Statystyka matematyczna - ZSTA LMO
|
|
- Władysław Sowa
- 8 lat temu
- Przeglądów:
Transkrypt
1 Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18
2 Wykªad 4 - zagadnienia test znaków dla jednej próby zastosowanie testu znaków w problemie jednorodno±ci dwóch prób zale»nych rangi testy oparte na rangach test W Wilcoxona test U Manna-Whitneya Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 2 / 18
3 Test znaków dla jednej próby Zaªó»my,»e X = (X 1, X 2,..., X n ) jest prób prost z populacji o rozkªadzie opisanym ci gª dystrybuant F. Werykujemy hipotez zerow dotycz c kwantyla z rozkªadu o dystrybuancie F. Dokªadniej: H 0 : F 1 (p) = a przeciwko ró»nym hipotezom alternatywnym, gdzie p (0, 1) i a R s ustalone. Na przykªad dla p = 1 2 otrzymujemy median (F 1 ( 1 2 ) = Me), dla p = 1 4 otrzymujemy pierwszy kwartyl (F 1 ( 1 4 ) = Q 1), dla p = 3 4 otrzymujemy trzeci kwartyl (F 1 ( 3 4 ) = Q 3). Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 3 / 18
4 Test znaków dla jednej próby Znakujemy prób X, tzn. konstruujemy prób Y = (Y 1, Y 2,..., Y n ), gdzie { 1, dla Xi > a, Y i = 0, dla X i < a. Poniewa» dystrybuanta F jest ci gªa, P(X i = a) = 0. Jednak, gdyby x i = a, to obserwacj x i usuwamy z próbki x. Statystyka testowa testu znaków ma posta n S(X) = Y i. i=1 H 1 : F 1 (p) a F 1 (p) < a F 1 (p) > a Obszar krytyczny B = {x : S(x) < k α lub S(x) > n k α }, k α -najwi ksze B = {x : S(x) < k α }, k α -najwi ksze B = {x : S(x) > k α }, k α -najmniejsze Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 4 / 18
5 Test znaków dla jednej próby Warto± k α wybieramy na podstawie warunku P 0 (X B) α korzystaj c z faktu,»e przy prawdziwo±ci hipotezy zerowej S b(n, 1 p). Przy du»ej liczebno±ci próby, wyznaczamy k α za pomoc rozkªadu granicznego podanego w nast puj cym twierdzeniu. Twierdzenie 1 Przy prawdziwo±ci hipotezy zerowej S n(1 p) np(1 p) d N (0, 1). Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 5 / 18
6 Zastosowanie testu znaków w problemie dwóch prób zale»nych Zaªó»my,»e X = (X 1, X 2,..., X n ), Y = (Y 1, Y 2,..., Y n ) s zale»nymi próbami prostymi z populacji o rozkªadach, których dystrybuanty F 1 i F 2 s ci gªe. Werykujemy ukªad hipotez H 0 : F 1 = F 2, H 1 : F 1 F 2. (1) Niech Z = (Z 1, Z 2,..., Z n ), gdzie Z i = Y i X i, i = 1, 2,..., n. Przy prawdziwo±ci hipotezy zerowej P 0 (Y i > X i ) = P 0 (Y i X i > 0) = P 0 (Z i > 0) = 1 2. St d gdy H 0 : F 1 = F 2, to H Z 1 0 : Me(Z) = 0 (FZ ( 1 2 ) = 0), gdzie Z Z i. Zatem w celu werykacji ukªadu hipotez (1) mo»emy wykorzysta test znaków zastosowany do próby Z i ukªadu hipotez H 0 : F 1 Z ( 1 2 ) = 0, H 1 : F 1 Z ( 1 2 ) 0. Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 6 / 18
7 Rangi Zaªó»my,»e X = (X 1, X 2,..., X n ) jest prób prost z populacji o rozkªadzie opisanym ci gª dystrybuant F. Rangujemy prób X, tzn. konstruujemy prób R = (R 1, R 2,..., R n ), gdzie R i = ranga(x i ). Przykªad 1 Niech x = (4, 7, 1, 5). Zatem x 1 = 4, x 2 = 7, x 3 = 1, x 4 = 5 oraz x (1) = 1, x (2) = 4, x (3) = 5, x (4) = 7. St d r = (2, 4, 1, 3). Z ci gªo±ci dystrybuanty F wynika,»e obserwacje x i, i = 1, 2,..., n powinny by parami ró»ne. Jednak, gdyby x i = x j, i j i wtedy x (k) = x (k+1) dla pewnego k, to obserwacjom x i i x j przypisujemy rangi k+(k+1) 2 = k Przykªad 2 Gdy x = (5, 7, 1, 5), x (1) = 1, x (2) = x (3) = 5, x (4) = 7 i r = (2.5, 4, 1, 2.5). Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 7 / 18
8 Rangi W takim ukªadzie suma rang nie zmienia si i zale»y tylko od liczby obserwacji. Jednak nie tylko suma rang jest staªa o czym mówi poni»szy lemat. Lemat 1 R = 1 n n i=1 R i = n + 1 2, S2 R = 1 n 1 n (R i R) 2 = i=1 n(n + 1) 12 Zatem R i SR 2 s staªe, wi c nie mo»na przy ich pomocy przeprowadzi»adnego wnioskowania. Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 8 / 18
9 Test W Wilcoxona Zaªó»my,»e X = (X 1, X 2,..., X n1 ), Y = (Y 1, Y 2,..., Y n2 ) s niezale»nymi próbami prostymi z populacji o rozkªadach, których dystrybuanty F µ1 i F µ2 s ci gªe oraz speªniaj warunek dla pewnej ci gªej dystrybuanty F. F µ (x) = F (x µ) Parametr µ nazywa si parametrem poªo»enia. Przykªadowo jest nim mediana w rozkªadzie normalnym, Laplace'a oraz Cauchy'ego. Werykujemy hipotez zerow H 0 : µ 1 = µ 2 przeciwko ró»nym hipotezom alternatywnym. Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 9 / 18
10 Test W Wilcoxona Rangujemy poª czon prób (X, Y) = (X 1,..., X n1, Y 1,..., Y n2 ), uzyskuj c próby R = (R 1, R 2,..., R n1 ) - rangi x-ów, S = (S 1, S 2,..., S n2 ) - rangi y-ów. Statystyka testowa testu W Wilcoxona (statystyka W Wilcoxona): n 2 W (X, Y) = S i. Przy prawdziwo±ci hipotezy zerowej, wszystkie ukªady rang s równo prawdopodobne. Oznacza to,»e rozkªad statystyki W Wilcoxona nie zale»y od dystrybuanty F przy prawdziwo±ci hipotezy zerowej. Liczba wszystkich ukªadów rang w poª czonej próbie wynosi ( n 1 +n 2 n 1 ) = ( n1 +n 2 n 2 ) = (n 1 +n 2 )! n 1!n 2!. H 1 : Obszar krytyczny i=1 µ 1 > µ 2 B = {(x, y) : W (x, y) k α }, k α -najwi ksze µ 1 < µ 2 B = {(x, y) : W (x, y) k α }, k α -najmniejsze Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 10 / 18
11 Test W Wilcoxona - przykªad Przykªad 3 Niech X = (X 1, X 2, X 3 ), Y = (Y 1, Y 2 ) b d dwiema niezale»nymi próbami prostymi z populacji o ci gªych dystrybuantach F µ1 i F µ2 odpowiednio, gdzie µ 1, µ 2 R s nieznanymi parametrami oraz dystrybuanta F µ speªnia warunek F µ (x) = F (x µ) dla pewnej ci gªej dystrybuanty F. Za pomoc testu Wilcoxona, werykujemy hipotez H 0 : µ 1 = µ 2 przy alternatywie H 1 : µ 1 > µ 2. 1 Wyznacz obszar krytyczny testu W Wilcoxona przy α = 0,1. 2 Wykonaj wyprowadzony test na nast puj cych danych x = (1, 3, 8) oraz y = (2, 7). Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 11 / 18
12 Test W Wilcoxona - przykªad Wyznaczamy rozkªad statystyki W przy prawdziwo±ci hipotezy zerowej. Liczba ukªadów rang w poª czonej próbie wynosi (3+2)! 3!2! = 10. Wszystkie ukªady rang i odpowiadaj ce im warto±ci statystyki W Wilcoxona przedstawia tabela: Ukªad rang w rrrss 9 rrsrs 8 rrssr 7 rsrrs 7 rsrsr 6 rssrr 5 srrrs 6 srrsr 5 srsrr 4 ssrrr 3 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 12 / 18
13 Test W Wilcoxona - przykªad Zatem rozkªad statystyki W Wilcoxona przy prawdziwo±ci hipotezy zerowej przedstawia poni»sza tabela: w P 0 (W = w) Wyznaczamy staª k α, pojawiaj c si w obszarze krytycznym, na podstawie warunku P 0 ((X, Y) B) = P 0 (W k α ) α. Skoro α = 0,1 i P 0 (W 3) = P 0 (W = 3) = 0,1, to k α = 3 i obszar krytyczny testu W Wilcoxona ma posta : B = {(x, y) : W (x, y) 3} Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 13 / 18
14 Test W Wilcoxona - przykªad Dla danych x = (1, 3, 8) oraz y = (2, 7) mamy: xy (1) = 1, xy (2) = 2, xy (3) = 3, xy (4) = 7, xy (5) = 8, a st d Zatem r = (1, 3, 5), s = (2, 4). W (x, y) = = 6. Skoro W (x, y) = 6 > 3 = k α, to nie ma podstaw do odrzucenia H 0. Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 14 / 18
15 Test W Wilcoxona Twierdzenie 2 Gdy w statystyce testowej testu t-studenta dla dwóch prób niezale»nych zmienne X i i Y j zast pimy przez ich rangi R i i S j, i = 1,..., n 1, j = 1,..., n 2, uzyskane wyra»enie b dzie ±ci±le monotoniczn funkcj statystyki W Wilcoxona. T (X, Y) = X Ȳ n1 n 2 (n1 1)SX 2+(n 2 1)SY 2 n 1 + n 2 T W (R, S) = n 1 +n 2 2 R S n1 n 2 n 1 + n 2 = (n1 1)S 2 R +(n 2 1)S 2 S n 1 +n n 1 (a W ) 1 n 2 W 2(n1 +n 2 ) 1 3 a 1 n 1 (a W ) 2 1 n 2 W 2 n 1 n 2 (n 1 + n 2 2) n 1 + n 2, gdzie a = (n 1 + n 2 )(n 1 + n 2 + 1)/2. Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 15 / 18
16 Test U Manna-Whitneya Przyjmujemy takie same zaªo»enia i rozwa»amy te same hipotezy jak w te±cie W Wilcoxona. Statystyka U Manna-Whitneya jest postaci: n 2 n 1 U = I (X i < Y j ), j=1 i=1 gdzie I (x i < y j ) = { 1, gdy xi < y j, 0, gdy x i y j. Lemat 2 Je»eli W oznacza statystyk Wilcoxona, to U = W 1 2 n 2(n 2 + 1). Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 16 / 18
17 Test U Manna-Whitneya Twierdzenie 3 Przy prawdziwo±ci hipotezy zerowej Z = U E 0(U) Var0 (U) d N(0, 1), gdzie E 0 (U) = n 1n 2 2, Var 0(U) = n 1n 2 (n 1 + n 2 + 1). 12 Zauwa»my,»e (przy H 1 : µ 1 < µ 2 ) B = {(x, y) : W (x, y) k α } = {(x, y) : U(x, y) k U α } = {(x, y) : Z(x, y) k Z α }. Z powy»szego twierdzenia otrzymujemy,»e przy du»ej liczbie obserwacji mo»emy przyj k Z α = z(1 α). Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 17 / 18
18 Test U Manna-Whitneya Zatem przy du»ych próbach mo»emy korzysta z nast puj cych postaci obszarów krytycznych: H 1 : Obszar krytyczny µ 1 > µ 2 B = {(x, y) : Z(x, y) z(1 α)} µ 1 < µ 2 B = {(x, y) : Z(x, y) z(1 α)} Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 18 / 18
Wykład 10 Testy jednorodności rozkładów
Wykład 10 Testy jednorodności rozkładów Wrocław, 16 maja 2018 Test Znaków test jednorodności rozkładów nieparametryczny odpowiednik testu t-studenta dla prób zależnych brak normalności rozkładów Test Znaków
Rozwini cia asymptotyczne dla mocy testów przybli»onych
Rozwini cia asymptotyczne dla mocy testów przybli»onych Piotr Majerski, Zbigniew Szkutnik AGH Kraków Wisªa 2010 P. Majerski, Z. Szkutnik, AGH () Rozwini cia mocy testów przybli»onych Wisªa 2010 1 / 22
Statystyka matematyczna - ZSTA LMO
Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 1 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 1 1 / 28 Kontakt Dr Šukasz
Wykład 9 Testy rangowe w problemie dwóch prób
Wykład 9 Testy rangowe w problemie dwóch prób Wrocław, 18 kwietnia 2018 Test rangowy Testem rangowym nazywamy test, w którym statystyka testowa jest konstruowana w oparciu o rangi współrzędnych wektora
Biostatystyka, # 5 /Weterynaria I/
Biostatystyka, # 5 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
5. (8 punktów) EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach
Matematyka w ekonomii i ubezpieczeniach ( Niezale»ne szkody maja rozkªady P (X i = k) = exp( 1)/k!, P (Y i = k) = 4+k ) k (1/3) 5 (/3) k, k = 0, 1,.... Niech S = X 1 +... + X 500 + Y 1 +... + Y 500. Skªadka
In»ynierskie zastosowania statystyki wiczenia
Uwagi: 27012014 poprawiono kilka literówek, zwi zanych z przedziaªami ufno±ci dla wariancji i odchylenia standardowego In»ynierskie zastosowania statystyki wiczenia Przedziaªy wiarygodno±ci, testowanie
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów
Elementarna statystyka Dwie próby: porównanie dwóch proporcji (Two-sample problem: comparing two proportions)
Elementarna statystyka Dwie próby: porównanie dwóch proporcji (Two-sample problem: comparing two proportions) Alexander Bendikov Uniwersytet Wrocªawski 25 maja 2016 Elementarna statystyka Dwie próby: porównanie
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach
EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) O rozkªadzie pewnego ryzyka S wiemy,»e: E[(S 20) + ] = 8 E[S 10 < S 20] = 13 P (S 20) = 3 4 P (S 10) = 1
Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich
Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich Magdalena Frąszczak Wrocław, 22.03.2017r Problem Behrensa Fishera Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Biostatystyka, # 4 /Weterynaria I/
Biostatystyka, # 4 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Matematyka z elementami statystyki
Matematyka z elementami statystyki Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Korelacja Zale»no± funkcyjna wraz ze wzrostem jednej zmiennej nast puje ±ci±le okre±lona zmiana druiej zmiennej.
Metody dowodzenia twierdze«
Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku
Wykład 11 Testowanie jednorodności
Wykład 11 Testowanie jednorodności Wrocław, 17 maja 2018 Test χ 2 jednorodności Niech X i, i = 1, 2,..., k będą niezależnymi zmiennymi losowymi typu dyskretnego przyjmującymi wartości z 1, z 2,..., z l,
Badanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa
Badanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa Test serii (test Walda-Wolfowitza) Założenie. Rozpatrywane rozkłady są ciągłe. Mamy dwa uporządkowane
Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015
Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ, σ 2 X ),
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka
EGZAMIN MAGISTERSKI, 26.06.2017 Biomatematyka 1. (8 punktów) Rozwój wielko±ci pewnej populacji jest opisany równaniem: dn dt = rn(t) (1 + an(t), b gdzie N(t) jest wielko±ci populacji w chwili t, natomiast
Ekonometria - wykªad 8
Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.
Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13
Elementarna statystyka Wnioskowanie o regresji (Inference for regression) Alexander Bendikov Uniwersytet Wrocªawski 2 czerwca 2016 Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for
Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie
Statystyczna analiza danych
Statystyczna analiza danych Testowanie hipotez statystycznych Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/23 Testowanie hipotez średniej w R Test istotności dla wartości
... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).
Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano
Elementy geometrii w przestrzeni R 3
Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi
Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:
Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo
Spis tre±ci Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis tre±ci Spis tre±ci 1 2 3 4 5 Spis tre±ci Spis tre±ci 1 2 3 4
Ekonometria. wiczenia 2 Werykacja modelu liniowego. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 2 Werykacja modelu liniowego (2) Ekonometria 1 / 33 Plan wicze«1 Wprowadzenie 2 Ocena dopasowania R-kwadrat Skorygowany R-kwadrat i kryteria informacyjne 3 Ocena istotno±ci zmiennych
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Funkcje wielu zmiennych
dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )
Ukªady równa«liniowych
dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
x y x y x y x + y x y
Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym. Wrocław, r
Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym Wrocław, 18.03.2016r Testowanie hipotez dla średniej w rozkładzie normalnym dla jednej próby Model 1 Testowanie hipotez dla
Wydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
Ekonometria. wiczenia 4 Prognozowanie. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 4 Prognozowanie (4) Ekonometria 1 / 18 Plan wicze«1 Prognoza punktowa i przedziaªowa 2 Ocena prognozy ex post 3 Stabilno± i sezonowo± Sezonowo± zadanie (4) Ekonometria 2 / 18 Plan
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku
Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1
Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,
EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach. a) (6 pkt.) oblicz intensywno± pªaconych skªadek;
EGZAMIN MAGISTERSKI, 26.06.2019r Matematyka w ekonomii i ubezpieczeniach 1. (8 punktów) Dwa niezale»ne portfele S 1, S 2 maj zªo»one rozkªady Poissona. S 1 CP oisson(2, F ), S 2 CP oisson(2, G), gdzie
Wykład 9 Wnioskowanie o średnich
Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i
1 Poj cia pomocnicze. Przykªad 1. A A d
Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy
Testy nieparametryczne
Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Przykład (wstępny). Producent twierdzi, że wadliwość produkcji wynosi 5%. My podejrzewamy, że rzeczywista wadliwość produkcji wynosi 15%. Pobieramy próbę stuelementową
Pakiety statystyczne - Wykªad 8
Pakiety statystyczne - Wykªad 8 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji 1. Rys historyczny 2. Podstawy teoretyczne
Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski
Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej
Statystyka matematyczna. Wykład VI. Zesty zgodności
Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x
CAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016
WYKŠAD CAŠKA NIEOZNACZONA Z.Šagodowski Politechnika Lubelska 8 lutego 06 Denicja CAŠKA NIEOZNACZONA Funkcja F jest funkcja pierwotn funkcji f na przedziale A, je»eli Zauwa»my,ze F (x) = f (x), dla ka»dego
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n
GAL II 2013-2014 A. Strojnowski str.45 Wykªad 20 Denicja 20.1 Przeksztaªcenie aniczne f : H H anicznej przestrzeni euklidesowej nazywamy izometri gdy przeksztaªcenie pochodne f : T (H) T (H) jest izometri
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
STATYSTYKA
Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym
Przekroje Dedekinda 1
Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2
Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach
Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie
Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015
Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20
det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32
Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Model mieszany
Ekonometria. wiczenia 8 Modele zmiennej jako±ciowej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 8 Modele zmiennej jako±ciowej (8) Ekonometria 1 / 25 Plan wicze«1 Modele zmiennej jako±ciowej 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3 Predykcja
Przeksztaªcenia liniowe
Przeksztaªcenia liniowe Przykªady Pokaza,»e przeksztaªcenie T : R 2 R 2, postaci T (x, y) = (x + y, x 6y) jest przeksztaªceniem liniowym Sprawdzimy najpierw addytywno± przeksztaªcenia T Niech v = (x, y
STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2
STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;
Zbiory i odwzorowania
Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):
ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.
Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH
STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH WYKŠAD 4 03 listopad 2014 1 / 47 Plan wykªadu 1. Testowanie zaªo»e«o proporcjonalnym hazardzie w modelu Cox'a 2. Wybór zmiennych do modelu Cox'a 3. Meta analiza
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Przypuśdmy, że mamy do czynienia z następującą sytuacją: nieznany jest rozkład F rządzący pewnym zjawiskiem losowym. Dysponujemy konkretną próbą losową ( x1, x2,..., xn
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio
Estymacja parametru gªadko±ci przy u»yciu falek splajnowych
Estymacja parametru gªadko±ci przy u»yciu falek splajnowych Politechnika Gda«ska Wydziaª Fizyki Technicznej i Matematyki Stosowanej Wisªa, 3-7.12.2012 Przestrze«Biesowa Przestrze«Biesowa B s p,q, 1 p,
Statystyka. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Statystyka Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Statystyka Statystyka: nauka zajmuj ca si liczbowym opisem zjawisk masowych oraz ich analizowaniem, zbiory informacji liczbowych. (Sªownik
Informacje pomocnicze
Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia
punkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio:
5.9. lim x x +4 f(x) = x +4 Funkcja f(x) jest funkcj wymiern, która jest ci gªa dla wszystkich x, dla których mianownik jest ró»ny od zera, czyli dla: x + 0 x Zatem w punkcie x = funkcja ta jest okre±lona
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej
Metody probablistyczne i statystyka stosowana
Politechnika Wrocªawska - Wydziaª Podstawowych Problemów Techniki - 011 Metody probablistyczne i statystyka stosowana prowadz cy: dr hab. in». Krzysztof Szajowski opracowanie: Tomasz Kusienicki* κ 17801
Elementy statystyki STA - Wykład 5
STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie
VIII WYKŁAD STATYSTYKA. 7/05/2014 B8 sala 0.10B Godz. 15:15
VIII WYKŁAD STATYSTYKA 7/05/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 8 WERFIKACJA HIPOTEZ STATYSTYCZNYCH NIEPARAMETRYCZNE TESTY ISTOTNOŚCI TEST ZGODNOŚCI χ 2 Problem: Populacja generalna ma dowolny rozkład
Testy dla dwóch prób w rodzinie rozkładów normalnych
Testy dla dwóch prób w rodzinie rozkładów normalnych dr Mariusz Grządziel Wykład 12; 18 maja 2009 Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego)
Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych
Wykład 12 (21.05.07): Testy dla dwóch prób w rodzinie rozkładów normalnych Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego) n 1 = 9 poletek w dąbrowie,
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci
Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,
Testowanie hipotez statystycznych cd.
Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:
Test t-studenta dla jednej średniej
Test t-studenta dla jednej średniej Hipoteza zerowa: Średnia wartość zmiennej w populacji jest równa określonej wartości a 0 (a = a 0 ). Hipoteza alternatywna 1.: Średnia wartość zmiennej w populacji jest
Cz ± III. Testowanie hipotez statystycznych
Cz ± III Testowanie hipotez statystycznych 85 Rozdziaª 7 Testy istotno±ci W tym rozdziale spróbujemy wyja±ni, na czym polega zagadnienie testowania hipotez statystycznych. Poka»emy, jak konstruuje si
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 11 i 12 1 / 41 TESTOWANIE HIPOTEZ - PORÓWNANIE
Statystyka matematyczna. Wykład V. Parametryczne testy istotności
Statystyka matematyczna. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Weryfikacja hipotezy o równości wartości średnich w dwóch populacjach 2 3 Weryfikacja hipotezy o równości wartości średnich
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1
II KOLOKWIUM Z AM M1 - GRUPA A - 170101r Ka»de zadanie jest po 5 punktów Ostatnie zadanie jest nieobowi zkowe, ale mo»e dostarczy dodatkowe 5 punktów pod warunkiem rozwi zania pozostaªych zada«zadanie