A.1. Asymptotyka bez notacji asymptotycznej. Przykªad A.1. Zbada zachowanie asymptotyczne liczb Fibonacciego. Pokaza,»e. F n = round ( 1 5 Φ n )

Wielkość: px
Rozpocząć pokaz od strony:

Download "A.1. Asymptotyka bez notacji asymptotycznej. Przykªad A.1. Zbada zachowanie asymptotyczne liczb Fibonacciego. Pokaza,»e. F n = round ( 1 5 Φ n )"

Transkrypt

1 A Notacjaasymptotycza Badaj c du»e obiekty kombiatorycze cz sto ie jest koiecze pozaie dokªadej warto±ci okre±loej wielko±ci (szczególie gdy wzór dokªady jest skomplikoway), a jedyie jej warto± przybli»o, poda prostym wzorem. Tego typu mo»liwo±ci daje otacja asymptotycza, której po±wi coy jest te rozdziaª. A.1. Asymptotyka bez otacji asymptotyczej. Przykªad A.1. Zbada zachowaie asymptotycze liczb Fiboacciego. Pokaza,»e F = roud ( 1 5 Φ ), gdzie roud( ) ozacza zaokr gleie do ajbli»szej liczby caªkowitej, Φ = , zaa jest jako zªota liczba (ozaczaa tak a cze± greckiego architekta i rze¹biarza Fidiasza, który w swoich dzieªach stosowaª zªoty podziaª). Twierdzeie A.1. (Stirlig). Dla ka»dego N zachodzi 2π e <! < 2π e (A.1) Tabela A.1 pokazuje,»e przybli»eie Stirliga jest do± dokªade awet dla maªych warto±ci. Tablica A.1: Przybli»eia Stirliga dla 10 (bª d w %) 2π e 2π e ! bª d bª d 1 1 0,922 7,7863 1,002 0, ,919 4,0498 2,001 0, ,836 2,7298 6,001 0, ,506 2, ,001 0, ,019 1, ,003 0, ,078 1, ,009 0, ,396 1, ,040 0, ,395 1, ,218 0, ,873 0, ,378 0, ,619 0, ,051 0,0003

2 2 A. Notacja asymptotycza W obu powy»szych przypadkach, mo»a zauwa»y brak otacji, która pozwalaªa by precyzyjie zapisa ró»e wariaty potoczego wyra»eia,»e dwie wielko±ci s w przybli-»eiu rówe dla du»ych. A.2. Symbol o-du»e (O) Pierwszym rozpatrywaym symbolem asymptotyczym jest symbol O (czytaj o du»e). Przy pomocy tego symbolu mo»emy zapisywa asymptotycze zachowaie si jedej fukcji w stosuku do asymptotyczego zachowaia si drugiej. Deicja A.1. (Symbol O). Niech f, g : N R b d dwiema fukcjami. Mówimy,»e f() jest rz du co ajwy»ej g() (przy ) i zapisujemy f() = O (g()), wtedy i tylko wtedy, gdy c>0 f() c g(). Przykªad A.2. Niech f : N R b dzie fukcj tak,»e f() = 2 dla ka»dego N. Sprawdzi które z ast puj cych wyra»e«s prawdziwe (a) f() = O (), (b) f() = O ( 2 ), (c) f() = O ( 3 ). Wyra»eie O (f()) = O (g()) ozacza,»e ka»da fukcja która jest O (f()) jest tak»e O (g()) (p. O ( 2 ) = O ( 3 )). Uwaga. Zapis przy u»yciu symboli asymptotyczych (w szczególym przypadku O) ie jest symetryczy. To zaczy, piszemy p. f() = O ( 2 ), ale ie mo»emy zapisa O ( 2 ) = f(). Podobie O ( 2 ) = O ( 3 ) ale O ( 3 ) O ( 2 ). Aby to sobie lepiej uzmysªowi mo»emy iterpretowa O (f()) jako klas fukcji które s rz du co ajwy»ej f(). Przykªad A.3. Pokaza,»e dla dowolych fukcji f, g : N R (a) f() = O (f()), (b) je»eli f() = O (g()), to f() = O (αg()) dla dowolej staªej α 0, (c) f() + g() = O (max{ f(), g() }), (d) je»eli istieje f(), to f() = O (g()) wtedy i tylko wtedy, gdy <. Wªaso± (d) z poprzediego przykªadu cz sto uªatwia sprawdzaie czy f() = O (g()), je»eli potramy wyliczy (oszacowa ) graic f(). Jedak ie zawsze ta graica istieje, co pokazuje ast puj cy przykªad: Przykªad A.4. Poda przykªady takich fukcji f, g : N R,»e f() = O (g()), ie istieje. a f() Przykªad A.5. Udowodi,»e log = O ( ) i O (log ).

3 A.3. Symbol o-maªe (o) 3 Przykªad A.6. Niech w : N R b dzie wielomiaem daym przez w() = a k k + a k 1 k a 1 + a 0, gdzie a k 0. Pokaza,»e w() = O ( k). Wyra»eia zawieraj ce symbole asymptotycze mog by bardziej skomplikowae, a przykªad wyra»eie f() = g() + O (h()), rozumiemy jako f() g() = O (h()). Przykªad A.7. Pokaza,»e ( + 1) 3 = 3 + O ( 2 ). Przykªad A.8. Zale¹ bª d w ast puj cym rozumowaiu: Niech S() = Poiewa», ka»dy skªadik tej sumy jest, wi c uogóliaj c Przykªad A.3(c) a sum skªadików otrzymamy S() = O (max{1, 2,...,}) = O (). Zauwa»my,»e z Przykªadu 1.7 wyika,»e S() = , co w poª czeiu z Przykªadem A.2(a) daje S() O (). 2 Przykªad A.9. Poda przykªad takich fukcji f, g : N R,»e f() O (g()) i g() O (f()). A.3. Symbol o-maªe (o) Notacj asymptotycz o-maªe stosujemy, gdy jeda fukcja jest rz dowo (pomijalie) miejsza od drugiej. Deicja A.2. (Symbol o). Niech f,g : N R b d dwiema fukcjami. Mówimy wówczas,»e f() jest rz du miejszego i» g() (przy ) i zapisujemy f() = o(g()), je»eli c>0 f() < c g(). Przykªad A.10. Pokaza,»e dla dowolych fukcji f,g : N R (a) f() o(f()); (b) je»eli f() = o(g()), to f() = o(αg()) dla dowolej staªej α 0; (c) je»eli f() = o(g()), to f() = O (g()); (d) je»eli istieje, to f() = (g()) wtedy i tylko wtedy, gdy = 0. Czasami u»ywa si rówie» otacji ω zdeiowaej ast puj co: f() = ω(g()) wtedy i tylko wtedy, gdy g() = o(f()). Je»eli graica f() istieje, to f() = ω(g()) wtedy i tylko wtedy, gdy =. A.4. Pozostaªe symbole asymptotycze Przypomijmy,»e symbol O ozacza rz du co ajwy»ej. Istieje rówie» symbol asymptotyczy ozaczaj cy rz du co ajmiej jest im Ω.

4 4 A. Notacja asymptotycza Deicja A.3. (Symbol Ω). Niech f, g : N R b d dwiema fukcjami. Mówimy wówczas,»e f() jest rz du co ajmiej g() (przy ) i zapisujemy f() = Ω(g()), wtedy i tylko wtedy, gdy c>0 f() c g(). Zwró my uwag,»e f() = Ω(g()) wtedy i tylko wtedy, gdy g() = O (f()). Kolejy symbol asymptotyczy Θ odpowiada sformuªowaiu jest tego samego rz du. Deicja A.4. (Symbol Θ). Niech f, g : N R b d dwiema fukcjami. Mówimy wówczas,»e f() jest tego samego rz du co g() (przy ) i zapisujemy f() = Θ(g()), je»eli c 1,c 2 >0 c 1 g() f() c 2 g(). Zwró my uwag,»e f() = Θ(g()) wtedy i tylko wtedy, gdy f() = O (g()) i f() = Ω(g()). Przykªad A.11. Udowodi,»e log! = Θ( log ), gdzie wszystkie logarytmy s o podstawie a > 1. Deicja A.5. (Symbol ). Niech f, g : N R b d dwiema fukcjami. Mówimy wówczas,»e f() jest asymptotyczie rówe g() (przy ) i zapisujemy f() g(), je»eli ε>0 (1 ε)g() f() (1 + ε)g(). Przykªad A.12. Pokaza ast puj ce wªaso±ci symbolu (dla dowolych fukcji f, g, h : N R): (a) f() f() (tj. relacja jest zwrota); (b) je»eli f() g(), g() f() (tj. relacja jest symetrycza); (c) je»eli f() g() i g() h(), to f() h() (tj. relacja jest przechodia); f() (d) je»eli istieje, to f() f() g() wtedy i tylko wtedy, gdy = 1. Przykªad A.13. Pokaza,»e f() g() wtedy i tylko wtedy, gdy f() = g()(1+o(1)). Tabela A.2 podsumowuje wiadomo±ci o otacji asymptotyczej w przypadku, gdy graica istieje oraz = g. A.5. Twierdzeie o rekurecji uiwersalej W aalizie algorytmów cz sto mamy do czyieia z podziaªem problemu a miejsze podproblemy, rozwi zywaiem ich i a podstawie uzyskaych wyików wyzaczaiem rozwi zaia dla problemu orygialego (p. algorytmy typu dziel i rz d¹).

5 A.5. Twierdzeie o rekurecji uiwersalej 5 Tablica A.2: Zestawieie symboli asymptotyczych g = 0 g (0, 1) g = 1 g (1, ) g = f() = O (g()) tak tak tak tak ie f() = Ω(g()) ie tak tak tak tak f() = Θ(g()) ie tak tak tak ie f() g() ie ie tak ie ie f() = o(g()) tak ie ie ie ie f() = ω(g()) ie ie ie ie tak Przykªad A.14. Zaªó»my,»e rozwi zaie problemu wielko±ci wymaga rozwi zaia dwóch problemów wielko±ci i 2 a ast pie poª czeia ich w caªo± kosztem a, 2 gdzie a jest staª, a rozwi zaie problemu wymiaru 1 dokoywae jest kosztem staªym b. Wówczas koszt rozwi zaia tego problemu t() speªia ast puj ce rówaie rekurecyje: ( ( t() = t + t + a, t(1) = b. 2 ) Spróbuj rozwi za to rówaie. Twierdzeie A.2. (O rekurecji uiwersalej). Dla a 0, b > 0, N oraz f : N R + iech Wówczas { at( ) + f(), dla b, t() = b Θ(1), dla = 1, 2,...,b 1. je»eli f() = O ( log b a ε) (ε > 0), to t() = Θ( log a b ); je»eli f() = Θ( log b a ), to t() = Θ( log a b log ); je»eli f() = O ( log a+ε) b i af( ) cf() (ε > 0 i 0 < c < 1), to t() = Θ(f()). b Twierdzeie o rekurecji uiwersalej mo»emy stosowa jedyie, je»eli algorytm dzieli zadaie a pew liczb rówych cz ±ci. W ogólym przypadku ajsiliejszym arz dziem do badaia zªo»oo±ci algorytmów typu dziel i rz d¹ jest twierdzeie Akra i Bazzi: Twierdzeie A.3. (Akra-Bazzi). Dla ustaloego k N, iech a i 0, b i (0, 1) b d staªymi dla i = 1, 2,...,k, f : N R +, f (x) = O (x c ) (c staªe) i h i () = O Wówczas t() = k i=1 a i t(b i + h i ()) + f(), dla 0, Θ(1), dla = 1, 2,..., 0 1. ( )) t() = Θ ( p f(x) x p+1dx, gdzie p zdeiowae jest rówo±ci k a i b p i = 1. i=1 ( log 2 )

6 6 A. Notacja asymptotycza A.6. Zadaia Zadaie A.1. Sprawd¹, które z ast puj cych wyra»eia s poprawe: (a) 2 +1 = O (2 ), (b) ( + 1)! = O (!), (c) dla dowolej fukcji f : N R, f() = O () (f()) 2 = O ( 2 ), (c) dla dowolej fukcji f : N R, f() = O () 2 f() = O (2 ). Zadaie A.2. Udowodij,»e relacja O jest przechodia, to zaczy: je»eli f() = O (g()) i g() = O (h()), to f() = O (h()). Zadaie A.3. Niech fukcje f 1,f 2, g 1,g 2 b d dodatie (tj. f 1,f 2,g 1,g 2 : N R + ) i iech ozacza jed z operacji arytmetyczych: +,,,/. Pokaza,»e zdaie: Je»eli f 1 () = O (g 1 ()) oraz f 2 () = O (g 2 ()), to f 1 () f 2 () = O (g 1 () g 2 ()) jest prawdziwe dla {+, } i faªszywe dla {, /}. Zadaie A.4. Uporz dkuj symbolem O (p. O ( 1 ) = O (1) = O () = O ( 2 )) ast puj ce fukcje: l, 1+ε, (1 + ε), l, ( + l 2 ) 5, gdzie 0 < ε < 1. Zadaie A.5. Pokaza,»e dla dowolych a,b > 1, log a = Θ(log b ). Zadaie A.6. Pokaza,»e dla dowolego k N zachodzi(wªaso± ta zachodzi rówie» dla wszystkich k rzeczywistych takich,»e k > 1) i k = Θ( k+1 ). i=1 Zadaie A.7. Udowodij,»e 2 = o(!) = o( ). Zadaie A.8. Jaki symbol asymptotyczy mo»a wstawi w miejsce X w wyra»eiu f() = X(g(), aby byªo oo prawdziwe, je»eli (a) f() = i g() = 2; (b) f() = l i g() = 2 l ; (c) f() = ( + 1)! i g() =! (d) f() = ( 2 ) i g() = 4 ; (e) f() = O () i g() = (f()) 2.

7 A.6. Zadaia 7 Zadaie A.9. Dla ka»dego z poi»szych zda«albo udowodij,»e jest oo prawdziwe dla dowolych fukcji f, g : N R, albo udowodij,»e jest oo ieprawdziwe dla wszystkich fukcji, albo podaj przykªady fukcji dla których zdaie jest prawdziwe i przykªady fukcji dla których zdaie jest ieprawdziwe. (a) f() = O ((f() 2 ); (b) f() = o(g()) i f() = Ω(g()); (c) f() O (g()) i g() O (f()); (d) f() = Ω(g()) i f() = ω(g()); (e) f() = O ( 2 l f()). Zadaie A.10. Udowodij,»e (a) 2 2 = O (5 ); (b) + = O (); (c) k 2 = O (4 ), gdzie k N jest staª ; Zadaie A.11. Poprawi rezultat z Przykªadu A.11, dowodz c,»e l! l. Zadaie A.12. Niech f, g : N R + b d dwiema fukcjami dodatimi. Udowodi,»e (a) f() = Θ(g()) wtedy i tylko wtedy, gdy l f() = lg() + O (1); (b) je»eli f() = Θ(g()), to ie koieczie lf() = O (l g()); (c) je»eli f() = Θ(g()) i g(), to lf() l g(). Zadaie A.13. Udowodi, korzystaj c z twierdzeia Stirliga, ast puj cy wzór Stirliga! ( ) 2π. e Zadaie A.14. Zajd¹ asymptotycze rozwi zaia rówa«rekurecyjych, wszystkie z zaªo»eiem,»e t(1) = 1: (a) t() = t ( + ; (b) t() = 2t ( + ; (c) t() = 3t ( + ; (d) t() = t ( ( 3 ) + t + ; (e) t() = t ( 3) + l ; (f) t() = 3t ( 5) + l 2 ;

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Jerzy Jaworski, Zbigniew Palka, Jerzy Szyma«ski Matematyka dyskretna dla informatyków uzupeænienia Pozna«007 A Notacja asymptotyczna Badaj c du»e obiekty kombinatoryczne

Bardziej szczegółowo

Wykªad 2. Szeregi liczbowe.

Wykªad 2. Szeregi liczbowe. Wykªad jest prowadzoy w oparciu o podr czik Aaliza matematycza 2. Deicje, twierdzeia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 2. Szeregi liczbowe. Deicje i podstawowe twierdzeia Deicja Szeregiem liczbowym

Bardziej szczegółowo

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim.

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim. Wykªad 05 graice cd, przykªady Rozpocziemy od podaia kilku przykªadów obliczaia graic ci gów Niech a > Ozaczmy a = c > 0 Mamy Poiewa» c = +, wi c tak»e a = + c + c c a = + dla a > 5 Poadto, zauwa»amy,»e

Bardziej szczegółowo

Zbiory. Zadanie 5. Wykaza to»samo±ci (a) A (B \ C) = [(A B) \ C] (A C), (b) A \ [B \ (C \ D)] = (A \ B) [(A C) \ D],

Zbiory. Zadanie 5. Wykaza to»samo±ci (a) A (B \ C) = [(A B) \ C] (A C), (b) A \ [B \ (C \ D)] = (A \ B) [(A C) \ D], x FAQ ANALIZA R c ZADANIA Zbiory Zadaie 1. Opisa zbiory A B, A B, A \ B, B \ A je±li A = {x R : x 3x < 0, }; B = {x R : x 3x + 4 0} Zadaie. Niech A, B, C, D b d podzbiorami przestrzei X. Udowodi,»e A \

Bardziej szczegółowo

Funkcje tworz ce skrypt do zada«

Funkcje tworz ce skrypt do zada« Fukcje tworz ce skrypt do zada«mateusz Rapicki, Piotr Suwara 20 maja 2012 1 Kombiatoryka Deicja 1 (dwumia Newtoa) dla liczb caªkowitych ieujemych, k to liczba k sposobów wybraia k elemetów z -elemetowego

Bardziej szczegółowo

Analiza Matematyczna I.1

Analiza Matematyczna I.1 Aaliza Matematycza I Seria, P Nayar, 0/ Zadaie Niech a k >, (k =,, ) b d liczbami rzeczywistymi o tym samym zaku Udowodij,»e prawdziwa jest ierówo± ( + a )( + a ) ( + a ) + a + a + + a Czy zaªo»eie,»e

Bardziej szczegółowo

lim a n Cigi liczbowe i ich granice

lim a n Cigi liczbowe i ich granice Cigi liczbowe i ich graice Cigiem ieskoczoym azywamy dowol fukcj rzeczywist okrelo a zbiorze liczb aturalych. Dla wygody zapisu, zamiast a() bdziemy pisa a. Elemet a azywamy -tym wyrazem cigu. Cig (a )

Bardziej szczegółowo

Analiza Matematyczna I.1

Analiza Matematyczna I.1 Aaliza Matematycza I Seria, P Nayar, 0/3 Zadaie Niech a k >, (k =,, b d liczbami rzeczywistymi o tym samym zaku Udowodij,»e prawdziwa jest ierówo± ( + a ( + a ( + a + a + a + + a Czy zaªo»eie,»e liczby

Bardziej szczegółowo

> 1), wi c na mocy kryterium porównawczego szereg sin(n n)

> 1), wi c na mocy kryterium porównawczego szereg sin(n n) .65. si() W szeregu tym wyst puj wyrazy dodatie i ujeme, ale ie a przemia. Zbadajmy wi c szereg: si() zªo»oy z warto±ci bezwzgl dych wyrazów szeregu daego w zadaiu. Poiewa» si(), wi c si() = Po prawej

Bardziej szczegółowo

wi c warunek konieczny zbie»no±ci szeregu jest speªniony. 12 = 9 12 = 3 4 k(k+1) k=1 ( k+1 k(k+1) n+1 = 1 1 n+1 = 1 0 = 1 36 = =

wi c warunek konieczny zbie»no±ci szeregu jest speªniony. 12 = 9 12 = 3 4 k(k+1) k=1 ( k+1 k(k+1) n+1 = 1 1 n+1 = 1 0 = 1 36 = = 32 (+) Jest to szereg o wyrazach dodatich Poadto wyraz ogóly tego szeregu jest zbie»y do 0, wi c waruek koieczy zbie»o±ci szeregu jest speªioy s (+) 2 s 2 s + 2 (2+) 2 + 2 3 2 + 6 3 6 + 6 4 6 2 3 s 3 s

Bardziej szczegółowo

szereg jest szeregiem o wyrazach nieujemnych. Ponadto dla α (0; π ) zachodzi nierówno± sinα < α,

szereg jest szeregiem o wyrazach nieujemnych. Ponadto dla α (0; π ) zachodzi nierówno± sinα < α, .. si Poiewa» si < 1; 1 >, wi c zbadajmy szereg zªo»oy z warto±ci bezwzgl dych wyrazów szeregu daego w zadaiu: () si = si, ale si < 0; 1 > Zatem si 1 () Po prawej stroie powy»szej ierówo±ci mamy szereg

Bardziej szczegółowo

Tw. 1. Je»eli ci g {a n } ma granic a i ci g {b n } ma granic b, to ci g {a n b n } ma granic a b. Tw. 2. b n. Tw. 3. Tw. 4.

Tw. 1. Je»eli ci g {a n } ma granic a i ci g {b n } ma granic b, to ci g {a n b n } ma granic a b. Tw. 2. b n. Tw. 3. Tw. 4. Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a + b } ma graic a+b. Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a b } ma graic a-b. Tw.. Je»eli ci g {a } ma graic

Bardziej szczegółowo

FAQ ANALIZA R c ZADANIA

FAQ ANALIZA R c ZADANIA FAQ ANALIZA R c ZADANIA Caªki wersja wst pa uwaga a bª dy!!! Fukcje pierwote Zadaie. Rozgrzewka. Obliczy caªki ieozaczoe, tz zale¹ fukcje pierwote. W awiasach wymieioe s arz dzia jakie mog by potrzebe

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki. 7 Sumy i iloczyny uogólnione

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki. 7 Sumy i iloczyny uogólnione Aaliza matematycza Notatki do wykªadu Mateusz Kwa±icki 7 Sumy i iloczyy uogólioe Dla dowolych liczb a k, a k+, a k+,..., a l okre±lamy sum uogólio i iloczy uogólioy: a k + a k+ + a k+ +... + a l, l a k

Bardziej szczegółowo

Funkcje tworz ce - du»y skrypt

Funkcje tworz ce - du»y skrypt Fukcje tworz ce - du»y skrypt Mateusz Rapicki, Piotr Suwara 9 sierpia 202 Kombiatoryka ( ) Deicja (dwumia Newtoa). k dla liczb caªkowitych ieujemych, k to liczba sposobów wybraia k elemetów z -elemetowego

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji).

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji). Plan Spis tre±ci 1 Granica 1 1.1 Po co?................................. 1 1.2 Denicje i twierdzenia........................ 4 1.3 Asymptotyka, granice niewªa±ciwe................. 7 2 Asymptoty 8 2.1

Bardziej szczegółowo

Matematyczne podstawy kognitywistyki

Matematyczne podstawy kognitywistyki Matematycze podstawy kogitywistyki Jerzy Pogoowski Zakªad Logiki i Kogitywistyki UAM pogo@amu.edu.pl Struktury ró»iczkowe Jerzy Pogoowski (MEG) Matematycze podstawy kogitywistyki Struktury ró»iczkowe 1

Bardziej szczegółowo

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że KILKA ZADAŃ O SZEREGACH Zbadać zbieżość i zbieżość bezwzgle da = a, jeśli a = a!! ; a + + ; c + ; ć! ; d +/ + 3 ; e! e 3 3+ ; f ; + g 000+ ; h ; + i! ; j k ; l 5 + l + 7 0 +3 6 0 + ; +3 ; ; m 3 + 3 ; +a

Bardziej szczegółowo

Analiza Matematyczna I.1

Analiza Matematyczna I.1 Aalza Matematycza I. Sera, Potr Nayar Zadae. Nech a k >, k =,..., b d lczbam rzeczywstym o tym samym zaku. Udowodj,»e prawdzwa jest erówo± + a + a... + a + a + a +... + a. Czy zaªo»ee,»e lczby a k maj

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223 Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

3 Metody zliczania obiektów

3 Metody zliczania obiektów 3 Metody zliczaia obiektów Metoda bijektywa 3.1 Metoda bijektywa zliczaia obiektów kombiatoryczych polega a wskazaiu bijekcji pomi dzy badaym obiektem, a obiektem, którego ilo± elemetów jest am ju» zaa.

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematya dysreta dla iformatyów Cz ± I: Elemety ombiatoryi Jerzy Jaworsi Zbigiew Pala Jerzy Szyma«si Uiwersytet im Adama Miciewicza Poza«2007 3 Schematy wyboru i tożsamości ombiatorycze 31 Wariacje z

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

2 Liczby rzeczywiste - cz. 2

2 Liczby rzeczywiste - cz. 2 2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:

Bardziej szczegółowo

Prace domowe z matematyki Semestr zimowy 2010/2011. Zoa Zieli«ska-Kolasi«ska

Prace domowe z matematyki Semestr zimowy 2010/2011. Zoa Zieli«ska-Kolasi«ska Prace domowe z matematyki Semestr zimowy 2010/2011 Zoa Zieli«ska-Kolasi«ska 5 pa¹dzierika 2010 Rozdziaª 0 Uwagi Prace domowe ie s obowi zkowe aczkolwiek zach cam gor co do ich robieia i oddawaia mi a kartkach.

Bardziej szczegółowo

GEOMETRIA I UŠAMKI PIOTR NIADY

GEOMETRIA I UŠAMKI PIOTR NIADY GEOMETRIA I UŠAMKI PIOTR NIADY Alicja raz czy dwa zajrzaªa do ksi»ki czytaej przez siostr, ale ie byªo tam ai ilustracji, ai kowersacji. A jaki mo»e by po»ytek z ksi»kipomy±laªa Alicjaw której ie ma ai

Bardziej szczegółowo

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki Aaliza matematycza 1 Notatki do wykªadu Mateusz Kwa±icki 1 Idukcja matematycza Przykªad 1. Pewego popoªudia Kubu± Puchatek kupiª pust beczk, która mie±ci 20 sªoików miodu, i wlaª do iej wszystkie swoje

Bardziej szczegółowo

Ciągi i szeregi liczbowe. Ciągi nieskończone.

Ciągi i szeregi liczbowe. Ciągi nieskończone. Ciągi i szeregi liczbowe W zbiorze liczb X jest określoa pewa fukcja f, jeŝeli kaŝdej liczbie x ze zbioru X jest przporządkowaa dokładie jeda liczba pewego zbioru liczb Y Przporządkowaie to zapisujem w

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Repetytorium z Matematyki Elementarnej Wersja Olimpijska

Repetytorium z Matematyki Elementarnej Wersja Olimpijska Repetytorium z Matematyi Elemetarej Wersja Olimpijsa Podae tutaj zadaia rozwiązywae były w jedej z grup ćwiczeiowych Są w więszości ieco trudiejsze od pozostałych zadań przygotowaych w ramach przedmiotu

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

1. Granica funkcji w punkcie

1. Granica funkcji w punkcie Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych Temat: Poprawo całkowita i czciowa algorytmu. Złooo obliczeiowa algorytmu. Złooo czasowa redia i pesymistycza. Rzd fukcji. I. Literatura 1. L. Baachowski, K. Diks, W. Rytter Algorytmy i struktury daych.

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

Zbiory ograniczone i kresy zbiorów

Zbiory ograniczone i kresy zbiorów Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy

Bardziej szczegółowo

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie

Bardziej szczegółowo

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji W poprzednim odcinku... Podstawy matematyki dla informatyków Rodzina indeksowana {A t } t T podzbiorów D to taka funkcja A : T P(D),»e A(t) = A t, dla dowolnego t T. Wykªad 3 20 pa¹dziernika 2011 Produkt

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 4 Zależności rekurencyjne Wiele zale»no±ci

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

Podstawy matematyki nansowej

Podstawy matematyki nansowej Podstawy matematyki asowej Omówimy tutaj odstawowe oj cia matematyki asowej. Jest to dobre miejsce, gdy» zagadieia te wi» si z ci gami, w szczególo±ci z ci giem arytmetyczym i geometryczym. Omówimy zagadieie

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

Rachunek ró»niczkowy funkcji jednej zmiennej

Rachunek ró»niczkowy funkcji jednej zmiennej Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Nieklasyczne modele kolorowania grafów

Nieklasyczne modele kolorowania grafów 65 Nieklasycze modele kolorowaia grafów 66 Kolorowaie sprawiedliwe Def. Jeli wierzchołki grafu G moa podzieli a k takich zbiorów iezaleych C,...,C k, e C i C j dla wszystkich i,j,...,k, to mówimy, e G

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1 30. Obliczyć wartość graicy ( 0 ( ( ( 4 +1 + 1 4 +3 + 4 +9 + 3 4 +7 +...+ 1 4 +3 + 1 ( ( 4 +3. Rozwiązaie: Ozaczmy sumę występującą pod zakiem graicy przez b. Zamierzamy skorzystać z twierdzeia o trzech

Bardziej szczegółowo

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych: Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

Ÿ1 Oznaczenia, poj cia wst pne

Ÿ1 Oznaczenia, poj cia wst pne Ÿ1 Oznaczenia, poj cia wst pne Symbol sumy, j, k Z, j k: k x i = x j + x j+1 + + x k. i=j Przykªad 1.1. Oblicz 5 i=1 2i. Odpowied¹ 1.1. 5 i=1 2i = 2 1 + 2 2 + 2 3 + 2 4 + 2 5 = 2 + 4 + 8 + 16 + 32 = 62.

Bardziej szczegółowo

x y x y x y x + y x y

x y x y x y x + y x y Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

Lab. 02: Algorytm Schrage

Lab. 02: Algorytm Schrage Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z

Bardziej szczegółowo

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy

Bardziej szczegółowo

Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa

Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa Mare Be±a, Statystya matematycza, wyªad 3 38 3 Statystyi zupeªe 3. Wyªadicze rodziy rozªadów prawdopodobie«stwa Zacziemy od deicji Deicja 3. Rodzi rozªadów {µ θ } θ Θ azywamy wyªadicz rodzi rozªadów -

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE WARTOŚĆ BEZWZGLĘDNA LICZBY Wartość bezwzględą liczby rzeczywistej x defiiujemy wzorem: { x dla x 0 x = x dla x < 0 Liczba x jest to odległość a osi liczbowej

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

Uczenie Wielowarstwowych Sieci Neuronów o

Uczenie Wielowarstwowych Sieci Neuronów o Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji

Bardziej szczegółowo

Równoliczno zbiorów. Definicja 3.1 Powiemy, e niepuste zbiory A i B s równoliczne jeeli istnieje. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~.

Równoliczno zbiorów. Definicja 3.1 Powiemy, e niepuste zbiory A i B s równoliczne jeeli istnieje. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~. 16 Rówoliczo zbiorów Defiicja 3.1 Powiemy, e iepuste zbiory A i B s rówolicze jeeli istieje f : A B. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~. Twierdzeie 3.1 (podstawowa właso rówoliczoci zbiorów)

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

3 Arytmetyka. 3.1 Zbiory liczbowe.

3 Arytmetyka. 3.1 Zbiory liczbowe. 3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N

Bardziej szczegółowo

CAŁKA NIEOZNACZONA. F (x) = f(x) dx.

CAŁKA NIEOZNACZONA. F (x) = f(x) dx. CAŁKA NIEOZNACZONA Mówimy, że fukcja F () jest fukcją pierwotą dla fukcji f() w pewym ustaloym przedziale - gdy w kadym pukcie zachodzi F () = f(). Fukcję pierwotą często azywamy całką ieozaczoą i zapisujemy

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

Ekstremalna teoria grafów Filip Lurka V Liceum ogólnoksztaªc ce w Krakowie

Ekstremalna teoria grafów Filip Lurka V Liceum ogólnoksztaªc ce w Krakowie Ekstremala teoria grafów Filip Lurka V Liceum ogóloksztaªc ce w Krakowie 1 Ekstremala Teoria Grafów 1 Ekstremala Teoria Grafów Filip Lurka 1.1 Teoria Deicja 1.1 Klik azywamy graf peªy; ka»de dwa wierzchoªki

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...

Bardziej szczegółowo

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka EGZAMIN MAGISTERSKI, 26.06.2017 Biomatematyka 1. (8 punktów) Rozwój wielko±ci pewnej populacji jest opisany równaniem: dn dt = rn(t) (1 + an(t), b gdzie N(t) jest wielko±ci populacji w chwili t, natomiast

Bardziej szczegółowo

Zadania domowe z Analizy Matematycznej III - czȩść 2 (funkcje wielu zmiennych)

Zadania domowe z Analizy Matematycznej III - czȩść 2 (funkcje wielu zmiennych) Zadaia domowe z AM III dla grup E7 (semestr zimow 07/08) Czȩść Zadaia domowe z Aaliz Matematczej III - czȩść (fukcje wielu zmiech) Zadaie. Obliczć graice lub wkazać że ie istiej a: (a) () (00) (b) + ()

Bardziej szczegółowo

Matematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa

Matematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa Matematyka Justyna Winnicka Szkoªa Gªówna Handlowa rok akademicki 2016/2017 kontakt, konsultacje, koordynator mail: justa_kowalska@yahoo.com, jkowal4@sgh.waw.pl, justyna.winnicka@sgh.waw.pl konsultacje:

Bardziej szczegółowo

AM /2010. Zadania z wicze«18 i 22 I 2010.

AM /2010. Zadania z wicze«18 i 22 I 2010. AM 2009/200 Zadaia z wicze«8 i 22 I 200 Omówieie zada«z kolokwium i zada«domowych Zadaie Niech f : [a, + ) R b dzie fukcj ci gª Okre±lamy fukcj f wzorem f(t) = sup{f(x) : x t} Wyka»,»e f jest iemalej ca

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

x + 1 dla x 2 (d) f(x) = + 2 dla x > 2; (3) Znajd¹ dziedzin oraz funkcj odwrotn (je±li jest to proste) do: 1 log 3 x, (log2 x 2 ) 1 log 2

x + 1 dla x 2 (d) f(x) = + 2 dla x > 2; (3) Znajd¹ dziedzin oraz funkcj odwrotn (je±li jest to proste) do: 1 log 3 x, (log2 x 2 ) 1 log 2 1. Fukcje elemetare (1) Zajd¹ wykres fukcji arcsi(si(x)). (2) Zajd¹ posªuguj c si wykresami fukcje odwrote do podaych i»ej, a ast pie sprawd¹,»e s to rzeczywi±cie odwrote. (a) f(x) = 2x; (b) f(x) = 3x

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................

Bardziej szczegółowo

Logika matematyczna (16) (JiNoI I)

Logika matematyczna (16) (JiNoI I) Logika matematyczna (16) (JiNoI I) Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 15/16 lutego 2007 Jerzy Pogonowski (MEG) Logika matematyczna (16) (JiNoI I) 15/16

Bardziej szczegółowo

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,

Bardziej szczegółowo

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

Algorytmy zwiazane z gramatykami bezkontekstowymi

Algorytmy zwiazane z gramatykami bezkontekstowymi Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

Analiza matematyczna I

Analiza matematyczna I KAPITAŁ LUDZKI NARODOWA STRATEGIA SPÓJNOŚCI UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ SPOŁECZNY Projekt p. Wzmocieie potecjaªu dydaktyczego UMK w Toruiu w dziedziach matematyczo-przyrodiczych realizoway w ramach

Bardziej szczegółowo