Zadanie 1. Zadanie 2. Zadanie 3
|
|
- Przybysław Urban
- 7 lat temu
- Przeglądów:
Transkrypt
1 Zadanie R to rata miesi czna, odsetki w k-tej racie to ods k = R( v 8 k ), a spªata kapitaªu wyra»a si wzorem kap k = Rv 8 k, gdzie v = (, 5) /6. Dany jest ukªad nierówno±ci z którego wynika Rv 8 N R( v 8 N ), Rv 8 M R( v 8 M ), N 8 δ ln(, 5),, M 8 ln(4/) 45, 6, δ gdzie δ = ln(, 5)/6, zatem N =, M = 46, ODP = M N = 4. Zadanie i = ODP to stopa zwrotu w funduszu umorzeniowym. Dla pierwszego kredytu odsetki netto wyra-»aj si wzorem 458, 48 = 4 65 (5 4X), gdzie X jest roczn rat wpªacan na fundusz umorzeniowy, zatem Xs 4 i = 5. Dla drugiego kredytu 7, 97 = 65 (5 Y ), Y s i = 5. Wzory na X i Y podstawiamy do odpowiednich równa«, rozpisujemy wzory na warto±ci przyszªe rent i otrzymujemy ukªad równa«od i ( + i) 4 i = 4, 64, ( + i) i =, 848. Niech x = ( + i) 4, wyznaczmy i w zale»no±ci od x z pierwszego równania powy»ej i podstawmy do drugiego, otrzymujemy trójmian kwadratowy postaci x + x + (, 848 ) =, 4, 64 x <, x, = ( + i) 4, ODP %. Warto zauwa»y,»e dysponuj c kalkulatorem z funkcj solve informacja o drugim kredycie jest zupeªnie niepotrzebna. Zadanie K = ODP, z tre±ci zadania wynika ukªad równa«k = Xv +, 5Xv , 5 v X + 5v + Y v 4 + (Y )v (Y )v 5, 7659, = X( +, , 5 ) Y + K, K = (X + Y )a , 74v 9, LKU,
2 który sprowadza si do liniowego ukªadu postaci K X a,5v,5 Y v a = 5v v 4 (Ia), K + Xä i=,5 + Y = 7659, 5 + +, K Xa 8 Y a 8 = 449, 74v 9, gdzie a,5v oznacza warto± dzisiejsz renty skalkulowan przy czynniku dyskontuj cym =, 5v. Rozwi zaniem ukªadu s X, Y 5 i ODP = K 4857, 4 5. Zadanie 4 NP V = a () 5 + 8v 5 a (6) ZAD( /) = v + a () ZAD() = a () + 8v a (6) + 6v 8 a (4), ODP = ods + ods 6. v + 8v 5 a (6) + 6v 6 a (4). + 6v 5 a (4). ods = (ZAD( /) ZAD()) = v 5 + 8a (6) v ( v ) + 6v 5 a (4) ( v ). ZAD(6 /) = v + 8v a (6) ZAD(6) = 8a (6) + 6v a (4). + 6v 6 a (4). ods 6 = (ZAD(6) ZAD(6 /)) = v 6 + 6v a (4) ( v ). ODP = a (4) [6(v5 v 6 )+6(v v 6 )]+8a (6) (v v 5 )+ v + v 6 +v v 5 +v 6 v 6. ODP = a (4) [4 i() v i(6) v 5 ]+ a(6) i() v 5 Zadanie 5 () +a i () v (6) +a i(6) v + i() v + i(6) v 6 = C. Dane jest S = 4, r =, 8, T = /. Skoro opcja jest at-the-money to strike K = S = 4. C =, 5987 = N(d ), zatem d = N (, 5987) =, 5. Ze wzoru na d, 5 = d = ln( S K ) + (r +, 5σ )T σ T powstaje równanie kwadratowe na σ, którego rozwi zania to, i, 8, skoro σ <, 5 to σ =,. Kalkulujemy d = d σ T =, 5. Niech teraz C(S, T ) oznacza cen europejskiej opcji call z czasem do wykonania T, gdy cena akcji wynosi S. Zgodnie z MBS wyceniamy C (S, T ), Je±li uczestnik rynku stosuje delta-hedging to zajmuje odpowiedni pozycj w akcjach, tak by pochodna jego portfela po cenie akcji byªa =. Zatem warto± portfela w chwili t = to V () = N(d)S C (S, T ), Zerowy zyska/strata po dniu oznacza,»e V ()exp(, 8/65) = V (/65), st d V (/65) =, 5987S /65 C(S /65, / /65), Teraz kolejno wyceniamy opcje C(S /65, / /65) dla S /65 z odpowiedzi A,B,C,D,E i sprawdzamy czy zachodzi powy»sze równanie. Najbli»ej jest dla A, gdy S /65 = 4, 4, to V (/65), , ODP = S /65 S, 4. LKU,
3 Zadanie 6 BUO (bez utraty ogólno±ci) niech S =. Strata= K ( S()). Zatem ODP = K ( E(S() S() < )). Przy S = i korzystaj c ze wzorów na warto± oczekiwan i wariancj rozkªadu log-normalnego wynika,»e µ =, 5 ln, 4 oraz σ = ln, 4. Zatem E(S() S() < ) = x exp ( (ln x+,5 ln,4) ) x π ln,4 ln,4 dx P(S() < ) P(S() < ) = P(ln S() < ), ale ln S() N(µ; σ ), zatem po unormowaniu Teraz, 5 ln, 4 P(S() < ) = Φ( ) Φ(, ). ln, 4 exp ( (ln x+,5 ln,4) ) ln,4 dx = ln x = u = π ln, 4 gdzie X N(, 5 ln, 4; ln, 4), zatem po unormowaniu exp ( (u,5 ln,4) ) ln,4 du = P(X < ), π ln, 4 St d (ln x +, 5 ln, 4) exp( )dx = Φ (, 5 ln, 4) Φ(, ). π ln, 4 ln, 4 ln, 4 ( Φ(, ) ) ODP K, 5K. Φ(, ) Zadanie 7 S() = A(). Z braku arbitra»u S() exp(, 4) = E(S()) = A()E(exp(, 5Z)., 5Z N(;, 5 ). Wiemy,»e dla X N(; σ ) zachodzi Eexp(X) = exp(, 5σ ), st d A() = S()exp(7/8). ODP = e,4 E max(s(), A()e,5Z ) = e / S()Emax(e 7/8, e,5z ) Niech teraz Y N(; /6), zachodzi + Emax(e 7/8, e,5z ) = Emax(e 7/8, e Y ) = e 7/8 4e x P(Y < 7/8) + e 8x dx. 7/8 π Po unormowaniu Y i przeksztaªceniu caªki do g sto±ci pewnego rozkªadu normalnego jest Emax(e 7/8, e,5z ) e 7/8 Φ(, 5) + e / P(W > 7/8), gdzie W N(/6; /6), st d Emax(e 7/8, e,5z ) e 7/8 Φ(, 5) + e / ( Φ(, 85)), zatem ODP S()e / ( e 7/8 ( Φ(, 5)) + e / Φ(, 85) ), 8S(). LKU,
4 Zadanie 8 Inwestor chce zmaksymalizowa oczekiwan stop zwrotu. EX =, 5 to jest tyle samo, co z inwestycji w lokat w okresie pierwszego roku, inwestor wybierze inwestycje w instrument I, poniewa» oczekiwana stopa zwrotu w okresie roku jest identyczna jak na lokacie i jest szansa,»e stopa zwrotu z inwestycji w I b dzie wi ksza ni», 5, a gdyby zainwestowaª w lokat nie miaªby mo»- liwo±ci wypªacenia pieni dzy w chwili t = i zmiany inwestycji na I. Zatem + ODP = E( + R )( + R ), gdzie R jest stale równe X, a R jest funkcj od (X, X ), tak,»e R (X, X ) = max(, 5; E(X X )), czyli zwraca oczekiwan stop zwrotu za drugi rok inwestycji, jak wybierze inwestor znaj c realizacje X. Zauwa»my,»e dla X [, 5;, ] jest R (X, X ) = X i R (X, X ) =, 5 wpp. Zatem + ODP = E( + R )( + R ) = =,5 x ODP %., x ( + x )( +, 5)dx dx + ( + R (x ))( + R (x, x ))dx dx, x,5 ( + x )( + x )dx dx, 465. Zadanie 9 Drzewo cen akcji wygl da nast puj co Nasza przestrze«probabilistyczna to Ω = {ω = (x x x ), x i {U, D}, i =,, }, gdzie np. (UDD) oznacza,»e w pierwszym kroku cena akcji wzrosªa, a w drugim i trzecim spadªa. Niech W (, ω) oznacza wypªat z opcji, je±li zrealizowaª si scenariusz ω, przykªadowo W (, UDD) = max(; 5; ; 8) min(; 5; ; 8) = 45. ODP = exp(, )E (W (, )), gdzie E oznacza warto± oczekiwan wzgl dem miary martyngaªowej (neutralnej wzgl dem ryzyka). Obliczamy 4 LKU,
5 p = (R D)/(U D), , gdzie U =, 5, D =, i R = exp(, ). Zatem ODP = exp(, ) ω Ω W (, ω)p (ω). Poni»ej w kolumnach kolejno: ω, W (, ω) i P (ω): ω =UUU W (, ω) = 95, 5 P (ω) =p ω =UUD W (, ω) = 56, 5 P (ω) =p ( p ) ω =UDU W (, ω) = 5 P (ω) =p ( p ) ω =DUU W (, ω) = 45 P (ω) =p ( p ) ω =DDU W (, ω) = 6 P (ω) =p ( p ) ω =DUD W (, ω) = P (ω) =p ( p ) ω =UDD W (, ω) = 45 P (ω) =p ( p ) ω =DDD W (, ω) = 48, 8 P (ω) =( p ) ODP = exp(, )(95, 5p + 6, 5p ( p ) + p ( p ) + 48, 8( p ) ) 4,. Zadanie K i to koszt i-tej strategii od storny rmy A, zatem K = 8, 584 = 6, 7, bo rma A chce osªoni nale»no± w kwocie 8 PLN. K (K) = (, 95v +, 95, 9 v +, 95, 9, 85v ) K%, bo rma A spªaci skªadk za dany rok tylko gdy B nie zbankrutuje. Skoro bank nie pobiera mar»y to K musi by równy kosztowi CDSa od strony banku. Koszt CDS od strony banku to K bank = (, 5 +, 95, +, 95, 9, 5) 8v, bo bank wypªaca rmie A 8 PLN w momencie t = je±li rma B zbankrutuje w okresie [, ]. Skoro K = K bank to K 8, Teraz szukamy K, takiego,»e K = K ( K), zatem K = (, 95v +, 95, 9 v +, 95, 9, 85v ) K, st d K 8, i ODP = ( K K)/K, %. 5 LKU,
Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4
Zadanie ODP = exp(, 4 )E W () = exp(, )E l (;+ ) (S()) ODP = exp(, )P (S() > ), gdzie oznacza miar martyngaªow. Przy MBS proces cen akcji ma posta S(t) = S() exp[t(µ, 5σ ) + σw t ], gdzie {W t, t } jest
Bardziej szczegółowoZadanie 1. Zadanie 2. Niech µ A i µ B oznaczaj stopy zwrotu odpowiednio z aktywa A i B, ªatwo obliczy,»e ,
Zadanie 1 Niech µ A i µ B oznaczaj stopy zwrotu odpowiednio z aktywa A i B, ªatwo obliczy,»e Eµ A 0, 02, Eµ 2 A 0, 0175, V arµ A 171 10 4, Eµ B 0, 135, Eµ 2 B 0, 02275, V arµ B 181 4 10 4, Eµ A µ B 0,
Bardziej szczegółowoZADANIA. Maciej Zakarczemny
ZADANIA Maciej Zakarczemny 2 Spis tre±ci 1 Algebra 5 2 Analiza 7 2.1 Granice iterowane, granica podwójna funkcji dwóch zmiennych....... 7 2.2 Caªki powierzchniowe zorientowane...................... 8 2.2.1
Bardziej szczegółowoStrategie zabezpieczaj ce
04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech
Bardziej szczegółowoRozdziaª 9: Wycena opcji
Rozdziaª 9: Wycena opcji MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 9) Wycena opcji 1 / 23 Denicja opcji. Opcja nansowa:. Warunkowy kontrakt terminowy na sprzeda» lub kupno instrumentu bazowego,
Bardziej szczegółowoMatematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut
Bardziej szczegółowoEGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach
EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) O rozkªadzie pewnego ryzyka S wiemy,»e: E[(S 20) + ] = 8 E[S 10 < S 20] = 13 P (S 20) = 3 4 P (S 10) = 1
Bardziej szczegółowoMatematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.
Bardziej szczegółowo1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci
Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,
Bardziej szczegółowo1 Granice funkcji wielu zmiennych.
AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica
Bardziej szczegółowoUkªady równa«liniowych
dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast
Bardziej szczegółowoMatematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Bardziej szczegółowoRachunek ró»niczkowy funkcji jednej zmiennej
Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =
Bardziej szczegółowo1 Lista 6 1. LISTA Obliczy JSN renty z doªu dla (30)-latka na 3 lata w wysoko±ci Obliczenia zrobi dla TT -PL97m oraz i = 4%.
1. LISTA 6 1 1 Lista 6 1.1 Obliczy JSN renty z doªu dla (30)-latka na 3 lata w wysoko±ci 3000. Obliczenia zrobi dla TT -PL97m oraz i = 4%. 1.2 Obliczy JSN dla nast puj cej renty dla (30)-latka: je±li»yje
Bardziej szczegółowoRozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).
Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi
Bardziej szczegółowoMatematyka finansowa 2.06.2001 r.
Matematyka finansowa 2.06.2001 r. 3. Inwe 2!%3'(!!%3 $'!%4&!! &,'! * "! &,-' ryzyko inwestycji odchyleniem standardowym stopy zwrotu ze swojego portfela. Jak *!&! $!%3$! %4 A.,. B. spadnie o 5% C. spadnie
Bardziej szczegółowoRozdziaª 10: Portfel inwestycyjny
Rozdziaª 10: Portfel inwestycyjny MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 10) Portfel inwestycyjny 1 / 31 Wprowadzenie Wkªad Markowitza, laureata nagrody Nobla z ekonomii w 1990 r., do teorii
Bardziej szczegółowoLiniowe zadania najmniejszych kwadratów
Rozdziaª 9 Liniowe zadania najmniejszych kwadratów Liniowe zadania najmniejszych kwadratów polega na znalezieniu x R n, który minimalizuje Ax b 2 dla danej macierzy A R m,n i wektora b R m. Zauwa»my,»e
Bardziej szczegółowoARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bardziej szczegółowoMakroekonomia Zaawansowana
Makroekonomia Zaawansowana wiczenia 1 Stan ustalony i log-linearyzacja MZ 1 / 27 Plan wicze«1 Praca z modelami DSGE 2 Stan ustalony 3 Log-linearyzacja 4 Zadania MZ 2 / 27 Plan prezentacji 1 Praca z modelami
Bardziej szczegółowoARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bardziej szczegółowoANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15
ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku
Bardziej szczegółowoEgzaminy z Inżynierii Finansowej
Egzaminy z Inżynierii Finansowej Włodzimierz Waluś Wydział Matematyki Informatyki i Mechaniki Uniwersytet Warszawski Semestr zimowy 2002/2003 Inżynieria Finansowa - Egzamin - 28 stycznia 2003 2 Egzamin
Bardziej szczegółowoMatematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.
Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1
Bardziej szczegółowoOpis matematyczny ukªadów liniowych
Rozdziaª 1 Opis matematyczny ukªadów liniowych Autorzy: Alicja Golnik 1.1 Formy opisu ukªadów dynamicznych 1.1.1 Liniowe równanie ró»niczkowe Podstawow metod przedstawienia procesu dynamicznego jest zbiór
Bardziej szczegółowoX i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12.
Zadae p (X p (X ( ( π 6 6 e 6 X m ( π 6 6 e 6 ( X C e m 6 X, gdze staªa C e zale»y od statystyk X (X,, X 6, a m jest w ksze od zera Zatem p (X/p (X jest emalej c fukcj statystyk T (X 6 X ªatwo pokaza,»e
Bardziej szczegółowoLiniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach
Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie
Bardziej szczegółowoMaksymalna liczba punktów do zdobycia: 80. Zadanie 1: a) 6 punktów, b) 3 punkty, Zadanie 2: a) 6 punktów, b) 4 punkty,
VII Wojewódzki Konkurs Matematyczny "W ±wiecie Matematyki" im. Prof. Wªodzimierza Krysickiego Etap drugi - 17 lutego 2015 r. Maksymalna liczba punktów do zdobycia: 80. 1. Drugi etap Konkursu skªada si
Bardziej szczegółowoFunkcje wielu zmiennych
dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )
Bardziej szczegółowoWykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Bardziej szczegółowo1 Poj cia pomocnicze. Przykªad 1. A A d
Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy
Bardziej szczegółowoZadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych
Zadania z analizy matematycznej - sem II Rachunek ró»niczkowy funkcji wielu zmiennych Denicja (Pochodne cz stkowe dla funkcji trzech zmiennych) Niech D R 3 b dzie obszarem oraz f : D R f = f y z) P 0 =
Bardziej szczegółowoEgzamin test GRUPA A (c) maleje na przedziale (1, 6). 0, ,5 1
Matematyka dla Biologów Warszawa, stycznia 04. Imię i nazwisko:... Egzamin test GRUPA A nr indeksu:... Przy każdym z podpunktów wpisz, czy jest on prawdziwy (TAK) czy fałszywy (NIE). Za każde pytanie można
Bardziej szczegółowoĆwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym
Ćwiczenia ZPI 1 Współczynniki greckie Odpowiadają na pytanie o ile zmieni się wartość opcji w wyniku: Współczynnik Delta (Δ) - zmiany wartości instrumentu bazowego Współczynnik Theta (Θ) - upływu czasu
Bardziej szczegółowo1 Bª dy i arytmetyka zmiennopozycyjna
1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy
Bardziej szczegółowoPolecenie 2.W spółce akcyjnej akcja na okaziciela oznacza ograniczoną zbywalność. Polecenie 5. Zadaniem controllingu jest pomiar wyniku finansowego
Polecenie 1. Spółka z ograniczoną odpowiedzialnością jest podmiotem w pełni bezosobowym. Polecenie 2.W spółce akcyjnej akcja na okaziciela oznacza ograniczoną zbywalność Polecenie 3.W WZA osobą najważniejszą
Bardziej szczegółowoWykªad 10. Spis tre±ci. 1 Niesko«czona studnia potencjaªu. Fizyka 2 (Informatyka - EEIiA 2006/07) c Mariusz Krasi«ski 2007
Wykªad 10 Fizyka 2 (Informatyka - EEIiA 2006/07) 08 05 2007 c Mariusz Krasi«ski 2007 Spis tre±ci 1 Niesko«czona studnia potencjaªu 1 2 Laser 3 2.1 Emisja spontaniczna...........................................
Bardziej szczegółowoEkstremalnie fajne równania
Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów
Bardziej szczegółowoFunkcje, wielomiany. Informacje pomocnicze
Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a
Bardziej szczegółowoKomisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy
Bardziej szczegółowoMetody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Bardziej szczegółowoRachunek caªkowy funkcji wielu zmiennych
Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x
Bardziej szczegółowoMacierze i Wyznaczniki
Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,
Bardziej szczegółowoZadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2
Zadania z PM II 010-011 A. Strojnowski str. 1 Zadania przygotowawcze z Podstaw Matematyki seria Zadanie 1 Niech A = {1,, 3, 4} za± T A A b dzie relacj okre±lon wzorem: (a, b) T, gdy n N a n = b. a) Ile
Bardziej szczegółowoZastosowania matematyki
Zastosowania matematyki Monika Bartkiewicz 1 / 143 Dyskonto-przypomnienie Obliczanie kapitaªu pocz tkowego P v na podstawie znanej warto±ci kapitaªu ko«cowego F v nazywa si dyskontowaniem kapitaªu F v.
Bardziej szczegółowoXVII Warmi«sko-Mazurskie Zawody Matematyczne
1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych
Bardziej szczegółowoEugeniusz Gostomski. Ryzyko stopy procentowej
Eugeniusz Gostomski Ryzyko stopy procentowej 1 Stopa procentowa Stopa procentowa jest ceną pieniądza i wyznacznikiem wartości pieniądza w czasie. Wpływa ona z jednej strony na koszt pozyskiwania przez
Bardziej szczegółowoStatystyka matematyczna - ZSTA LMO
Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia
Bardziej szczegółowoĆwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Zadanie 1 Procent składany
Zadanie 1 Procent składany W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał
Bardziej szczegółowo3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka
EGZAMIN MAGISTERSKI, 26.06.2017 Biomatematyka 1. (8 punktów) Rozwój wielko±ci pewnej populacji jest opisany równaniem: dn dt = rn(t) (1 + an(t), b gdzie N(t) jest wielko±ci populacji w chwili t, natomiast
Bardziej szczegółowoZadanie 1. (8 punktów) Dana jest nast puj ca macierz: M =
Matematyka w ekonomii i ubezpieczeniach 1. (8 punktów) Dana jest nast puj ca macierz: M = 2 14 2 10 8 0 10 8. a) Znajd¹ rozwi zanie dwuosobowej gry o sumie zero maj cej powy»sz macierz wypªat. b) Przyjmuj
Bardziej szczegółowoZadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej
Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Denicja 1. Niech X = R n b dzie przestrzeni unormowan oraz d(x, y) = x y.
Bardziej szczegółowoMetody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym
Bardziej szczegółowopunkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio:
5.9. lim x x +4 f(x) = x +4 Funkcja f(x) jest funkcj wymiern, która jest ci gªa dla wszystkich x, dla których mianownik jest ró»ny od zera, czyli dla: x + 0 x Zatem w punkcie x = funkcja ta jest okre±lona
Bardziej szczegółowoOpcje - wprowadzenie. Mała powtórka: instrumenty liniowe. Anna Chmielewska, SGH,
Opcje - wprowadzenie Mała powtórka: instrumenty liniowe Punkt odniesienia dla rozliczania transakcji terminowej forward: ustalony wcześniej kurs terminowy. W dniu rozliczenia transakcji terminowej forward:
Bardziej szczegółowo2. (8 punktów) 3. (8 punktów) 4. (8 punktów) 5. (8 punktów) EGZAMIN MAGISTERSKI, Matematyka w ekonomii i ubezpieczeniach
Matematyka w ekonomii i ubezpieczeniach 1. (8 punktów) Znajd¹ rozwi zanie poni»szego zagadnienia programowania liniowego: Zmaksymalizowa x 1 2x 2 + x 3 x 5 przy ograniczeniach x 1 3x 2 + x 3 + 2x 5 = 8
Bardziej szczegółowoWycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy
Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives
Bardziej szczegółowoEgzamin XXVII dla Aktuariuszy z 12 października 2002 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia
Bardziej szczegółowoLiczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki
Repetytorium z matematyki Denicja liczb zespolonych Wyra»enie a + bi, gdzie a i b s liczbami rzeczywistymi a i speªnia zale»no± i 2 = 1, nazywamy liczb zespolon. Liczb i nazywamy jednostk urojon, a iloczyn
Bardziej szczegółowoLegalna ±ci ga z RRI 2015/2016
Legalna ±ci ga z RRI 205/206 Równania ró»niczkowe pierwszego rz du sprowadzalne do równa«o zmiennych rozdzielonych a) Równanie postaci: = f(ax + by + c), Równanie postaci: = f(ax + by + c), () wprowadzamy
Bardziej szczegółowoElementy geometrii w przestrzeni R 3
Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi
Bardziej szczegółowoSzkice rozwi za«zada«z egzaminu 1
Egzamin - szkic rozwi za«sem. zimowy 06/07 AM, Budownictwo, IL PW Szkice rozwi za«zada«z egzaminu. Poda denicj granicy oraz ci gªo±ci funkcji. Def. (Heinego) Liczb g nazywamy granic funkcji f : D R w unkcie
Bardziej szczegółowoMatematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.
Komisja Egzaminacyjna dla Aktuariuszy L Egzamin dla Aktuariuszy z 5 października 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1.
Bardziej szczegółowoMateriaªy do Repetytorium z matematyki
Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (
Bardziej szczegółowoEkonometria. Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER. 22 maja 2016. Karolina Konopczak. Instytut Rozwoju Gospodarczego
Ekonometria Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER 22 maja 2016 Karolina Konopczak Instytut Rozwoju Gospodarczego Problem diety Aby ±niadanie byªo peªnowarto±ciowe powinno dostarczy
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
Bardziej szczegółowo5% na lokacie dla mikroprzedsiębiorców
5% na lokacie dla mikroprzedsiębiorców Autor: Agata Szymborska-Sutton, Anna Olesiejuk - Tax Care 14.08.2014. Portal finansowy IPO.pl Mimo niskich stóp procentowych przedsiębiorcy mogą znaleźć na rynku
Bardziej szczegółowoJanusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej
Bardziej szczegółowoSurowiec Zużycie surowca Zapas A B C D S 1 0,5 0,4 0,4 0,2 2000 S 2 0,4 0,2 0 0,5 2800 Ceny 10 14 8 11 x
Przykład: Przedsiębiorstwo może produkować cztery wyroby A, B, C, i D. Ograniczeniami są zasoby dwóch surowców S 1 oraz S 2. Zużycie surowca na jednostkę produkcji każdego z wyrobów (w kg), zapas surowca
Bardziej szczegółowoWYKŠAD 3. di dt. Ġ = d (r v) = r P. (1.53) dt. (1.55) Przyrównuj c stronami (1.54) i (1.55) otrzymujemy wektorowe równanie
WYKŠAD 3 Równania Gaussa dla e, I, Ω, ω, M. Ω, di 1.3.3 Od caªki ól do ė, W odró»nieniu od skalarnej caªki siª»ywych, wektorowa caªka ól mo»e nam osªu»y do otrzymania a» trzech kolejnych równa«gaussa.
Bardziej szczegółowoARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bardziej szczegółowodet A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32
Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia
Bardziej szczegółowo1 Gaussowskie zmienne losowe
Gaussowskie zmienne losowe W tej serii rozwiążemy zadania dotyczące zmiennych o rozkładzie normalny. Wymagana jest wiedza na temat własności rozkładu normalnego, CTG oraz warunkowych wartości oczekiwanych..
Bardziej szczegółowoWBiA Architektura i Urbanistyka. 1. Wykonaj dziaªania na macierzach: Które z iloczynów: A 2 B, AB 2, BA 2, B 2 3, B = 1 2 0
WBiA Architektura i Urbanistyka Matematyka wiczenia 1. Wykonaj dziaªania na macierzach: 1) 2A + C 2) A C T ) B A 4) B C T 5) A 2 B T 1 0 2 dla A = 1 2 1 1 0 B = ( 1 2 1 0 1 ) C = 1 2 1 0 2 1 0 1 2. Które
Bardziej szczegółowoModele wielorównaniowe. Estymacja parametrów
Modele wielorównaniowe. Estymacja parametrów Ekonometria Szeregów Czasowych SGH Estymacja 1 / 47 Plan wykªadu 1 Po±rednia MNK 2 Metoda zmiennych instrumentalnych 3 Podwójna MNK 4 Estymatory klasy k 5 MNW
Bardziej szczegółowoKomisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Trzy osoby biorą
Bardziej szczegółowoWykªad 12. Transformata Laplace'a i metoda operatorowa
Wykªad 2. Tranformata Laplace'a i metoda operatorowa Tranformata Laplace'a Dla odpowiednio okre±lonej klay funkcji zdeniujemy operator L, nazywany tranformat Laplace'a, okre±lony wzorem L[ f ]() = f(t)e
Bardziej szczegółowoCzy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1
II KOLOKWIUM Z AM M1 - GRUPA A - 170101r Ka»de zadanie jest po 5 punktów Ostatnie zadanie jest nieobowi zkowe, ale mo»e dostarczy dodatkowe 5 punktów pod warunkiem rozwi zania pozostaªych zada«zadanie
Bardziej szczegółowoInżynieria Finansowa: 9. Wartość opcji i model Blacka-Scholesa w praktyce
Inżynieria Finansowa: 9. Wartość opcji i model Blacka-Scholesa w praktyce Piotr Bańbuła atedra Ekonomii Ilościowej, AE Czerwiec 2017 r. Warszawa, Szkoła Główna Handlowa Wypłata Wypłata Opcja binarna 0
Bardziej szczegółowoLab. 02: Algorytm Schrage
Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z
Bardziej szczegółowoEgzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.
Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono
Bardziej szczegółowoRAPORT2015. Rynek najmu w Polsce. Kredyt na mieszkanie w 2016 roku. Polski rynek nieruchomości okiem ekspertów. MdM w dużym mieście
RAPORT2015 Rynek najmu w Polsce Kredyt na mieszkanie w 2016 roku Polski rynek nieruchomości okiem ekspertów MdM w dużym mieście strona 16 Podsumowanie rynku kredytów hipotecznych w 2015 roku Za nami rok
Bardziej szczegółowoBiostatystyka, # 5 /Weterynaria I/
Biostatystyka, # 5 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowoOgólna charakterystyka kontraktów terminowych
Jesteś tu: Bossa.pl Kurs giełdowy - Część 10 Ogólna charakterystyka kontraktów terminowych Kontrakt terminowy jest umową pomiędzy dwiema stronami, z których jedna zobowiązuje się do nabycia a druga do
Bardziej szczegółowoANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu
Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Podstawowe pojęcia Opcja: in-the-money (ITM call: wartość instrumentu podstawowego > cena wykonania
Bardziej szczegółowoInformacje pomocnicze
Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia
Bardziej szczegółowo1 Metody iteracyjne rozwi zywania równania f(x)=0
1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0
Bardziej szczegółowo1 Ró»niczka drugiego rz du i ekstrema
Plan Spis tre±ci 1 Pochodna cz stkowa 1 1.1 Denicja................................ 1 1.2 Przykªady............................... 2 1.3 Wªasno±ci............................... 2 1.4 Pochodne wy»szych
Bardziej szczegółowoWYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale
Bardziej szczegółowoZawód: analityk finansowy
Matematyka w zarządzaniu ryzykiem i prognozowaniu ekonomicznym Wydział Matematyki i Informatyki Uniwersytet Warmińsko-Mazurski 17 października 2017 r. 1 Praca analityka finansowego 2 3 1 Praca analityka
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka
Bardziej szczegółowoElementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo
Spis tre±ci Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis tre±ci Spis tre±ci 1 2 3 4 5 Spis tre±ci Spis tre±ci 1 2 3 4
Bardziej szczegółowoOcena ryzyka inwestycyjnego na przykªadzie pary walutowej EUR/USD. 15 czerwca 2010
Ocena ryzyka inwestycyjnego na przykªadzie pary walutowej EUR/USD Anna Barczy«ska Maciej Bieli«ski 15 czerwca 2010 1 Spis tre±ci 1 Forex 3 1.1 EUR/USD............................. 4 2 Waluty 5 2.1 Siªa
Bardziej szczegółowoZP.271.1.71.2014 Obsługa bankowa budżetu Miasta Rzeszowa i jednostek organizacyjnych
Załącznik nr 3 do SIWZ Istotne postanowienia, które zostaną wprowadzone do treści Umowy Prowadzenia obsługi bankowej budżetu miasta Rzeszowa i jednostek organizacyjnych miasta zawartej z Wykonawcą 1. Umowa
Bardziej szczegółowo14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.
Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących
Bardziej szczegółowoMatematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile
Bardziej szczegółowoæ Inżynieria Finansowa Egzamin Wydział Matematyki, Informatyki i Mechaniki UW 28 stycznia 2003 roku
æ Inżynieria Finansowa Egzamin Wydział Matematyki, Informatyki i Mechaniki UW 28 stycznia 2003 roku Uwagi i zasady 1. Rozwiązania zadań rachunkowych muszą zawierać objaśnienia do wykonywanych obliczeń
Bardziej szczegółowor = x x2 2 + x2 3.
Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni
Bardziej szczegółowoPRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:
Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow
Bardziej szczegółowo