Dopasowywanie modelu do danych
|
|
- Beata Wilczyńska
- 8 lat temu
- Przeglądów:
Transkrypt
1
2 Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA; wyznaczanie prognoz w arkuszu danych programu; propozycja prezentacji graficznych; dodatkowe własności narzędzia Dopasowanie w programie STATISTICA.
3 Dopasowywanie modelu do danych Intuicyjnie, stwierdzenie dopasować model do danych jest oczywiste. Chodzi o narysowanie pewnej funkcji (na przykład liniowej), tak aby pasowała ona do pewnego zbioru punktów. Ale takie podejście jest zbyt intuicyjne, bowiem wyników byłoby zapewne tyle, ilu badaczy danego zjawiska. Dlatego też należy ściśle określić pojęcie dopasowania funkcji do danych i bazować na pewnych algorytmach, które takie dopasowanie realizują. W modelowaniu największą popularność zdobyła metoda najmniejszych kwadratów (MNK), które polega na znalezieniu takiej postaci funkcji, aby kwadraty różnic pomiędzy wartościami rzeczywistymi i dopasowanymi były jak najmniejsze. Nie jest to jednak jedyny algorytm w przypadku metody wyrównywania wykładniczego minimalizacji będzie najczęściej podlegała błąd procentowy zaś narzędzia dostępne w module Estymacji nieliniowej pozwalają użytkownikowi określić dowolnie sposób mierzenia różnicy pomiędzy danymi rzeczywistymi a ich modelem.
4 Podstawowe rodzaje modeli trendów Bez wątpienia najczęściej stosowanym rodzaj modelu szeregów czasowych jest trend liniowy: Y t = b 0 + b 1 t W modelu trendu liniowego zakłada się stałość różnic pomiędzy kolejnymi obserwowanymi wartościami (a więc stały trend spadkowy bądź rosnący). Model w postaci funkcji kwadratowej pozwala na prognozowanie zjawisk, które charakteryzują się zmiennymi przyrostami kolejnych obserwowanych wartości, przy czym przyrosty te rosną bądź spadają liniowo: Y t = b 0 + b 1 t + b 2 t 2 Funkcja wykładnicza może dobrze oddawać przebieg zjawiska charakteryzującego się stałymi zmianami względnymi (a więc zmianą procentową): Y t = b 0 b 1 t
5 Dopasowanie trendu liniowego Najprostszym sposobem dopasowania modelu liniowego do danych jest zastosowanie narzędzi graficznych programu STATISTICA np. wykresu liniowego. W zakładce więcej wskazujemy rodzaj dopasowywanej funkcji i uzyskujemy zarówno graficzną prezentację jej przebiegu, jak i wzór modelu. Poniżej zaprezentowano liczbę zarejestrowanych w Polsce samochodów z dopasowanym modelem trendu liniowego.
6 Konstrukcja prognozy za pomocą formuł arkusza danych Aby skonstruować prognozę, wykorzystamy wzór znajdujący się w nagłówku wykresu liniowego. W arkuszu danych dodajemy kolumnę zawierającą numery okresów czasowych (X) i wypełniamy ją kolejnymi wartościami oraz zmienną Prognoza liniowa liczby samochodów, której wartości wyliczamy za pomocą formuły. Następnie dodajemy tyle przypadków, ile wynosi horyzont czasowy prognozy (przypadki warto przy tym nazwać kolejnymi latami, datami, miesiącami, etc.). Jeżeli z jakichś powodów wyliczenie formuły nie powiodło się (w programie STATISTICA można je wyłączyć) należy wznowić automatyczne przeliczanie formuł za pomocą klawisza F9.
7 Propozycja wizualizacji danych i prognozy Jeżeli w arkuszu mamy kolumny z oryginalnymi danymi oraz prognozowanymi wartościami, to poprzez zastosowanie wykresu liniowego w postaci wielokrotnej możemy zobrazować przebieg analizowanego szeregu i prognozę. Oto dwie propozycje takiego wykresu.
8 Model kwadratowy Aby zastosować model kwadratowy w zakładce więcej wybieramy dopasowanie w postaci wielomianu. Domyślnie jest on stopnia drugiego, natomiast można skomplikować postać funkcji aż do postaci wielomianu piątego stopnia. Na poniższym wykresie przedstawiono przebieg modelu kwadratowego dla danych dotyczących przewozu pasażerów koleją w latach Aby zmienić dokładność wyświetlania współczynników we wzorze należy w zakładce Dopasowanie ustawić odpowiednio ich format. Dla estetyki warto zmniejszyć dokładność wyświetlania, ale w przypadku złożonych wzorów większa liczba miejsc po przecinku do dokładniejsze wyniki prognoz.
9 Prognoza za pomocą modelu kwadratowego Na poniższym wykresie zaprezentowano prognozę wykonaną za pomocą modelu kwadratowego dla liczby pasażerów przewiezionych kolejami na lata
10 Model wykładniczy W analogiczny sposób można do danych dopasować model wykładniczy, który jak to przypomniano wcześniej, jest formułą, w której zakłada się stałe tempo wzrostu (spadku) względnego badanej wielkości. Sposób zapisu równania modelu wykładniczego nie jest może zbyt szczęśliwy, dlatego do interpretacji zalecamy podniesienie liczby e do odpowiedniej potęgi (można to uczynić za pomocą formuły Excela lub funkcji Exp kalkulatora. Powyższy wzór przybierze wtedy postać: Y = 5372,7 * 1,057 x Oznacza to, że z każdym rokiem, liczba samochodów przyrastała średnio o 5,7%. Prognoza wykonana za pomocą modelu wykładniczego zakłada, że to stałe tempo zmian procentowych będzie zachowane.
11 Modele oparte na części danych Nie zawsze wszystkie obserwacje danego zjawiska w czasie są istotne dla wychwycenia trendu i sporządzenia prognozy. Można pominąć dane odległe w czasie, czasem z uzasadnionych powodów można pominąć pewne obserwacje odstające. Oczywiście można dokonać takiego ucięcia modelowanych danych za pomocą odpowiednio skonstruowanego warunku selekcji, jednak istnieją też inne, bardziej intuicyjne sposoby. Poniżej przedstawiono dwie takie propozycje: wykorzystanie możliwości dopasowania modelu do pewnego przedziału (opcje narzędzia dopasowanie); interaktywną eksplorację wykresu za pomocą narzędzia wyróżniania.
12 Zmienianie zakresu danych za pomocą narzędzie dopasowanie Po sporządzeniu wykresu liniowego (i nie tylko) istnieje możliwość modyfikacji postaci sposobu dopasowania modelu do danych. W szczególności można ustalić zakres danych (numery przypadków od do ), który będzie uwzględniany podczas wyznaczania modelu. Można także do istniejącego już wykresu dodawać nowe modele, co umożliwia ich bezpośrednie porównanie.
13 Prognoza liczby autobusów przy wykorzystaniu części szeregu czasowego Zauważono, że począwszy od 2005 roku, liczba autobusów zmienia się liniowo. Postanowiono skonstruować prognozę, wykorzystując obserwacje z tego okresu.
14 Eliminowanie obserwacji odstających Wykorzystując narzędzie wyróżniania możemy usunąć interaktywnie z analizy dowolne obserwacje. Oczywiście, muszą za tym iść odpowiednie przesłanki merytoryczne, gdyż usuwając kolejne nie pasujące do modelu obserwacje, doprowadzilibyśmy do tego, że do każdych danych pasowałby w końcu model liniowy (czy innego dowolnego typu).
15 Podsumowanie 1) Na podstawie wartości obserwowanych i modelowanych znajdujących się w arkuszu po wyliczeniu prognoz można obliczyć reszty modelu i różne rodzaje miar błędów ex post. Należy tu zastosować odpowiednie formuły arkusza danych, analogicznie do tego, co było omawiane na wykładzie nr 3. 2) Aby wyznaczyć prognozy dla modeli wykorzystujących dane ucięte i pominięte za pomocą metod tabelarycznych (na przykład tych, które będą omawiane na kolejnym wykładzie) należy w arkuszu danych w pomocniczej kolumnie X pominąć odpowiednie wartości.
16 Inne funkcje W programie STATISTICA można znacznie rozszerzyć klasę funkcji, spośród których poszukuje się modelu szeregów czasowych. Dowolną, ogólną postać funkcji można podać w modele Estymacja nieliniowa i w zupełnie podobny sposób jak to było w przypadku pracy z wykresami, wykorzystać znaleziony wzór do sporządzenia prognozy. Opis wykorzystania modułu Estymacja nieliniowa do prognozowania będzie tematem jednego z kolejnych wykładów.
Analiza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny
Analiza sezonowości Wiele zjawisk charakteryzuje się nie tylko trendem i wahaniami przypadkowymi, lecz także pewną sezonowością. Występowanie wahań sezonowych może mieć charakter kwartalny, miesięczny,
Co to jest analiza regresji?
Co to jest analiza regresji? Celem analizy regresji jest badanie związków pomiędzy wieloma zmiennymi niezależnymi (objaśniającymi) a zmienną zależną (objaśnianą), która musi mieć charakter liczbowy. W
Indeksy dynamiki (o stałej i zmiennej podstawie)
Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy
Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA
Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce (1990-2015)) Na
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Wykład 4: Statystyki opisowe (część 1)
Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr
TP1 - TABELE PRZESTAWNE od A do Z
TP1 - TABELE PRZESTAWNE od A do Z Program szkolenia 1. Tabele programu Excel 1.1. Wstawianie tabeli 1.2. Style tabeli 1.3. Właściwości tabeli 1.4. Narzędzia tabel 1.4.1. Usuń duplikaty 1.4.2. Konwertuj
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości
Regresja linearyzowalna
1 z 5 2007-05-09 23:22 Medycyna Praktyczna - portal dla lekarzy Regresja linearyzowalna mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie Data utworzenia:
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Wykład 5: Analiza dynamiki szeregów czasowych
Wykład 5: Analiza dynamiki szeregów czasowych ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie tego procesu
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
B3.5 Koncentracja. Raport pochodzi z portalu
B3.5 Koncentracja System PIK umożliwia wyznaczanie potencjału gospodarczego regionu z wykorzystaniem wskaźników lokacji i wskaźników przesunięć. Jest to dalszy logiczny krok analizy zaraz po modułach B3.1
Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki
Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
ECDL zaawansowany, moduł EXCEL
ECDL zaawansowany, moduł EXCEL Szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Czas trwania szkolenia - 20h (3 dni szkoleniowe) Grupa- 10 osób Terminy - 18-20
7.4 Automatyczne stawianie prognoz
szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Przykład wykorzystania Arkusza Kalkulacyjnego Excel
Przykład wykorzystania Arkusza Kalkulacyjnego Excel Wyznaczanie przybliżonych wartości pierwiastków wielomianu 1. Założenia Uczniowie poznali na poprzednich lekcjach następujące wiadomości dotyczące wielomianów:
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
WYKRESY SPORZĄDZANE W UKŁADZIE WSPÓŁRZĘDNYCH:
WYKRESY SPORZĄDZANE W UKŁADZIE WSPÓŁRZĘDNYCH: Zasada podstawowa: Wykorzystujemy możliwie najmniej skomplikowaną formę wykresu, jeżeli to możliwe unikamy wykresów 3D (zaciemnianie treści), uwaga na kolory
Zapraszamy do współpracy FACULTY OF ENGINEERING MANAGEMENT www.fem.put.poznan.pl Agnieszka Stachowiak agnieszka.stachowiak@put.poznan.pl Pokój 312 (obok czytelni) Dyżury: strona wydziałowa Materiały dydaktyczne:
Ćwiczenie 5 PROGNOZOWANIE
Ćwiczenie 5 PROGNOZOWANIE Prognozowanie jest procesem przewidywania przyszłych zdarzeń. Obszary zastosowań prognozowania obejmują np. analizę danych giełdowych, przewidywanie zapotrzebowania na pracowników,
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
Wykład 2: Arkusz danych w programie STATISTICA
Wykład 2: Arkusz danych w programie STATISTICA Nazwy przypadków Numer i nazwa zmiennej Elementy arkusza danych Cechy statystyczne Zmienne (kolumny) Jednostki statystyczne Przypadki (wiersze) Tworzenie
Temat (rozumiany jako lekcja) Propozycje środków dydaktycznych. Liczba godzin. Uwagi
Roczny plan dydaktyczny z matematyki dla pierwszej klasy szkoły branżowej I stopnia dla uczniów będących absolwentami ośmioletniej szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy
Wykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31
Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Moduł interdyscyplinarny:
Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS
Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.5 Slajd 1/25 Slajd 2/25 Warianty W wielu wypadkach, przeprowadzając różne rozważania, chcemy zastanowić się
Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS
Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.5 Slajd 1/25 Slajd 2/25 W wielu wypadkach, przeprowadzając różne rozważania, chcemy zastanowić się A co by
Analiza regresji - weryfikacja założeń
Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Ekonometria. Regresja liniowa, dobór postaci analitycznej, transformacja liniowa. Paweł Cibis 24 marca 2007
Regresja liniowa, dobór postaci analitycznej, transformacja liniowa Paweł Cibis pawel@cibis.pl 24 marca 2007 1 Regresja liniowa 2 Metoda aprioryczna Metoda heurystyczna Metoda oceny wzrokowej rozrzutu
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest
Program szkolenia EXCEL OD PODSTAW POPOŁUDNIOWY (WIECZOROWY)
Program szkolenia EXCEL OD PODSTAW POPOŁUDNIOWY (WIECZOROWY) SZKOLENIE JEST DLA OSÓB, KTÓRE: nie znają programu Microsoft Excel lub znają go w nieznacznym stopniu, chcą nauczyć się podstawowych poleceń
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
PROGRAM SZKOLENIA. Excel w Analizach danych.
PROGRAM SZKOLENIA Excel w Analizach danych SZKOLENIE JEST DLA OSÓB, KTÓRE: znają podstawy programu Microsoft Excel, w codziennej pracy wykorzystują Excel jako narzędzie analizy danych i chcą zgłębić posiadaną
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza
MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe
Praktyczny Excel. Wykresy i grafika. w Excelu krok po kroku
Praktyczny Excel Wykresy i grafika w Excelu krok po kroku 5 1 NUMER PRAWNICZY przygotowany przez + OCHRONA DANYCH OSOBOWYCH profesjonalnie i kompleksowo 1 2 + GRATIS 20% GRATIS 30%, tel. 22 518 29 29,
Praktyczny Excel. Wykresy i grafika. w Excelu krok po kroku
Praktyczny Excel Wykresy i grafika w Excelu krok po kroku 5 1 NUMER PRAWNICZY przygotowany przez + OCHRONA DANYCH OSOBOWYCH profesjonalnie i kompleksowo 1 2 + GRATIS 20% GRATIS 30%, tel. 22 518 29 29,
PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest
parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
ARKUSZ KALKULACYJNY komórka
ARKUSZ KALKULACYJNY Arkusz kalkulacyjny program służący do obliczeń, kalkulacji i ich interpretacji graficznej w postaci wykresów. Przykłady programów typu Arkusz Kalkulacyjny: - Ms Excel (*.xls; *.xlsx)
Instrukcja użytkownika programu
Instrukcja użytkownika programu Autorem części wzorów (metody przybliżone dla trendu wykładniczego i potęgowego) jest prof. zw. dr hab. inż. Jan Purczyński z Katedry Metod Ilościowych Uniwersytetu Szczecińskiego.
PROGNOZOWANIE SPRZEDAŻY STUDIUM PRZYPADKU
PROGNOZOWANIE SPRZEDAŻY STUDIUM PRZYPADKU prof. dr hab. Andrzej Sokołowski 2 W tym opracowaniu przedstawiony zostanie przebieg procesu poszukiwania modelu prognostycznego wykorzystującego jedynie przeszłe
Analiza metod prognozowania kursów akcji
Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl
Wymagania edukacyjne z informatyki dla klasy szóstej szkoły podstawowej.
Wymagania edukacyjne z informatyki dla klasy szóstej szkoły podstawowej. Dział Zagadnienia Wymagania podstawowe Wymagania ponadpodstawowe Arkusz kalkulacyjny (Microsoft Excel i OpenOffice) Uruchomienie
PROGRAM SZKOLENIA. Excel Średniozaawansowany z wprowadzeniem do tabel przestawnych i makr.
PROGRAM SZKOLENIA Excel Średniozaawansowany z wprowadzeniem do tabel przestawnych i makr SZKOLENIE JEST DLA OSÓB, KTÓRE: znają podstawy programu Microsoft Excel, chcą przyspieszyć i usprawnić pracę oraz
WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Ćwiczenie 2 arkusze kalkulacyjne użycie funkcji logicznych
Ćwiczenie 2 arkusze kalkulacyjne użycie funkcji logicznych 0. W pliku wiek_staz.xlsx znajduje się tabela z danymi uzyskanymi z ankietowania pracowników zakładu pracy (210 osób); w kolumnie B podano wiek,
Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej
Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne
Analiza szeregów czasowych
Statystyka Wykład 5. Analiza szeregów czasowych michal.trzesiok@ue.katowice.pl Uniwersytet Ekonomiczny w Katowicach Katedra Analiz Gospodarczych i Finansowych 9 listopada 2015 r. Plan Szeregi czasowe wprowadzenie
Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007
Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja
Przy dokonywaniu analiz ekonomicznych, np. sprzedażowych, bardzo
Sprawdź, jak możesz przewidzieć wartość sprzedaży w nadchodzących okresach Prognozowanie w Excelu Systemy informatyczne w zarządzaniu 13/01 Przy dokonywaniu analiz ekonomicznych, np. sprzedażowych, bardzo
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Program szkolenia EXCEL ŚREDNIOZAAWANSOWANY.
Program szkolenia EXCEL ŚREDNIOZAAWANSOWANY SZKOLENIE JEST DLA OSÓB, KTÓRE: znają podstawy programu Microsoft Excel, chcą przyspieszyć i usprawnić pracę oraz poszerzyć posiadaną już wiedzę z zakresu wprowadzania
1. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących przetwornika napięcia zgodnie z poniższym przykładem
1 Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących przetwornika napięcia zgodnie z poniższym przykładem Znaczenie symboli: Tab 1 Wyniki i błędy pomiarów Lp X [mm] U
Zaokrąglanie liczb Adresowanie względne i bezwzględne Automatyczne podejmowanie decyzji Porządkowanie tabeli danych
Dodatkowe możliwości arkusza kalkulacyjnego Zaokrąglanie liczb Adresowanie względne i bezwzględne Automatyczne podejmowanie decyzji Porządkowanie tabeli danych Zaokrąglanie liczb Stosowanie formatów liczbowych,
SCENARIUSZ LEKCJI. Wielomiany komputerowe wykresy funkcji wielomianowych
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
Program szkolenia EXCEL W ANALIZACH DANYCH.
Program szkolenia EXCEL W ANALIZACH DANYCH SZKOLENIE JEST DLA OSÓB, KTÓRE: znają podstawy programu Microsoft Excel, w codziennej pracy wykorzystują Excel jako narzędzie analizy danych i chcą zgłębić posiadaną
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 1d: wpisy oznaczone jako: LICZBY RZECZYWISTE, JĘZYK MATEMATYKI, FUNKCJA LINIOWA, (F) FUNKCJE, FUNKCJA KWADRATOWA. Przypisanie
Ćwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
Program szkolenia EXCEL ZAAWANSOWANY Z WPROWADZENIEM DO VBA.
Program szkolenia EXCEL ZAAWANSOWANY Z WPROWADZENIEM DO VBA SZKOLENIE JEST DLA OSÓB, KTÓRE: znają dobrze program Microsoft Excel, w codziennej pracy wykorzystują MS Excel jako narzędzie analizy danych,
Wprowadzenie do teorii prognozowania
Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Plan prezentacji Wprowadzenie do prognozowania Metody
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Przenoszenie, kopiowanie formuł
Przenoszenie, kopiowanie formuł Jeżeli będziemy kopiowali komórki wypełnione tekstem lub liczbami możemy wykorzystywać tradycyjny sposób kopiowania lub przenoszenia zawartości w inne miejsce. Jednak przy
Imię, nazwisko i tytuł/stopień KOORDYNATORA przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, dr
Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu w systemie USOS 1000-ES1-3EC1 Liczba
Program szkoleniowy. 16 h dydaktycznych (12 h zegarowych) NAZWA SZCZEGÓŁY CZAS. Skróty dostępu do narzędzi
Program szkoleniowy Microsoft Excel Poziom Podstawowy 16 h dydaktycznych (12 h zegarowych) NAZWA SZCZEGÓŁY CZAS 1. Skróty klawiszowe Skróty do przeglądania arkusza Skróty dostępu do narzędzi Skróty dotyczące
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. LICZBY RZECZYWISTE DLA KLASY PIERWSZEJ 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Obliczenia inżynierskie arkusz kalkulacyjny. Technologie informacyjne
Obliczenia inżynierskie arkusz kalkulacyjny Technologie informacyjne Wprowadzanie i modyfikacja danych Program Excel rozróżnia trzy typy danych: Etykiety tak określa sie wpisywany tekst: tytuł tabeli,
PROGRAM SZKOLENIA. Excel w logistyce.
PROGRAM SZKOLENIA Excel w logistyce SZKOLENIE JEST DLA OSÓB, KTÓRE: znają podstawy programu Microsoft Excel, pracują lub zarządzają działami sprzedaży lub logistyki, chcą zoptymalizować czas przygotowywania
Funkcje IV. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) określa funkcję za pomocą wzoru, tabeli, wykresu, opisu słownego, b) odczytuje z wykresu funkcji: dziedzinę i zbiór wartości, miejsca zerowe, maksymalne przedziały, w których
Jak korzystać z Excela?
1 Jak korzystać z Excela? 1. Dane liczbowe, wprowadzone (zaimportowane) do arkusza kalkulacyjnego w Excelu mogą przyjmować różne kategorie, np. ogólne, liczbowe, walutowe, księgowe, naukowe, itd. Jeśli
SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI
SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Stanisza r xy = 0 zmienne nie są skorelowane 0 < r xy 0,1
Zad.2. Korelacja - szukanie zależności.
Ćw. III. MSExcel obliczenia zarządcze Spis zagadnień: Funkcje statystyczne Funkcje finansowe Tworzenie prognoz Scenariusze >>>Otwórz plik: excel_02.xls> przejdź do arkusza
K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
MATeMAtyka cz.1. Zakres podstawowy
MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione
Uczelnia Łazarskiego. Sylabus. 1. Nazwa przedmiotu EKONOMETRIA 2. Kod przedmiotu
Uczelnia Łazarskiego Sylabus 1. Nazwa przedmiotu EKONOMETRIA 2. Kod przedmiotu 3. Język wykładowy Język polski 4. Status przedmiotu podstawowy do wyboru Języki X kierunkowy specjalistyczny Inne 5. Cel
W pustym arkuszu utwórz automatycznie tabliczkę mnożenia w zakresie od 1*1 do 25*25.
ZADANIE 1 W pustym arkuszu utwórz automatycznie tabliczkę mnożenia w zakresie od 1*1 do 25*25. W komórce będącej wynikiem mnożenia 1*1 wpisz odpowiednią formułę, a następnie skopiuj ją do wszystkich pozostałych
Analiza Współzależności
Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka
52 NAJLEPSZE TRIKI W EXCELU, CZYLI JAK SZYBCIEJ WYKONAĆ OBLICZENIA
z a a w a n s o w a n y 52 NAJLEPSZE TRIKI W EXCELU, CZYLI JAK SZYBCIEJ WYKONAĆ OBLICZENIA 52 najlepsze triki w Excelu, czyli jak szybciej wykonać obliczenia Jakub Kudliński Autor: Jakub Kudliński Kierownik