1 Algebra 5 2 Analiza 7 2.1 Granice iterowane, granica podwójna funkcji dwóch zmiennych....... 7 2.2 Caªki powierzchniowe zorientowane...................... 8 2.2.1

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce a aklejk z kodem szkoy dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-RAP-06 POZIOM ROZSZERZONY Czas pracy 0 miut Istrukcja dla zdajcego Sprawd, czy arkusz egzamiacyjy zawiera 4 stro (zadaia ) Ewetualy

Bardziej szczegółowo

Nieklasyczne modele kolorowania grafów

Nieklasyczne modele kolorowania grafów 65 Nieklasycze modele kolorowaia grafów 66 Kolorowaie sprawiedliwe Def. Jeli wierzchołki grafu G moa podzieli a k takich zbiorów iezaleych C,...,C k, e C i C j dla wszystkich i,j,...,k, to mówimy, e G

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012 Podstawy matematyki dla informatyków Wykªad 3 Funkcje 18 pa¹dziernika 2012 Deniowanie funkcji Funkcje caªkowite i cz ±ciowe Denicja wprost: f (x) = x + y f = λx. x + y Denicja warunkowa: { n/2, je±li n

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

Analiza matematyczna I

Analiza matematyczna I KAPITAŁ LUDZKI NARODOWA STRATEGIA SPÓJNOŚCI UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ SPOŁECZNY Projekt p. Wzmocieie potecjaªu dydaktyczego UMK w Toruiu w dziedziach matematyczo-przyrodiczych realizoway w ramach

Bardziej szczegółowo

lim a n Cigi liczbowe i ich granice

lim a n Cigi liczbowe i ich granice Cigi liczbowe i ich graice Cigiem ieskoczoym azywamy dowol fukcj rzeczywist okrelo a zbiorze liczb aturalych. Dla wygody zapisu, zamiast a() bdziemy pisa a. Elemet a azywamy -tym wyrazem cigu. Cig (a )

Bardziej szczegółowo

Rachunek caªkowy funkcji wielu zmiennych

Rachunek caªkowy funkcji wielu zmiennych Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO Wrocław, 2 lutego 205 SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO MARCIN PREISNER [ PREISNER@MATH.UNI.WROC.PL ] SPIS TREŚCI Wstęp 2 Ozaczeia 2. INDUKCJA MATEMATYCZNA 2.. Wprowadzeie 2.2. Lista zadań

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych Temat: Poprawo całkowita i czciowa algorytmu. Złooo obliczeiowa algorytmu. Złooo czasowa redia i pesymistycza. Rzd fukcji. I. Literatura 1. L. Baachowski, K. Diks, W. Rytter Algorytmy i struktury daych.

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

Ÿ1 Oznaczenia, poj cia wst pne

Ÿ1 Oznaczenia, poj cia wst pne Ÿ1 Oznaczenia, poj cia wst pne Symbol sumy, j, k Z, j k: k x i = x j + x j+1 + + x k. i=j Przykªad 1.1. Oblicz 5 i=1 2i. Odpowied¹ 1.1. 5 i=1 2i = 2 1 + 2 2 + 2 3 + 2 4 + 2 5 = 2 + 4 + 8 + 16 + 32 = 62.

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru

Bardziej szczegółowo

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji).

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji). Plan Spis tre±ci 1 Granica 1 1.1 Po co?................................. 1 1.2 Denicje i twierdzenia........................ 4 1.3 Asymptotyka, granice niewªa±ciwe................. 7 2 Asymptoty 8 2.1

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Denicja 1. Niech X = R n b dzie przestrzeni unormowan oraz d(x, y) = x y.

Bardziej szczegółowo

1 Poj cia pomocnicze. Przykªad 1. A A d

1 Poj cia pomocnicze. Przykªad 1. A A d Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy

Bardziej szczegółowo

Wielomiany o wspóªczynnikach rzeczywistych

Wielomiany o wspóªczynnikach rzeczywistych Wielomiany o wspóªczynnikach rzeczywistych Wielomian: W (x) = a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0 wspóªczynniki wielomianu: a 0, a 1, a 2,..., a n 1, a n ; wyraz wolny: a 0

Bardziej szczegółowo

Rachunek zda«. Relacje. 2018/2019

Rachunek zda«. Relacje. 2018/2019 Rachunek zda«. Relacje. 2018/2019 Zdanie logiczne. Zdaniem logicznym nazywamy ka»de wyra»enie, któremu mo»na przyporz dkowa jedn z dwóch warto±ci logicznych: 0 czyli faªsz b d¹ 1 czyli prawda. Zdanie logiczne.

Bardziej szczegółowo

Funkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu)

Funkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu) Funkcje jednej zmiennej Granica, ci gªo± (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Granica funkcji Denicja Niech 0 R, r > 0 Otoczeniem punktu 0 o promieniu r nazywamy przedziaª ( 0 r, 0 +r) Otoczeniem

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Jan Rodziewicz-Bielewicz, Wydziaª Informatyki ZUT May 8, 2019 8 Struktury algebraiczne ZASTOSOWANIE: Kryptograa. 1. Sprawdzi, czy jest dziaªaniem wewn trznym: (a) y y w zbiorze Q,

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

O pewnym zadaniu olimpijskim

O pewnym zadaniu olimpijskim O pewnym zadaniu olimpijskim Michaª Seweryn, V LO w Krakowie opiekun pracy: dr Jacek Dymel Problem pocz tkowy Na drugim etapie LXII Olimpiady Matematycznej pojawiª si nast puj cy problem: Dla ka»dej liczby

Bardziej szczegółowo

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie

Bardziej szczegółowo

CIĄGI LICZBOWE. Poziom podstawowy

CIĄGI LICZBOWE. Poziom podstawowy CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 2 Podstawowe zasady i prawa przeliczania

Bardziej szczegółowo

Algorytmy zwiazane z gramatykami bezkontekstowymi

Algorytmy zwiazane z gramatykami bezkontekstowymi Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

Analiza Matematyczna I.1

Analiza Matematyczna I.1 Aalza Matematycza I. Sera, Potr Nayar Zadae. Nech a k >, k =,..., b d lczbam rzeczywstym o tym samym zaku. Udowodj,»e prawdzwa jest erówo± + a + a... + a + a + a +... + a. Czy zaªo»ee,»e lczby a k maj

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

XVII Warmi«sko-Mazurskie Zawody Matematyczne

XVII Warmi«sko-Mazurskie Zawody Matematyczne 1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych

Bardziej szczegółowo

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,

Bardziej szczegółowo

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych.

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych. Temat: Poprawo całkowita i czciowa algorytmu. Złooo obliczeiowa algorytmu. Złooo czasowa redia i pesymistycza. Rzd fukcji. I. Literatura 1. A. V. Aho, J.E. Hopcroft, J. D. Ullma - Projektowaie i aaliza

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. Sprawdzian nr 4: (poniedziałek), godz. 10:15-10:35 (materiał zad.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. Sprawdzian nr 4: (poniedziałek), godz. 10:15-10:35 (materiał zad. Sprawdzia r 4: 4..04 (poiedziałek, godz. 0:5-0:35 (ateriał zad. -400 Kresy zbiorów. Defiicja: Zbiór Z R azyway ograiczoy z góry, jeżeli M R x M. Każdą liczbę rzeczywistą M R spełiającą waruek x M azyway

Bardziej szczegółowo

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu ➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje

Bardziej szczegółowo

Wektory w przestrzeni

Wektory w przestrzeni Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem

Bardziej szczegółowo

Zbiory ograniczone i kresy zbiorów

Zbiory ograniczone i kresy zbiorów Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów 18 maja 2013 Twierdzenie Halla o maª»e«stwach Problem Wyobra¹my sobie,»e mamy m dziewczyn i pewn liczb chªopców. Ka»da dziewczyna chce wyj± za m», przy czym ka»da z nich godzi si po±lubi tylko pewnych

Bardziej szczegółowo