Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki. 7 Sumy i iloczyny uogólnione
|
|
- Gabriel Piasecki
- 6 lat temu
- Przeglądów:
Transkrypt
1 Aaliza matematycza Notatki do wykªadu Mateusz Kwa±icki 7 Sumy i iloczyy uogólioe Dla dowolych liczb a k, a k+, a k+,..., a l okre±lamy sum uogólio i iloczy uogólioy: a k + a k+ + a k a l, l a k a k+ a k+... a l. Formala deicja jest idukcyja: k 0, k, l ( l a j + a l, ( l a j a l, dla dowolych k oraz k. Sumy i iloczyy uogólioe pozwalaj zast pi ieprecyzyjy zapis z wielokropkiem jedozaczym wyra»eiem. Przykªad. Zapis a + a a mo»e ozacza zarówo a j, jak a j. j=0 Wªaso±ci sum uogólioych i iloczyów uogólioych s bardzo podobe. Poiewa» sumy spotykae s cz ±ciej, imi zajmiemy si w dalszej cz ±ci. Wiele wªaso±ci iloczyów mo»a uzyska z odpowiedich wªaso±ci sum poprzez to»samo± log ( l a j = log a j, prawdziw dla dowolych liczb dodatich a k, a k+, a k+,..., a l. Twierdzeie. Zachodzi c c a j, (a j + b j = a j + b j, c = (l k + c. Poadto je±li k oraz + l, to a j + a j, j=+ l m m a j+m. Dowód. Idukcja wzgl dem l. Twierdzeie. Je±li a j b j dla wszystkich j, to Dowód. Idukcja wzgl dem l. a j b j.
2 Twierdzeie. Zachodzi ( ( a i,j = a i,j, i=k j=m j=m i=k Dowód. Idukcja wzgl dem l (albo. ( ( a i b j = i=k j=m a i b j. i=k j=m Twierdzeie. Je±li σ, τ s fukcjami ró»owarto±ciowymi a zbiorze {k, k +, k +,..., l}, maj cymi jedakowy zbiór warto±ci T, za± a t, t T, s dowolymi liczbami rzeczywistymi, to: a σ(j = a τ(j. Dowód. Ustalmy k. Gdy l = k obie stroy s rówe 0. Zaªó»my,»e rówo± zachodzi dla pewego l i wszystkich fukcji σ, τ speªiaj cych waruki twierdzeia oraz dowolych liczb a t. Niech σ, τ b d okre±loe a {k, k +, k +,..., l + } i zaªó»my,»e zbiory warto±ci σ i τ s sobie rówe. Niech σ(l + = τ( i okre±lmy τ tak, by τ (j = τ(j dla j / {, l + }, τ ( = τ(l +, τ (l + = τ( = σ(l +. Wówczas σ i τ zaw»oe do zbioru {k, k +, k +,..., l} maj jedakowe obrazy, a wi c: l+ a σ(j = a τ (j + a τ (l+. Je±li = l +, to τ = τ i otrzymujemy tez idukcyj. Je±li l, to a τ (j + a τ (l+ = a τ (j + a τ ( + = a τ(j + a τ(l+ + j=+ j=+ a τ (j + a τ (l+ l+ a τ(j + a τ( = a τ(j, i rówie» otrzymujemy tez idukcyj. Na mocy zasady idukcji teza prawdziwa jest zawsze. Powy»sze twierdzeie pozwala dla dowolego sko«czoego zbioru T zdeiowa sum liczb a t, t T, jako a t = t T a σ(j dla dowolej fukcji ró»owarto±ciowej i a σ : {k, k +, k +,..., l} T. Zauwa»my,»e t {k, k+,..., l} a t = a j Twierdzeie. Je±li zbiory A k, A k+, A k+,..., A l s sko«czoe i parami rozª cze, za± A ozacza sum tych zbiorów, to a t = a t. t A j t A Dowód. Idukcja wzgl dem l; jedya trudo± to rówo± a t = t B a t + t C t B C dla dowolych rozª czych zbiorów sko«czoych B oraz C. Aby j udowodi, wystarczy rozwa»y dowole fukcje ró»owarto±ciowe i a σ B : {,, 3,..., } B oraz σ C : {,, 3,..., m} C, okre±li σ : {,, 3,..., + m} B C wzorem σ(j = σ B (j dla j, σ(j = σ C (j dla j > i skorzysta z wªaso±ci sum uogólioych. a t
3 Twierdzeie. Zachodzi i a i,j = i=k a i,j = a i,j, i=j (i,j T gdzie T = {(i, j : k i j l}. Dowód. Teza wyika wprost z poprzediego twierdzeia. Przykªad. Wykorzystuj c powy»sze twierdzeie, mo»emy wyzaczy warto± sumy: i i = i= i= i i = = + i = i=j ( + j j = = ( + +. Twierdzeie (sumy teleskopowe. Zachodzi Dowód. Idukcja wzgl dem. Przykªad 3. Zachodzi j (j + = (a j+ a j = a + a. ( j = j + + = Twierdzeie (wzór sumacyjy Abela, sumowaie przez cz ±ci. Zachodzi a j (b j+ b j = (a l+ b l+ a k b k Dowód. Idukcja wzgl dem l. (a j+ a j b j Szeregi liczbowe Deicja. Niech (a b dzie dowolym ci giem liczb rzeczywistych. Szeregiem o wyrazach a (ozaczeie a azywamy ci g sum cz ±ciowych A = a j. Szereg ozaczamy a. Szereg a azywamy zbie»ym, je±li ci g sum cz ±ciowych szeregu jest zbie»y. W takim przypadku graic azywamy sum szeregu: a = lim A = lim a j, a ci g (r day wzorem = ( r k = a A k = = + azywamy ci giem reszt szeregu a. Je±li zbie»y jest szereg a, to szereg a azywamy bezwzgl die zbie»ym. Je±li zbie»y jest szereg a, ale szereg a jest rozbie»y, to mówimy,»e a jest warukowo zbie»y. 3 a
4 Uwaga. Tak jak w przypadku ci gów, mo»emy rozwa»a szeregi a, gdzie (a jest ci giem o ideksach = k, k +, k +,... dla pewego k. Przykªad 4. Szereg jest rozbie»y, bowiem jego -ta suma cz ±ciowa wyosi. Przykªad 5. Szereg harmoiczy sum cz ±ciowych. Wówczas H poadto H + = + j = jest rozbie»y. W istocie, iech H b dzie ci giem. W istocie, wzór te prawdziwy jest dla = 0 i + j + j= + j + + j= + + = +. Zatem podci g (H ci gu (H jest rozbie»y do iesko«czoo±ci, przez co rówie» (H musi by rozbie»y. Przykªad 6. Szereg geometryczy c a jest zbie»y wtedy i tylko wtedy, gdy a <. Mamy bowiem (dla a : c a c a a (dowód idukcja wzgl dem. Gdy a <, to c = a c a. W tym przypadku szereg jest te» bezwzgl die zbie»y. Przykªad 7. W rozdziale o ci gach dowiedli±my,»e szereg ( + = jest zbie»y. Jest o te» bezwzgl die zbie»y, bowiem ci g sum cz ±ciowych szeregu oczywi±cie ros cy i poadto wobec ierówo±ci: j + j(j = j= jest jest ograiczoy z góry przez. Przykªad 8. Niech a =, a = ( (. Wówczas: ( a = ( (dowód idukcja wzgl dem, a wi c szereg a jest zbie»y. Z drugiej stroy a = (, zatem sumy cz ±ciowe a s wi ksze od sum cz ±ciowych. Wobec tego a ie jest bezwzgl die zbie»y. 4
5 Twierdzeie. Je±li szeregi a i b (a + b oraz (a b, i zachodzi c a = c a, = = (a + b = = a + = s zbie»e, to zbie»e s te» szeregi b, = (a b = = a Dowód. Wystarczy skorzysta z wªaso±ci graic ci gów oraz sum uogólioych. = c a, b. Twierdzeie. Je±li szereg a jest zbie»y, to (a oraz ci g reszt (r szeregu a s zbie»e do zera. Dowód. Niech (A b dzie ci giem sum cz ±ciowych a. Zbie»o± r do zera wyika wprost z deicji zbie»o±ci szeregu. Poadto ( ( lim a = lim (A A = lim A lim A = 0. To dowodzi twierdzeia. Twierdzeie (waruek Cauchy'ego zbie»o±ci szeregu. Szereg a jest zbie»y wtedy i tylko wtedy, gdy dla ka»dego ε > 0 istieje N N takie,»e je±li l k N, to a j < ε. Dowód. Jest to waruek Cauchy'ego dla ci gu sum cz ±ciowych. Wiosek (kryterium porówawcze, cz.. Je±li a b dla prawie wszystkich oraz szereg b jest zbie»y, to szereg a jest bezwzgl die zbie»y. Dowód. Wystarczy zauwa»y,»e a j j=l b j i skorzysta z waruku Cauchy'ego zbie»o±ci szeregu. Przykªad 9. Szereg jest zbie»y, bowiem, a szereg geometryczy!! jest zbie»y. Wiosek. Je±li szereg a jest bezwzgl die zbie»y, to jest zbie»y. Twierdzeie. Je±li a 0, to a jest zbie»y wtedy i tylko wtedy, gdy ci g sum cz ±ciowych jest ograiczoy z góry. Twierdzeie (kryterium porówawcze, cz.. Je±li a b 0 dla prawie wszystkich oraz b jest rozbie»y (do iesko«czoo±ci, to rówie» a jest rozbie»y. Przykªad 0. Szereg jest rozbie»y, bowiem, a szereg harmoiczy jest rozbie»y. Twierdzeie (kryterium o zag szczaiu. Dla ka»dego ieros cego ci gu liczb ieujemych (a i dla ka»dej liczby aturalej k zachodzi a jest zbie»y k a k jest zbie»y. 5 =
6 Dowód. Zachodzi b j a j c j, gdzie b j = a k +, c j = a k gdy k j < k +. Wystarczy zastosowa kryterium porówawcze i to»samo±ci k k które ªatwo udowodi idukcyjie. b j = i= (k i k i a k i = k k k i a k i, i= c j = (k i+ k i a k i = (k k i a k i, i=0 Przykªad. Szereg jest zbie»y wtedy i tylko wtedy, gdy K >, bowiem szereg zag szczoy K ma t wªaso±. K Przykªad. Szereg jest zbie»y wtedy i tylko wtedy, gdy K >, bowiem rówowa»ym (log K warukiem jest zbie»o± zag szczoego szeregu = (log K. K Twierdzeie (kryterium Cauchy'ego. Je±li lim sup a <, to szereg a jest bezwzgl die zbie»y. Je±li lim sup a >, to szereg a jest rozbie»y. Dowód. Je±li lim sup a <, to istieje K < takie,»e a < K dla prawie wszystkich. St d a < K dla prawie wszystkich i z kryterium porówawczego a jest zbie»y. Je±li lim sup a >, to ci g (a ie jest zbie»y do zera, a wi c a ie mo»e by zbie»y. Przykªad 3. Szereg lim K =. i=0 K jest zbie»y dla dowolego K R. Wyika to z rówo±ci Twierdzeie (kryterium d'alemberta. Je±li lim sup a + a <, to szereg a jest bezwzgl die zbie»y. Je±li lim if a + a >, to szereg a jest rozbie»y. Dowód. Wobec twierdzeia z cz ±ci dotycz cej ci gów, waruki kryterium d'alemberta implikuj odpowiedie waruki z kryterium Cauchy'ego. Przykªad 4. Szereg jest zbie»y, bowiem lim +!! = 0. (+! Twierdzeie (kryterium Abela. Je±li ci g (a jest ieros cy i zbie»y do zera, a ci g sum cz ±ciowych szeregu b jest ograiczoy, to szereg a b jest zbie»y. Dowód. Niech (B b dzie ci giem sum cz ±ciowych b, B 0 = 0. Zaªó»my,»e B K. Zachodzi: a j b j = a j (B j B j = a + B (a j+ a j B j. Ci g a + B jest zbie»y do zera, atomiast szereg (a + a B jest bezwzgl die zbie»y: (a j+ a j B j K To dowodzi zbie»o±ci a b. Przykªad 5. Szereg cos (a j a j+ = K(a a + Ka. jest zbie»y, bowiem ci g sum cz ±ciowych cos j = si + cos si jest ograiczoy. Dowód idukcyjy powy»szej to»samo±ci wykorzystuje rówo± si cos ( ( + cos + si = si ( + cos, któr ªatwo mo»a dowie± rozwijaj c fukcje trygoometrycze sum i ró»ic k tów. 6
7 Wiosek (twierdzeie Leibiza. Je±li (a jest ieros cym ci giem zbie»ym do zera, to szereg ( a jest zbie»y. Przykªad 6. Szereg aharmoiczy ( jest zbie»y. Twierdzeie. Suma szeregu bezwzgl die zbie»ego ie zale»y od porz dku wyrazów. Iaczej mówi c, je±li b = a σ( dla pewej bijekcji σ : N N, a szereg a jest bezwzgl die zbie»y, to rówie» b jest bezwzgl die zbie»y i oba szeregi maj t sam sum. Dowód. Ozaczmy przez A sum szeregu a. Ustalmy ε > 0 i iech N b dzie tak du»e,»e =N+ a < ε. Niech M b dzie ajwi ksz z liczb σ ( dla =,,..., N. Wówczas dla M zachodzi b j A N a j A + j=n+ a j < ε. To dowodzi tezy twierdzeia. Twierdzeie (wersja twierdzeia Lebesgue'a o zbie»o±ci zmajoryzowaej. Je±li a,k c dla wszystkich, k oraz pewego zbie»ego szeregu c, i poadto lim k a,k = b, to lim k a,k = = b. = Dowód. Poiewa» a,k b a,k + b c, wi c: f(x f(x k a,k b =0 Przechodz c do graicy k otrzymujemy lim sup k N a,k b + =0 f(x f(x k =N+ c. =N+ c. Poiewa» szereg c jest zbie»y, liczba po prawej stroie mo»e by dowolie maªa. dowodzi twierdzeia. To 7
Wykªad 2. Szeregi liczbowe.
Wykªad jest prowadzoy w oparciu o podr czik Aaliza matematycza 2. Deicje, twierdzeia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 2. Szeregi liczbowe. Deicje i podstawowe twierdzeia Deicja Szeregiem liczbowym
szereg jest szeregiem o wyrazach nieujemnych. Ponadto dla α (0; π ) zachodzi nierówno± sinα < α,
.. si Poiewa» si < 1; 1 >, wi c zbadajmy szereg zªo»oy z warto±ci bezwzgl dych wyrazów szeregu daego w zadaiu: () si = si, ale si < 0; 1 > Zatem si 1 () Po prawej stroie powy»szej ierówo±ci mamy szereg
> 1), wi c na mocy kryterium porównawczego szereg sin(n n)
.65. si() W szeregu tym wyst puj wyrazy dodatie i ujeme, ale ie a przemia. Zbadajmy wi c szereg: si() zªo»oy z warto±ci bezwzgl dych wyrazów szeregu daego w zadaiu. Poiewa» si(), wi c si() = Po prawej
wi c warunek konieczny zbie»no±ci szeregu jest speªniony. 12 = 9 12 = 3 4 k(k+1) k=1 ( k+1 k(k+1) n+1 = 1 1 n+1 = 1 0 = 1 36 = =
32 (+) Jest to szereg o wyrazach dodatich Poadto wyraz ogóly tego szeregu jest zbie»y do 0, wi c waruek koieczy zbie»o±ci szeregu jest speªioy s (+) 2 s 2 s + 2 (2+) 2 + 2 3 2 + 6 3 6 + 6 4 6 2 3 s 3 s
Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim.
Wykªad 05 graice cd, przykªady Rozpocziemy od podaia kilku przykªadów obliczaia graic ci gów Niech a > Ozaczmy a = c > 0 Mamy Poiewa» c = +, wi c tak»e a = + c + c c a = + dla a > 5 Poadto, zauwa»amy,»e
dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że
KILKA ZADAŃ O SZEREGACH Zbadać zbieżość i zbieżość bezwzgle da = a, jeśli a = a!! ; a + + ; c + ; ć! ; d +/ + 3 ; e! e 3 3+ ; f ; + g 000+ ; h ; + i! ; j k ; l 5 + l + 7 0 +3 6 0 + ; +3 ; ; m 3 + 3 ; +a
Analiza Matematyczna I.1
Aaliza Matematycza I Seria, P Nayar, 0/ Zadaie Niech a k >, (k =,, ) b d liczbami rzeczywistymi o tym samym zaku Udowodij,»e prawdziwa jest ierówo± ( + a )( + a ) ( + a ) + a + a + + a Czy zaªo»eie,»e
I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n
I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. Sprawdzian nr 4: (poniedziałek), godz. 10:15-10:35 (materiał zad.
Sprawdzia r 4: 4..04 (poiedziałek, godz. 0:5-0:35 (ateriał zad. -400 Kresy zbiorów. Defiicja: Zbiór Z R azyway ograiczoy z góry, jeżeli M R x M. Każdą liczbę rzeczywistą M R spełiającą waruek x M azyway
lim a n Cigi liczbowe i ich granice
Cigi liczbowe i ich graice Cigiem ieskoczoym azywamy dowol fukcj rzeczywist okrelo a zbiorze liczb aturalych. Dla wygody zapisu, zamiast a() bdziemy pisa a. Elemet a azywamy -tym wyrazem cigu. Cig (a )
Analiza Matematyczna I.1
Aaliza Matematycza I Seria, P Nayar, 0/3 Zadaie Niech a k >, (k =,, b d liczbami rzeczywistymi o tym samym zaku Udowodij,»e prawdziwa jest ierówo± ( + a ( + a ( + a + a + a + + a Czy zaªo»eie,»e liczby
Zadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
Tw. 1. Je»eli ci g {a n } ma granic a i ci g {b n } ma granic b, to ci g {a n b n } ma granic a b. Tw. 2. b n. Tw. 3. Tw. 4.
Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a + b } ma graic a+b. Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a b } ma graic a-b. Tw.. Je»eli ci g {a } ma graic
Zbiory. Zadanie 5. Wykaza to»samo±ci (a) A (B \ C) = [(A B) \ C] (A C), (b) A \ [B \ (C \ D)] = (A \ B) [(A C) \ D],
x FAQ ANALIZA R c ZADANIA Zbiory Zadaie 1. Opisa zbiory A B, A B, A \ B, B \ A je±li A = {x R : x 3x < 0, }; B = {x R : x 3x + 4 0} Zadaie. Niech A, B, C, D b d podzbiorami przestrzei X. Udowodi,»e A \
Funkcje tworz ce skrypt do zada«
Fukcje tworz ce skrypt do zada«mateusz Rapicki, Piotr Suwara 20 maja 2012 1 Kombiatoryka Deicja 1 (dwumia Newtoa) dla liczb caªkowitych ieujemych, k to liczba k sposobów wybraia k elemetów z -elemetowego
Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne - powtórzenie Tożsamości trygonometry czne
Fukcje trygoometrycze Fukcje trygoometry cze - powtórzeie Tożsamości trygoometry cze 3 podstawowe tożsamości trygoometrycze metoda uzasadiaia tożsamości trygoometryczych Fukcje trygoometry cze sumy i różicy
Analiza matematyczna. Robert Rałowski
Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................
Repetytorium z Matematyki Elementarnej Wersja Olimpijska
Repetytorium z Matematyi Elemetarej Wersja Olimpijsa Podae tutaj zadaia rozwiązywae były w jedej z grup ćwiczeiowych Są w więszości ieco trudiejsze od pozostałych zadań przygotowaych w ramach przedmiotu
a 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy
5. Zasada indukcji matematycznej. Dowody indukcyjne.
Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją
Równoliczno zbiorów. Definicja 3.1 Powiemy, e niepuste zbiory A i B s równoliczne jeeli istnieje. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~.
16 Rówoliczo zbiorów Defiicja 3.1 Powiemy, e iepuste zbiory A i B s rówolicze jeeli istieje f : A B. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~. Twierdzeie 3.1 (podstawowa właso rówoliczoci zbiorów)
3. Funkcje elementarne
3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących
2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1
Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.
SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n
SZEREGI LICZBOWE Z ciągu liczb a, a 2,... utwórzmy owy ciąg Przyjmijmy ozaczeia s = a + a 2 +... a = a k. k= k= a k = a + a 2 +... = s. Gdy graica k= a k jest liczbą, to mówimy, że szereg k= a k jest sumowaly
MATEMATYKA I SEMESTR ALK (PwZ)
MATEMATYKA I SEMESTR ALK (PwZ) 1. Ciągi liczbowe 1.1. OKREŚLENIE Ciąg liczbowy = Dowola fukcja przypisująca liczby rzeczywiste pierwszym (ciąg skończoy), albo wszystkim (ciąg ieskończoy) liczbom aturalym.
Spis tre±ci 1. Wprowadzenie Sprawy formalne O matematyce O kursie Ci gªo± Pochodna Caªka
Spis tre±ci 1. Wprowadzeie 3 1.1. Sprawy formale 3 1.. O matematyce 3 1.3. O kursie 3 1.4. Ci gªo± 3 1.5. Pochoda 5 1.6. Caªka 6 1.7. Liczby rzeczywiste 6 1.8. Ie iformacje 6. Liczby rzeczywiste 7.1. Formala
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R
Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą
Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:
Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego
Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów
Twierdzeia o graicach ciagów Matematyka ETId I.Gorgol Zbieżość ciagu a jego ograiczoość TWIERDZENIE Jeżeli ci ag liczbowy a ) jest zbieży do graicy skończoej, to jest ograiczoy. Zbieżość ciagu a jego ograiczoość
FAQ ANALIZA R c ZADANIA
FAQ ANALIZA R c ZADANIA Caªki wersja wst pa uwaga a bª dy!!! Fukcje pierwote Zadaie. Rozgrzewka. Obliczy caªki ieozaczoe, tz zale¹ fukcje pierwote. W awiasach wymieioe s arz dzia jakie mog by potrzebe
I kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4
Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).
Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy
12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!
SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO
Wrocław, 2 lutego 205 SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO MARCIN PREISNER [ PREISNER@MATH.UNI.WROC.PL ] SPIS TREŚCI Wstęp 2 Ozaczeia 2. INDUKCJA MATEMATYCZNA 2.. Wprowadzeie 2.2. Lista zadań
RAP pa¹dziernika S n = S 0 + i=1. p r q l = p r q l r. N n(a,b)
RAP 4 5 pa¹dzierika 008 Wykªad : PSL metoda zliczaia ±cie»ek Wykªadowca: Adrzej Ruci«ski Pisarz:Bartosz Naskr cki i Marek Kaluba Wst p B dziemy dalej studiowa zachowaia osobika, którego gr zajmowali±my
Ciągi i szeregi liczbowe. Ciągi nieskończone.
Ciągi i szeregi liczbowe W zbiorze liczb X jest określoa pewa fukcja f, jeŝeli kaŝdej liczbie x ze zbioru X jest przporządkowaa dokładie jeda liczba pewego zbioru liczb Y Przporządkowaie to zapisujem w
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.
Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
CIĄGI LICZBOWE. Poziom podstawowy
CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy
Prace domowe z matematyki Semestr zimowy 2010/2011. Zoa Zieli«ska-Kolasi«ska
Prace domowe z matematyki Semestr zimowy 2010/2011 Zoa Zieli«ska-Kolasi«ska 5 pa¹dzierika 2010 Rozdziaª 0 Uwagi Prace domowe ie s obowi zkowe aczkolwiek zach cam gor co do ich robieia i oddawaia mi a kartkach.
+ ln = + ln n + 1 ln(n)
"Łatwo z domu rzeczywistości zajśd do lasu matematyki, ale ieliczi tylko umieją wrócid." Hugo Dyoizy Steihaus Niech (a ) będzie ieskooczoym ciągiem rzeczywistym. Def. Szeregiem = a azywamy parę ciągów
Spis tre±ci 1. Wprowadzenie O matematyce O kursie Ci gªo± Pochodna Caªka Liczby rzeczywiste 6 2.
Spis tre±ci. Wprowadzeie 3.. O matematyce 3.. O kursie 3.3. Ci gªo± 3.4. Pochoda 5.5. Caªka 6.6. Liczby rzeczywiste 6. Liczby rzeczywiste 8.. Formala deicja 8.. Liczby aturale i zasada idukcji 9.3. Rozkªad
AM /2010. Zadania z wicze«18 i 22 I 2010.
AM 2009/200 Zadaia z wicze«8 i 22 I 200 Omówieie zada«z kolokwium i zada«domowych Zadaie Niech f : [a, + ) R b dzie fukcj ci gª Okre±lamy fukcj f wzorem f(t) = sup{f(x) : x t} Wyka»,»e f jest iemalej ca
Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych
Automatya i Rootya Aaliza Wyład dr Adam Ćmil cmil@agh.du.pl SZEREGI POTĘGOWE ( c ciąg licz zspoloych c ( z z - szrg potęgowy, gdzi ( c - ciąg współczyiów szrgu, z C - środ, ctrum (ustalo, z C - zmia. Dla
Nieklasyczne modele kolorowania grafów
65 Nieklasycze modele kolorowaia grafów 66 Kolorowaie sprawiedliwe Def. Jeli wierzchołki grafu G moa podzieli a k takich zbiorów iezaleych C,...,C k, e C i C j dla wszystkich i,j,...,k, to mówimy, e G
1 Twierdzenia o granicznym przejściu pod znakiem całki
1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Ciągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych
Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.
Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..
Funkcje tworz ce - du»y skrypt
Fukcje tworz ce - du»y skrypt Mateusz Rapicki, Piotr Suwara 9 sierpia 202 Kombiatoryka ( ) Deicja (dwumia Newtoa). k dla liczb caªkowitych ieujemych, k to liczba sposobów wybraia k elemetów z -elemetowego
Kurs z matematyki - zadania
Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie
1. Granica funkcji w punkcie
Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem
Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa
Mare Be±a, Statystya matematycza, wyªad 3 38 3 Statystyi zupeªe 3. Wyªadicze rodziy rozªadów prawdopodobie«stwa Zacziemy od deicji Deicja 3. Rodzi rozªadów {µ θ } θ Θ azywamy wyªadicz rodzi rozªadów -
RÓWNANIA RÓŻNICZKOWE WYKŁAD 11
RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest
MATEMATYKA 9. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 2017/2018 FUNKCJE WYKŁADNICZE, LOGARYTMY
INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 9 FUNKCJE WYKŁADNICZE, LOGARYTMY Dla dowolnej liczby a > 0, liczby
1. Pochodna funkcji. Twierdzenie Rolle'a i twierdzenie Lagrange'a.
SKRYPT A Jarosªaw Wróblewski. Pochoda fukcji. Twierdzeie Rolle'a i twierdzeie Lagrage'a. Kolokwium r : do zad. 473 Kolokwium r : do zad. 53 Kolokwium r 3: do zad. 538 Kolokwium r 4: do zad. 579 445. Niech
zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12
Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a
Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =
Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka
Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17
Kolokwiu r 5: piątek 8..06, godz. 8:5-9:00, ateriał zad. 40, 50-585. Kolokwiu r 53: piątek 5..06, godz. 8:5-9:00, ateriał zad. 50, 50-59. Kolokwiu r 54: piątek..06, godz. 8:5-9:00, ateriał zad. 83, 50-64.
Zasada indukcji matematycznej. Dowody indukcyjne.
Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,
Egzaminy. na wyższe uczelnie 2003. zadania
zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia
Funkcja wykładnicza i logarytm
Rozdział 3 Fukcja wykładicza i logarytm Potrafimy już defiiować potęgi liczb dodatich o wykładiku wymierym: jeśli a > 0 i x = p/q Q dla p, q N, to aturalie jest przyjąć a x = a 1/q) p = a 1/q } {{... a
Metody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2013/14
Wykład: zad. 35-43 Kowersatoriu 8..03: zad. 44-6 Ćwiczeia 9..03: zad. 6-340 Kolokwiu r 6 5..03 (poiedziałek, 3:5-4:00: ateriał z zad. -384 Kresy zbiorów. Defiicja: Zbiór Z R azyway ograiczoy z góry, jeżeli
Ekonomia matematyczna - 1.1
Ekoomia matematycza - 1.1 Elemety teorii kosumeta 1. Pole preferecji Ozaczmy R x x 1,...,x : x j 0 x x, x j1 j. R rozpatrujemy z ormą x j 2. Dla x x 1,...,x,p p 1,...,p Ip x, p x j p j x 1 p 1 x 2 p 2...x
Szeregi liczbowe. 15 stycznia 2012
Szeregi liczbowe 5 styczia 0 Szeregi o wyrazach dodatich. Waruek koieczy zbieżości szeregu Defiicja.Abyszereg a < byłzbieżyciąga musizbiegaćdo0. Jest to waruek koieczy ale ie dostateczy. Jak wiecie z wykładu(i
Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.
Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.
Zbiory ograniczone i kresy zbiorów
Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy
Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas
Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas Ćwiczenie 1. Niech W = {(x 1, x 2, x 3 ) K 3 : x 2 1 + x 2 2 + x 2 3 = x 1 x 2 + x 2 x 3 + x 3 x 1 }. Czy W jest podprzestrzeni a gdy
Analiza matematyczna dla informatyków 4 Zajęcia 5
Aaliza matematycza dla iformatyków Zajęcia 5 Twiereie (auchy ego) Niech Ω bęie otwartym pobiorem oraz f : Ω fukcją holomorficzą Wtedy dla dowolego koturu całkowicie zawartego w Ω zachoi f(z) = 0 Zadaie
x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem
9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3
Czyli L = P a wi c wzór (1) dla n=1 jest prawdziwy. Czyli L = P a wi c wzór (1) dla n=2 jest prawdziwy.
1.59 1 + +... + n = n(n+1) (1) Sprawd¹my wzór dla n=1: L = 1 P = 1(1+1) = = 1 Czyli L = P a wi c wzór (1) dla n=1 jest prawdziwy. Sprawd¹my wzór dla n=: L = 1 + = 3 P = (+1) = 6 = 3 Czyli L = P a wi c
Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia
Wy lad 8 Zasadicze twierdzeie algebry. Poj ecie pierścieia 1 Zasadicze twierdzeie algebry i jego dowód Defiicja 8.1. f: C C postaci Wielomiaem o wspó lczyiach zespoloych azywamy fucj e f(x) = a x + a 1
Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223
Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości
s n = a k (2) lim s n = S, to szereg (1) nazywamy zbieżnym. W przeciwnym przypadku mówimy, że szereg jest rozbieżny.
Szeregi liczbowe Definicja Szeregiem liczbowym nazywamy wyrażenie a n = a + a 2 + a 3 + () Liczby a n, n =, 2,... nazywamy wyrazami szeregu. Natomiast sumę n s n = a k (2) nazywamy n-tą sumą częściową
Rachunek prawdopodobieństwa II. Zadania
Leszek Słomiński Rachuek prawdopodobieństwa II. Zadaia Materiały dydaktycze dla studetów matematyki przygotowae w ramach projektu IKS - Iwestycja w Kieruki Strategicze a Wydziale Matematyki i Iformatyki
ZADANIA NA POCZA n(n + 1) = 1 3n(n + 1)(n + 2).
ZADANIA NA POCZA TEK Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4 = 3 Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4 = 4 3 3 Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4
Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M)
Operatory zwarte Niech X będzie przestrzeią Baacha. Odwzorowaie liiowe T azywa się zwarte, jeśli obraz kuli jedostkowej T (B) jest zbiorem warukowo zwartym. Przestrzeń wszystkich operatorów zwartych a
Prawdopodobieństwo i statystyka
Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą
Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu
Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na
Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy
Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej
Metoda najszybszego spadku
Metody Gradietowe W tym rozdziale bdziemy rozwaa metody poszuiwaia dla fucji z przestrzei R o wartociach rzeczywistych Metody te wyorzystuj radiet fucji ja rówie wartoci fucji Przypomijmy, czym jest zbiór
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć
JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1
J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)
2. Nieskończone ciągi liczbowe
Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi
Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe
Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.
Zadania z algebry liniowej - sem. I Liczby zespolone
Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C
Materiały do ćwiczeń z Analizy Matematycznej I
Materiały do ćwiczeń z Aalizy Matematyczej I 08/09 Maria Frotczak Ludwika Kaczmarek Katarzya Klimczak Maria Michalska Beata Osińska-Ulrych Tomasz Rodak Adam Różycki Grzegorz Skalski Staisław Spodzieja
1 Poj cia pomocnicze. Przykªad 1. A A d
Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy
1 Pochodne wyższych rzędów
1 Pochode wyższych rzędów 1.1 Defiicja i przykłady Def. Drugą pochodą fukcji f azywamy pochodą pochodej tej fukcji. Trzecia pochoda jest pochodą drugiej pochodej; itd. Ogólie, -ta pochoda fukcji jest pochodą
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są
Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań
Aaliza Matematycza I dla Iżyierii Biomedyczej Lista zadań Jacek Cichoń, WPPT PWr, 205/6 Logika, zbiory i otacja matematycza Zadaie Niech p, q, r będą zmieymi zdaiowymi. Pokaż, że:. = ( (p p)), 2. = (p
Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4
Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium
Ekstremalnie maªe zbiory
Maªe jest pi kne Instytut Matematyki Uniwersytetu Warszawskiego Nadarzyn, 27.08.2011 Zbiory silnie miary zero Przypomnienie Zbiór X [0, 1] jest miary Lebesgue'a zero, gdy dla ka»dego ε > 0 istnieje ci
Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego
Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
P 0max. P max. = P max = 0; 9 20 = 18 W. U 2 0max. U 0max = q P 0max = p 18 2 = 6 V. D = T = U 0 = D E ; = 6
XL OLIMPIADA WIEDZY TECHNICZNEJ Zawody II stopnia Rozwi zania zada dla grupy elektryczno-elektronicznej Rozwi zanie zadania 1 Sprawno przekszta tnika jest r wna P 0ma a Maksymaln moc odbiornika mo na zatem