Zadanie 1. Zadanie 2. Zadanie 3

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadanie 1. Zadanie 2. Zadanie 3"

Transkrypt

1 Zadanie R to rata miesi czna, odsetki w k-tej racie to ods k = R( v 8 k ), a spªata kapitaªu wyra»a si wzorem kap k = Rv 8 k, gdzie v = (, 5) /6. Dany jest ukªad nierówno±ci z którego wynika Rv 8 N R( v 8 N ), Rv 8 M R( v 8 M ), N 8 δ ln(, 5),, M 8 ln(4/) 45, 6, δ gdzie δ = ln(, 5)/6, zatem N =, M = 46, ODP = M N = 4. Zadanie i = ODP to stopa zwrotu w funduszu umorzeniowym. Dla pierwszego kredytu odsetki netto wyra-»aj si wzorem 458, 48 = 4 65 (5 4X), gdzie X jest roczn rat wpªacan na fundusz umorzeniowy, zatem Xs 4 i = 5. Dla drugiego kredytu 7, 97 = 65 (5 Y ), Y s i = 5. Wzory na X i Y podstawiamy do odpowiednich równa«, rozpisujemy wzory na warto±ci przyszªe rent i otrzymujemy ukªad równa«od i ( + i) 4 i = 4, 64, ( + i) i =, 848. Niech x = ( + i) 4, wyznaczmy i w zale»no±ci od x z pierwszego równania powy»ej i podstawmy do drugiego, otrzymujemy trójmian kwadratowy postaci x + x + (, 848 ) =, 4, 64 x <, x, = ( + i) 4, ODP %. Warto zauwa»y,»e dysponuj c kalkulatorem z funkcj solve informacja o drugim kredycie jest zupeªnie niepotrzebna. Zadanie K = ODP, z tre±ci zadania wynika ukªad równa«k = Xv +, 5Xv , 5 v X + 5v + Y v 4 + (Y )v (Y )v 5, 7659, = X( +, , 5 ) Y + K, K = (X + Y )a , 74v 9, LKU,

2 który sprowadza si do liniowego ukªadu postaci K X a,5v,5 Y v a = 5v v 4 (Ia), K + Xä i=,5 + Y = 7659, 5 + +, K Xa 8 Y a 8 = 449, 74v 9, gdzie a,5v oznacza warto± dzisiejsz renty skalkulowan przy czynniku dyskontuj cym =, 5v. Rozwi zaniem ukªadu s X, Y 5 i ODP = K 4857, 4 5. Zadanie 4 NP V = a () 5 + 8v 5 a (6) ZAD( /) = v + a () ZAD() = a () + 8v a (6) + 6v 8 a (4), ODP = ods + ods 6. v + 8v 5 a (6) + 6v 6 a (4). + 6v 5 a (4). ods = (ZAD( /) ZAD()) = v 5 + 8a (6) v ( v ) + 6v 5 a (4) ( v ). ZAD(6 /) = v + 8v a (6) ZAD(6) = 8a (6) + 6v a (4). + 6v 6 a (4). ods 6 = (ZAD(6) ZAD(6 /)) = v 6 + 6v a (4) ( v ). ODP = a (4) [6(v5 v 6 )+6(v v 6 )]+8a (6) (v v 5 )+ v + v 6 +v v 5 +v 6 v 6. ODP = a (4) [4 i() v i(6) v 5 ]+ a(6) i() v 5 Zadanie 5 () +a i () v (6) +a i(6) v + i() v + i(6) v 6 = C. Dane jest S = 4, r =, 8, T = /. Skoro opcja jest at-the-money to strike K = S = 4. C =, 5987 = N(d ), zatem d = N (, 5987) =, 5. Ze wzoru na d, 5 = d = ln( S K ) + (r +, 5σ )T σ T powstaje równanie kwadratowe na σ, którego rozwi zania to, i, 8, skoro σ <, 5 to σ =,. Kalkulujemy d = d σ T =, 5. Niech teraz C(S, T ) oznacza cen europejskiej opcji call z czasem do wykonania T, gdy cena akcji wynosi S. Zgodnie z MBS wyceniamy C (S, T ), Je±li uczestnik rynku stosuje delta-hedging to zajmuje odpowiedni pozycj w akcjach, tak by pochodna jego portfela po cenie akcji byªa =. Zatem warto± portfela w chwili t = to V () = N(d)S C (S, T ), Zerowy zyska/strata po dniu oznacza,»e V ()exp(, 8/65) = V (/65), st d V (/65) =, 5987S /65 C(S /65, / /65), Teraz kolejno wyceniamy opcje C(S /65, / /65) dla S /65 z odpowiedzi A,B,C,D,E i sprawdzamy czy zachodzi powy»sze równanie. Najbli»ej jest dla A, gdy S /65 = 4, 4, to V (/65), , ODP = S /65 S, 4. LKU,

3 Zadanie 6 BUO (bez utraty ogólno±ci) niech S =. Strata= K ( S()). Zatem ODP = K ( E(S() S() < )). Przy S = i korzystaj c ze wzorów na warto± oczekiwan i wariancj rozkªadu log-normalnego wynika,»e µ =, 5 ln, 4 oraz σ = ln, 4. Zatem E(S() S() < ) = x exp ( (ln x+,5 ln,4) ) x π ln,4 ln,4 dx P(S() < ) P(S() < ) = P(ln S() < ), ale ln S() N(µ; σ ), zatem po unormowaniu Teraz, 5 ln, 4 P(S() < ) = Φ( ) Φ(, ). ln, 4 exp ( (ln x+,5 ln,4) ) ln,4 dx = ln x = u = π ln, 4 gdzie X N(, 5 ln, 4; ln, 4), zatem po unormowaniu exp ( (u,5 ln,4) ) ln,4 du = P(X < ), π ln, 4 St d (ln x +, 5 ln, 4) exp( )dx = Φ (, 5 ln, 4) Φ(, ). π ln, 4 ln, 4 ln, 4 ( Φ(, ) ) ODP K, 5K. Φ(, ) Zadanie 7 S() = A(). Z braku arbitra»u S() exp(, 4) = E(S()) = A()E(exp(, 5Z)., 5Z N(;, 5 ). Wiemy,»e dla X N(; σ ) zachodzi Eexp(X) = exp(, 5σ ), st d A() = S()exp(7/8). ODP = e,4 E max(s(), A()e,5Z ) = e / S()Emax(e 7/8, e,5z ) Niech teraz Y N(; /6), zachodzi + Emax(e 7/8, e,5z ) = Emax(e 7/8, e Y ) = e 7/8 4e x P(Y < 7/8) + e 8x dx. 7/8 π Po unormowaniu Y i przeksztaªceniu caªki do g sto±ci pewnego rozkªadu normalnego jest Emax(e 7/8, e,5z ) e 7/8 Φ(, 5) + e / P(W > 7/8), gdzie W N(/6; /6), st d Emax(e 7/8, e,5z ) e 7/8 Φ(, 5) + e / ( Φ(, 85)), zatem ODP S()e / ( e 7/8 ( Φ(, 5)) + e / Φ(, 85) ), 8S(). LKU,

4 Zadanie 8 Inwestor chce zmaksymalizowa oczekiwan stop zwrotu. EX =, 5 to jest tyle samo, co z inwestycji w lokat w okresie pierwszego roku, inwestor wybierze inwestycje w instrument I, poniewa» oczekiwana stopa zwrotu w okresie roku jest identyczna jak na lokacie i jest szansa,»e stopa zwrotu z inwestycji w I b dzie wi ksza ni», 5, a gdyby zainwestowaª w lokat nie miaªby mo»- liwo±ci wypªacenia pieni dzy w chwili t = i zmiany inwestycji na I. Zatem + ODP = E( + R )( + R ), gdzie R jest stale równe X, a R jest funkcj od (X, X ), tak,»e R (X, X ) = max(, 5; E(X X )), czyli zwraca oczekiwan stop zwrotu za drugi rok inwestycji, jak wybierze inwestor znaj c realizacje X. Zauwa»my,»e dla X [, 5;, ] jest R (X, X ) = X i R (X, X ) =, 5 wpp. Zatem + ODP = E( + R )( + R ) = =,5 x ODP %., x ( + x )( +, 5)dx dx + ( + R (x ))( + R (x, x ))dx dx, x,5 ( + x )( + x )dx dx, 465. Zadanie 9 Drzewo cen akcji wygl da nast puj co Nasza przestrze«probabilistyczna to Ω = {ω = (x x x ), x i {U, D}, i =,, }, gdzie np. (UDD) oznacza,»e w pierwszym kroku cena akcji wzrosªa, a w drugim i trzecim spadªa. Niech W (, ω) oznacza wypªat z opcji, je±li zrealizowaª si scenariusz ω, przykªadowo W (, UDD) = max(; 5; ; 8) min(; 5; ; 8) = 45. ODP = exp(, )E (W (, )), gdzie E oznacza warto± oczekiwan wzgl dem miary martyngaªowej (neutralnej wzgl dem ryzyka). Obliczamy 4 LKU,

5 p = (R D)/(U D), , gdzie U =, 5, D =, i R = exp(, ). Zatem ODP = exp(, ) ω Ω W (, ω)p (ω). Poni»ej w kolumnach kolejno: ω, W (, ω) i P (ω): ω =UUU W (, ω) = 95, 5 P (ω) =p ω =UUD W (, ω) = 56, 5 P (ω) =p ( p ) ω =UDU W (, ω) = 5 P (ω) =p ( p ) ω =DUU W (, ω) = 45 P (ω) =p ( p ) ω =DDU W (, ω) = 6 P (ω) =p ( p ) ω =DUD W (, ω) = P (ω) =p ( p ) ω =UDD W (, ω) = 45 P (ω) =p ( p ) ω =DDD W (, ω) = 48, 8 P (ω) =( p ) ODP = exp(, )(95, 5p + 6, 5p ( p ) + p ( p ) + 48, 8( p ) ) 4,. Zadanie K i to koszt i-tej strategii od storny rmy A, zatem K = 8, 584 = 6, 7, bo rma A chce osªoni nale»no± w kwocie 8 PLN. K (K) = (, 95v +, 95, 9 v +, 95, 9, 85v ) K%, bo rma A spªaci skªadk za dany rok tylko gdy B nie zbankrutuje. Skoro bank nie pobiera mar»y to K musi by równy kosztowi CDSa od strony banku. Koszt CDS od strony banku to K bank = (, 5 +, 95, +, 95, 9, 5) 8v, bo bank wypªaca rmie A 8 PLN w momencie t = je±li rma B zbankrutuje w okresie [, ]. Skoro K = K bank to K 8, Teraz szukamy K, takiego,»e K = K ( K), zatem K = (, 95v +, 95, 9 v +, 95, 9, 85v ) K, st d K 8, i ODP = ( K K)/K, %. 5 LKU,

Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4

Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4 Zadanie ODP = exp(, 4 )E W () = exp(, )E l (;+ ) (S()) ODP = exp(, )P (S() > ), gdzie oznacza miar martyngaªow. Przy MBS proces cen akcji ma posta S(t) = S() exp[t(µ, 5σ ) + σw t ], gdzie {W t, t } jest

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Niech µ A i µ B oznaczaj stopy zwrotu odpowiednio z aktywa A i B, ªatwo obliczy,»e ,

Zadanie 1. Zadanie 2. Niech µ A i µ B oznaczaj stopy zwrotu odpowiednio z aktywa A i B, ªatwo obliczy,»e , Zadanie 1 Niech µ A i µ B oznaczaj stopy zwrotu odpowiednio z aktywa A i B, ªatwo obliczy,»e Eµ A 0, 02, Eµ 2 A 0, 0175, V arµ A 171 10 4, Eµ B 0, 135, Eµ 2 B 0, 02275, V arµ B 181 4 10 4, Eµ A µ B 0,

Bardziej szczegółowo

ZADANIA. Maciej Zakarczemny

ZADANIA. Maciej Zakarczemny ZADANIA Maciej Zakarczemny 2 Spis tre±ci 1 Algebra 5 2 Analiza 7 2.1 Granice iterowane, granica podwójna funkcji dwóch zmiennych....... 7 2.2 Caªki powierzchniowe zorientowane...................... 8 2.2.1

Bardziej szczegółowo

Strategie zabezpieczaj ce

Strategie zabezpieczaj ce 04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech

Bardziej szczegółowo

Rozdziaª 9: Wycena opcji

Rozdziaª 9: Wycena opcji Rozdziaª 9: Wycena opcji MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 9) Wycena opcji 1 / 23 Denicja opcji. Opcja nansowa:. Warunkowy kontrakt terminowy na sprzeda» lub kupno instrumentu bazowego,

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) O rozkªadzie pewnego ryzyka S wiemy,»e: E[(S 20) + ] = 8 E[S 10 < S 20] = 13 P (S 20) = 3 4 P (S 10) = 1

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

Ukªady równa«liniowych

Ukªady równa«liniowych dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Rachunek ró»niczkowy funkcji jednej zmiennej

Rachunek ró»niczkowy funkcji jednej zmiennej Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =

Bardziej szczegółowo

1 Lista 6 1. LISTA Obliczy JSN renty z doªu dla (30)-latka na 3 lata w wysoko±ci Obliczenia zrobi dla TT -PL97m oraz i = 4%.

1 Lista 6 1. LISTA Obliczy JSN renty z doªu dla (30)-latka na 3 lata w wysoko±ci Obliczenia zrobi dla TT -PL97m oraz i = 4%. 1. LISTA 6 1 1 Lista 6 1.1 Obliczy JSN renty z doªu dla (30)-latka na 3 lata w wysoko±ci 3000. Obliczenia zrobi dla TT -PL97m oraz i = 4%. 1.2 Obliczy JSN dla nast puj cej renty dla (30)-latka: je±li»yje

Bardziej szczegółowo

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi

Bardziej szczegółowo

Matematyka finansowa 2.06.2001 r.

Matematyka finansowa 2.06.2001 r. Matematyka finansowa 2.06.2001 r. 3. Inwe 2!%3'(!!%3 $'!%4&!! &,'! * "! &,-' ryzyko inwestycji odchyleniem standardowym stopy zwrotu ze swojego portfela. Jak *!&! $!%3$! %4 A.,. B. spadnie o 5% C. spadnie

Bardziej szczegółowo

Rozdziaª 10: Portfel inwestycyjny

Rozdziaª 10: Portfel inwestycyjny Rozdziaª 10: Portfel inwestycyjny MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 10) Portfel inwestycyjny 1 / 31 Wprowadzenie Wkªad Markowitza, laureata nagrody Nobla z ekonomii w 1990 r., do teorii

Bardziej szczegółowo

Liniowe zadania najmniejszych kwadratów

Liniowe zadania najmniejszych kwadratów Rozdziaª 9 Liniowe zadania najmniejszych kwadratów Liniowe zadania najmniejszych kwadratów polega na znalezieniu x R n, który minimalizuje Ax b 2 dla danej macierzy A R m,n i wektora b R m. Zauwa»my,»e

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Makroekonomia Zaawansowana

Makroekonomia Zaawansowana Makroekonomia Zaawansowana wiczenia 1 Stan ustalony i log-linearyzacja MZ 1 / 27 Plan wicze«1 Praca z modelami DSGE 2 Stan ustalony 3 Log-linearyzacja 4 Zadania MZ 2 / 27 Plan prezentacji 1 Praca z modelami

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Egzaminy z Inżynierii Finansowej

Egzaminy z Inżynierii Finansowej Egzaminy z Inżynierii Finansowej Włodzimierz Waluś Wydział Matematyki Informatyki i Mechaniki Uniwersytet Warszawski Semestr zimowy 2002/2003 Inżynieria Finansowa - Egzamin - 28 stycznia 2003 2 Egzamin

Bardziej szczegółowo

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Opis matematyczny ukªadów liniowych

Opis matematyczny ukªadów liniowych Rozdziaª 1 Opis matematyczny ukªadów liniowych Autorzy: Alicja Golnik 1.1 Formy opisu ukªadów dynamicznych 1.1.1 Liniowe równanie ró»niczkowe Podstawow metod przedstawienia procesu dynamicznego jest zbiór

Bardziej szczegółowo

X i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12.

X i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12. Zadae p (X p (X ( ( π 6 6 e 6 X m ( π 6 6 e 6 ( X C e m 6 X, gdze staªa C e zale»y od statystyk X (X,, X 6, a m jest w ksze od zera Zatem p (X/p (X jest emalej c fukcj statystyk T (X 6 X ªatwo pokaza,»e

Bardziej szczegółowo

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie

Bardziej szczegółowo

Maksymalna liczba punktów do zdobycia: 80. Zadanie 1: a) 6 punktów, b) 3 punkty, Zadanie 2: a) 6 punktów, b) 4 punkty,

Maksymalna liczba punktów do zdobycia: 80. Zadanie 1: a) 6 punktów, b) 3 punkty, Zadanie 2: a) 6 punktów, b) 4 punkty, VII Wojewódzki Konkurs Matematyczny "W ±wiecie Matematyki" im. Prof. Wªodzimierza Krysickiego Etap drugi - 17 lutego 2015 r. Maksymalna liczba punktów do zdobycia: 80. 1. Drugi etap Konkursu skªada si

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

1 Poj cia pomocnicze. Przykªad 1. A A d

1 Poj cia pomocnicze. Przykªad 1. A A d Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych Zadania z analizy matematycznej - sem II Rachunek ró»niczkowy funkcji wielu zmiennych Denicja (Pochodne cz stkowe dla funkcji trzech zmiennych) Niech D R 3 b dzie obszarem oraz f : D R f = f y z) P 0 =

Bardziej szczegółowo

Egzamin test GRUPA A (c) maleje na przedziale (1, 6). 0, ,5 1

Egzamin test GRUPA A (c) maleje na przedziale (1, 6). 0, ,5 1 Matematyka dla Biologów Warszawa, stycznia 04. Imię i nazwisko:... Egzamin test GRUPA A nr indeksu:... Przy każdym z podpunktów wpisz, czy jest on prawdziwy (TAK) czy fałszywy (NIE). Za każde pytanie można

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Ćwiczenia ZPI 1 Współczynniki greckie Odpowiadają na pytanie o ile zmieni się wartość opcji w wyniku: Współczynnik Delta (Δ) - zmiany wartości instrumentu bazowego Współczynnik Theta (Θ) - upływu czasu

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

Polecenie 2.W spółce akcyjnej akcja na okaziciela oznacza ograniczoną zbywalność. Polecenie 5. Zadaniem controllingu jest pomiar wyniku finansowego

Polecenie 2.W spółce akcyjnej akcja na okaziciela oznacza ograniczoną zbywalność. Polecenie 5. Zadaniem controllingu jest pomiar wyniku finansowego Polecenie 1. Spółka z ograniczoną odpowiedzialnością jest podmiotem w pełni bezosobowym. Polecenie 2.W spółce akcyjnej akcja na okaziciela oznacza ograniczoną zbywalność Polecenie 3.W WZA osobą najważniejszą

Bardziej szczegółowo

Wykªad 10. Spis tre±ci. 1 Niesko«czona studnia potencjaªu. Fizyka 2 (Informatyka - EEIiA 2006/07) c Mariusz Krasi«ski 2007

Wykªad 10. Spis tre±ci. 1 Niesko«czona studnia potencjaªu. Fizyka 2 (Informatyka - EEIiA 2006/07) c Mariusz Krasi«ski 2007 Wykªad 10 Fizyka 2 (Informatyka - EEIiA 2006/07) 08 05 2007 c Mariusz Krasi«ski 2007 Spis tre±ci 1 Niesko«czona studnia potencjaªu 1 2 Laser 3 2.1 Emisja spontaniczna...........................................

Bardziej szczegółowo

Ekstremalnie fajne równania

Ekstremalnie fajne równania Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

Rachunek caªkowy funkcji wielu zmiennych

Rachunek caªkowy funkcji wielu zmiennych Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,

Bardziej szczegółowo

Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2

Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2 Zadania z PM II 010-011 A. Strojnowski str. 1 Zadania przygotowawcze z Podstaw Matematyki seria Zadanie 1 Niech A = {1,, 3, 4} za± T A A b dzie relacj okre±lon wzorem: (a, b) T, gdy n N a n = b. a) Ile

Bardziej szczegółowo

Zastosowania matematyki

Zastosowania matematyki Zastosowania matematyki Monika Bartkiewicz 1 / 143 Dyskonto-przypomnienie Obliczanie kapitaªu pocz tkowego P v na podstawie znanej warto±ci kapitaªu ko«cowego F v nazywa si dyskontowaniem kapitaªu F v.

Bardziej szczegółowo

XVII Warmi«sko-Mazurskie Zawody Matematyczne

XVII Warmi«sko-Mazurskie Zawody Matematyczne 1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych

Bardziej szczegółowo

Eugeniusz Gostomski. Ryzyko stopy procentowej

Eugeniusz Gostomski. Ryzyko stopy procentowej Eugeniusz Gostomski Ryzyko stopy procentowej 1 Stopa procentowa Stopa procentowa jest ceną pieniądza i wyznacznikiem wartości pieniądza w czasie. Wpływa ona z jednej strony na koszt pozyskiwania przez

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia

Bardziej szczegółowo

Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Zadanie 1 Procent składany

Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Zadanie 1 Procent składany Zadanie 1 Procent składany W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał

Bardziej szczegółowo

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka EGZAMIN MAGISTERSKI, 26.06.2017 Biomatematyka 1. (8 punktów) Rozwój wielko±ci pewnej populacji jest opisany równaniem: dn dt = rn(t) (1 + an(t), b gdzie N(t) jest wielko±ci populacji w chwili t, natomiast

Bardziej szczegółowo

Zadanie 1. (8 punktów) Dana jest nast puj ca macierz: M =

Zadanie 1. (8 punktów) Dana jest nast puj ca macierz: M = Matematyka w ekonomii i ubezpieczeniach 1. (8 punktów) Dana jest nast puj ca macierz: M = 2 14 2 10 8 0 10 8. a) Znajd¹ rozwi zanie dwuosobowej gry o sumie zero maj cej powy»sz macierz wypªat. b) Przyjmuj

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Denicja 1. Niech X = R n b dzie przestrzeni unormowan oraz d(x, y) = x y.

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym

Bardziej szczegółowo

punkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio:

punkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio: 5.9. lim x x +4 f(x) = x +4 Funkcja f(x) jest funkcj wymiern, która jest ci gªa dla wszystkich x, dla których mianownik jest ró»ny od zera, czyli dla: x + 0 x Zatem w punkcie x = funkcja ta jest okre±lona

Bardziej szczegółowo

Opcje - wprowadzenie. Mała powtórka: instrumenty liniowe. Anna Chmielewska, SGH,

Opcje - wprowadzenie. Mała powtórka: instrumenty liniowe. Anna Chmielewska, SGH, Opcje - wprowadzenie Mała powtórka: instrumenty liniowe Punkt odniesienia dla rozliczania transakcji terminowej forward: ustalony wcześniej kurs terminowy. W dniu rozliczenia transakcji terminowej forward:

Bardziej szczegółowo

2. (8 punktów) 3. (8 punktów) 4. (8 punktów) 5. (8 punktów) EGZAMIN MAGISTERSKI, Matematyka w ekonomii i ubezpieczeniach

2. (8 punktów) 3. (8 punktów) 4. (8 punktów) 5. (8 punktów) EGZAMIN MAGISTERSKI, Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach 1. (8 punktów) Znajd¹ rozwi zanie poni»szego zagadnienia programowania liniowego: Zmaksymalizowa x 1 2x 2 + x 3 x 5 przy ograniczeniach x 1 3x 2 + x 3 + 2x 5 = 8

Bardziej szczegółowo

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives

Bardziej szczegółowo

Egzamin XXVII dla Aktuariuszy z 12 października 2002 r.

Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Komisja Egzaminacyjna dla Aktuariuszy Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia

Bardziej szczegółowo

Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki

Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki Repetytorium z matematyki Denicja liczb zespolonych Wyra»enie a + bi, gdzie a i b s liczbami rzeczywistymi a i speªnia zale»no± i 2 = 1, nazywamy liczb zespolon. Liczb i nazywamy jednostk urojon, a iloczyn

Bardziej szczegółowo

Legalna ±ci ga z RRI 2015/2016

Legalna ±ci ga z RRI 2015/2016 Legalna ±ci ga z RRI 205/206 Równania ró»niczkowe pierwszego rz du sprowadzalne do równa«o zmiennych rozdzielonych a) Równanie postaci: = f(ax + by + c), Równanie postaci: = f(ax + by + c), () wprowadzamy

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

Szkice rozwi za«zada«z egzaminu 1

Szkice rozwi za«zada«z egzaminu 1 Egzamin - szkic rozwi za«sem. zimowy 06/07 AM, Budownictwo, IL PW Szkice rozwi za«zada«z egzaminu. Poda denicj granicy oraz ci gªo±ci funkcji. Def. (Heinego) Liczb g nazywamy granic funkcji f : D R w unkcie

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r. Komisja Egzaminacyjna dla Aktuariuszy L Egzamin dla Aktuariuszy z 5 października 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1.

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

Ekonometria. Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER. 22 maja 2016. Karolina Konopczak. Instytut Rozwoju Gospodarczego

Ekonometria. Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER. 22 maja 2016. Karolina Konopczak. Instytut Rozwoju Gospodarczego Ekonometria Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER 22 maja 2016 Karolina Konopczak Instytut Rozwoju Gospodarczego Problem diety Aby ±niadanie byªo peªnowarto±ciowe powinno dostarczy

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk

Bardziej szczegółowo

5% na lokacie dla mikroprzedsiębiorców

5% na lokacie dla mikroprzedsiębiorców 5% na lokacie dla mikroprzedsiębiorców Autor: Agata Szymborska-Sutton, Anna Olesiejuk - Tax Care 14.08.2014. Portal finansowy IPO.pl Mimo niskich stóp procentowych przedsiębiorcy mogą znaleźć na rynku

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej

Bardziej szczegółowo

Surowiec Zużycie surowca Zapas A B C D S 1 0,5 0,4 0,4 0,2 2000 S 2 0,4 0,2 0 0,5 2800 Ceny 10 14 8 11 x

Surowiec Zużycie surowca Zapas A B C D S 1 0,5 0,4 0,4 0,2 2000 S 2 0,4 0,2 0 0,5 2800 Ceny 10 14 8 11 x Przykład: Przedsiębiorstwo może produkować cztery wyroby A, B, C, i D. Ograniczeniami są zasoby dwóch surowców S 1 oraz S 2. Zużycie surowca na jednostkę produkcji każdego z wyrobów (w kg), zapas surowca

Bardziej szczegółowo

WYKŠAD 3. di dt. Ġ = d (r v) = r P. (1.53) dt. (1.55) Przyrównuj c stronami (1.54) i (1.55) otrzymujemy wektorowe równanie

WYKŠAD 3. di dt. Ġ = d (r v) = r P. (1.53) dt. (1.55) Przyrównuj c stronami (1.54) i (1.55) otrzymujemy wektorowe równanie WYKŠAD 3 Równania Gaussa dla e, I, Ω, ω, M. Ω, di 1.3.3 Od caªki ól do ė, W odró»nieniu od skalarnej caªki siª»ywych, wektorowa caªka ól mo»e nam osªu»y do otrzymania a» trzech kolejnych równa«gaussa.

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32 Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia

Bardziej szczegółowo

1 Gaussowskie zmienne losowe

1 Gaussowskie zmienne losowe Gaussowskie zmienne losowe W tej serii rozwiążemy zadania dotyczące zmiennych o rozkładzie normalny. Wymagana jest wiedza na temat własności rozkładu normalnego, CTG oraz warunkowych wartości oczekiwanych..

Bardziej szczegółowo

WBiA Architektura i Urbanistyka. 1. Wykonaj dziaªania na macierzach: Które z iloczynów: A 2 B, AB 2, BA 2, B 2 3, B = 1 2 0

WBiA Architektura i Urbanistyka. 1. Wykonaj dziaªania na macierzach: Które z iloczynów: A 2 B, AB 2, BA 2, B 2 3, B = 1 2 0 WBiA Architektura i Urbanistyka Matematyka wiczenia 1. Wykonaj dziaªania na macierzach: 1) 2A + C 2) A C T ) B A 4) B C T 5) A 2 B T 1 0 2 dla A = 1 2 1 1 0 B = ( 1 2 1 0 1 ) C = 1 2 1 0 2 1 0 1 2. Które

Bardziej szczegółowo

Modele wielorównaniowe. Estymacja parametrów

Modele wielorównaniowe. Estymacja parametrów Modele wielorównaniowe. Estymacja parametrów Ekonometria Szeregów Czasowych SGH Estymacja 1 / 47 Plan wykªadu 1 Po±rednia MNK 2 Metoda zmiennych instrumentalnych 3 Podwójna MNK 4 Estymatory klasy k 5 MNW

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Trzy osoby biorą

Bardziej szczegółowo

Wykªad 12. Transformata Laplace'a i metoda operatorowa

Wykªad 12. Transformata Laplace'a i metoda operatorowa Wykªad 2. Tranformata Laplace'a i metoda operatorowa Tranformata Laplace'a Dla odpowiednio okre±lonej klay funkcji zdeniujemy operator L, nazywany tranformat Laplace'a, okre±lony wzorem L[ f ]() = f(t)e

Bardziej szczegółowo

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1 II KOLOKWIUM Z AM M1 - GRUPA A - 170101r Ka»de zadanie jest po 5 punktów Ostatnie zadanie jest nieobowi zkowe, ale mo»e dostarczy dodatkowe 5 punktów pod warunkiem rozwi zania pozostaªych zada«zadanie

Bardziej szczegółowo

Inżynieria Finansowa: 9. Wartość opcji i model Blacka-Scholesa w praktyce

Inżynieria Finansowa: 9. Wartość opcji i model Blacka-Scholesa w praktyce Inżynieria Finansowa: 9. Wartość opcji i model Blacka-Scholesa w praktyce Piotr Bańbuła atedra Ekonomii Ilościowej, AE Czerwiec 2017 r. Warszawa, Szkoła Główna Handlowa Wypłata Wypłata Opcja binarna 0

Bardziej szczegółowo

Lab. 02: Algorytm Schrage

Lab. 02: Algorytm Schrage Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono

Bardziej szczegółowo

RAPORT2015. Rynek najmu w Polsce. Kredyt na mieszkanie w 2016 roku. Polski rynek nieruchomości okiem ekspertów. MdM w dużym mieście

RAPORT2015. Rynek najmu w Polsce. Kredyt na mieszkanie w 2016 roku. Polski rynek nieruchomości okiem ekspertów. MdM w dużym mieście RAPORT2015 Rynek najmu w Polsce Kredyt na mieszkanie w 2016 roku Polski rynek nieruchomości okiem ekspertów MdM w dużym mieście strona 16 Podsumowanie rynku kredytów hipotecznych w 2015 roku Za nami rok

Bardziej szczegółowo

Biostatystyka, # 5 /Weterynaria I/

Biostatystyka, # 5 /Weterynaria I/ Biostatystyka, # 5 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Ogólna charakterystyka kontraktów terminowych

Ogólna charakterystyka kontraktów terminowych Jesteś tu: Bossa.pl Kurs giełdowy - Część 10 Ogólna charakterystyka kontraktów terminowych Kontrakt terminowy jest umową pomiędzy dwiema stronami, z których jedna zobowiązuje się do nabycia a druga do

Bardziej szczegółowo

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Podstawowe pojęcia Opcja: in-the-money (ITM call: wartość instrumentu podstawowego > cena wykonania

Bardziej szczegółowo

Informacje pomocnicze

Informacje pomocnicze Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

1 Ró»niczka drugiego rz du i ekstrema

1 Ró»niczka drugiego rz du i ekstrema Plan Spis tre±ci 1 Pochodna cz stkowa 1 1.1 Denicja................................ 1 1.2 Przykªady............................... 2 1.3 Wªasno±ci............................... 2 1.4 Pochodne wy»szych

Bardziej szczegółowo

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale

Bardziej szczegółowo

Zawód: analityk finansowy

Zawód: analityk finansowy Matematyka w zarządzaniu ryzykiem i prognozowaniu ekonomicznym Wydział Matematyki i Informatyki Uniwersytet Warmińsko-Mazurski 17 października 2017 r. 1 Praca analityka finansowego 2 3 1 Praca analityka

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo

Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo Spis tre±ci Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis tre±ci Spis tre±ci 1 2 3 4 5 Spis tre±ci Spis tre±ci 1 2 3 4

Bardziej szczegółowo

Ocena ryzyka inwestycyjnego na przykªadzie pary walutowej EUR/USD. 15 czerwca 2010

Ocena ryzyka inwestycyjnego na przykªadzie pary walutowej EUR/USD. 15 czerwca 2010 Ocena ryzyka inwestycyjnego na przykªadzie pary walutowej EUR/USD Anna Barczy«ska Maciej Bieli«ski 15 czerwca 2010 1 Spis tre±ci 1 Forex 3 1.1 EUR/USD............................. 4 2 Waluty 5 2.1 Siªa

Bardziej szczegółowo

ZP.271.1.71.2014 Obsługa bankowa budżetu Miasta Rzeszowa i jednostek organizacyjnych

ZP.271.1.71.2014 Obsługa bankowa budżetu Miasta Rzeszowa i jednostek organizacyjnych Załącznik nr 3 do SIWZ Istotne postanowienia, które zostaną wprowadzone do treści Umowy Prowadzenia obsługi bankowej budżetu miasta Rzeszowa i jednostek organizacyjnych miasta zawartej z Wykonawcą 1. Umowa

Bardziej szczegółowo

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących

Bardziej szczegółowo

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile

Bardziej szczegółowo

æ Inżynieria Finansowa Egzamin Wydział Matematyki, Informatyki i Mechaniki UW 28 stycznia 2003 roku

æ Inżynieria Finansowa Egzamin Wydział Matematyki, Informatyki i Mechaniki UW 28 stycznia 2003 roku æ Inżynieria Finansowa Egzamin Wydział Matematyki, Informatyki i Mechaniki UW 28 stycznia 2003 roku Uwagi i zasady 1. Rozwiązania zadań rachunkowych muszą zawierać objaśnienia do wykonywanych obliczeń

Bardziej szczegółowo

r = x x2 2 + x2 3.

r = x x2 2 + x2 3. Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni

Bardziej szczegółowo

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych: Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow

Bardziej szczegółowo