PROGNOZOWANIE. Ćwiczenia 3. mgr Dawid Doliński
|
|
- Roman Mazur
- 9 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenia 3 mgr Dawid Doliński
2 Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne Modele ARMA, ARIMA Model wskaźników seznowości Model Winersa Modele ARIMA
3 Zadanie 1 Dyrekor Sprzedaży firmy wywarzającej sprzęgła samochodowe chce przygoować prognozę na kolejny miesiąc. Liczba sprzedaży w poprzednich miesiącach przedsawia abela Miesiąc Popy ) Zbuduj model prognosyczny oraz wyznacz prognozę na kolejny miesiąc wykorzysując meody: a) Model funkcji liniowej b) model funkcji wykładniczej c) model funkcji poęgowej d) model funkcji logarymicznej 2) Dla każdego modelu określ średni kwadraowy błąd prognozy oraz średni względny błąd prognozy
4 Modele analiyczne Modele analiyczne należą do klasy modeli ekonomerycznych, w kórych zmienną objaśniającą jes czas. Modele e opierają się na esymacji paramerów modelu, a nasępnie wykorzysania ych paramerów do prognozowania Meoda Najmniejszych Kwadraów 2 R s w Modele analiyczne cechy charakerysyczne Do budowy modelu wysarczają jedynie dane empiryczne w posaci szeregu czasowego Prosy sposób esymacji paramerów Ławy sposób określania dokładności prognoz Częso wysępuje auokorelacja składnika reszowego, co uniemożliwia dokładne określenie błędu prognozy
5 Modele analiyczne Modele analiyczne określa się jako funkcje rendu. Najpopularniejsze o: Funkcja liniowa Funkcja wykładnicza Funkcja poęgowa Funkcja logarymiczna Funkcja wielomianowa Y Funkcja liniowa y = a + b gdzie kolejna jednoska czasu α, β esymowane paramery czas 14
6 Modele analiyczne Funkcja liniowa y warości eoreyczne ,5 38,9 40, funkcja rendu , ,9 44,3 45, , ,3 49, ? prognoza y = a + b KMNK a = 36, 65 b =1, 03 y = 36,65 + 1,03* = 11 y 11 = 36,65 + 1,03*11 y 11 = 47, 98
7 Modele analiyczne Modele analiyczne Funkcja liniowa Funkcja wykładnicza Funkcja poęgowa Funkcja logarymiczna Funkcja wielomianowa Funkcja wykładnicza y = e a +b y = a * e b* gdzie β>0 Y y = a eb gdzie kolejna jednoska czasu gdzie β>1 α, β esymowane paramery e liczba Euler a - e ~ 2,71 czas
8 Modele analiyczne Funkcja wykładnicza y = a * e b* a 0 a 1 >1 0<a 1 <1 a 1 jes sopą wzrosu warość zmiennej objaśnianej wzrasa (spada gdy a 1 <1) przecięnie o (a 1-1)*100%, gdy warość zmiennej objaśniającej wzrasa o jednoskę (np. z okresu na okres), w modeluyˆ = 2,7 1, 13 warość zmiennej y wzrasa przecięnie o 13% z okresu na okres. a 0 o ile go inerpreujemy jes poziomem zmiennej objaśnianej, gdy zmienna objaśniająca jes równa 0. Model liniowy przekszałca się do posaci liniowej jako: ln yˆ = lna 0 + lna1 x W=c+b*x Podsawiając: W=ln(y) b = lna0 c = lna 1
9 Modele analiyczne Modele analiyczne Funkcja liniowa Funkcja wykładnicza Funkcja poęgowa Funkcja logarymiczna Funkcja wielomianowa Y Funkcja poęgowa b y = a gdzie β>1 lub 0< β<1 gdzie kolejna jednoska czasu α, β esymowane paramery czas
10 Modele analiyczne Funkcja poęgowa y ˆ = a x 0 a a 0 jes poziomem zmiennej objaśnianej, gdy zmienna objaśniająca jes równa 1. a 1 jes elasycznością zmiennej objaśnianej względem zmiennej objaśniającej i oznacza w przybliżeniu procenową zmianę y spowodowaną zmianą warości x o 1% 1 a 1 <0 a 1 >1 Model poęgowy przekszałca się do posaci liniowej jako: ln y = lna 0 + a1 ln x a 0 1 0<a 1 <1 Podsawiając: W=ln(y) Z=ln(x) = lna0 b = a c 1 FUNKCJA LINIOWA W=c+b*Z
11 Modele analiyczne Modele analiyczne Funkcja liniowa Funkcja wykładnicza Funkcja poęgowa Funkcja logarymiczna Funkcja wielomianowa Y Funkcja logarymiczna y = a + bln gdzie β>0 gdzie kolejna jednoska czasu α, β esymowane paramery ln logarym nauralny czas
12 Modele analiyczne Modele analiyczne Funkcja liniowa Funkcja wykładnicza Funkcja poęgowa Funkcja logarymiczna Funkcja wielomianowa Funkcja wielomianowa Y y = a 0 + a 1 + a a n n gdzie kolejna jednoska czasu α, esymowane paramery czas 12
13 Zadanie 2 Dyrekor Sprzedaży firmy wywarzającej sprzę elekroniczny chce przygoować prognozę na kolejne 2 ygodnie dla produku X. Liczba sprzedaży w ys. Szuk w poprzednich ygodniach przedsawia abela Miesiąc Popy [ys. sz.] ) Zbuduj model prognosyczny oraz wyznacz prognozę na kolejny miesiąc wykorzysując meody: a) Model funkcji liniowej b) model funkcji wykładniczej c) model funkcji poęgowej d) model funkcji logarymicznej 2) Dla każdego modelu określ średni kwadraowy błąd prognozy oraz średni względny błąd prognozy
14 y Modele analiyczne Funkcja logisyczna a = 1+ be -g, a > 0, b > 1, g > 0 a a poziom nasycenia a 2 1 ln d b Model en funkcjonuje częso jako model endencji rozwojowej, szczególnie do modelowania sprzedaży nowych produków na określonym rynku.
15 Model na zaliczenie 1) Dobór modelu prognosycznego - 2 PUNKTY Przedsawienie kilku modeli prognosycznych Kryeria wyboru modelu dlaczego aki model? 2) Zbudowanie prognozy na kolejne okresy - 1 PUNKT Określenie prognozy na kolejne okresy na podsawie wybranego modelu 3) Ocena błędu / rafności prognozy - 2 PUNKTY określenie błędu zbudowanej prognozy Ocena rafności prognozy przez wykładowcę Trafność % - 0,5 punka Trafność > 90% - 1 punk 4) Forma - 1 PUNKT Wykresy danych wejściowych, NAJLEPSZEGO modelu Komenarze Czyelność budowanego modelu prognosycznego
16 Dziękuj kuję za uwagę
PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK
1 ANALIZA, PROGNOZOWANIE I SYMULACJA 2 POBRAĆ Z INTERNETU Plaforma WSL on-line Nazwisko prowadzącego Maryna Kupczyk Folder z nazwą przedmiou - Analiza, prognozowanie i symulacja Plik o nazwie Baza do ćwiczeń
PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
Zadania z parametrem
Zadania z paramerem Zadania z paramerem są bardzo nielubiane przez maurzysów Nie jes ławo odpowiedzieć na pyanie: dlaczego? Nie są o zadania o dużej skali rudności Myślę, że głównym powodem akiego sanu
PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny
E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,
Klasyfikacja modeli. Metoda najmniejszych kwadratów
Konspek ekonomeria: Weryfikacja modelu ekonomerycznego Podręcznik: Ekonomeria i badania operacyjne, red. nauk. Marek Gruszczyński, Maria Podgórska, omasz Kuszewski (ale można czyać dowolny podręcznik do
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
Analiza rynku projekt
Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes
Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW
Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest
1. Szereg niesezonowy 1.1. Opis szeregu
kwaralnych z la 2000-217 z la 2010-2017.. Szereg sezonowy ma charaker danych model z klasy ARIMA/SARIMA i model eksrapolacyjny oraz d prognoz z ych modeli. 1. Szereg niesezonowy 1.1. Opis szeregu Analizowany
Joanna Kisielińska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
1 DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Joanna Kisielińska Szkoła Główna
PAKIET MathCad - Część III
Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw3.mcd 1/12 Katedra Informatyki Stosowanej - Studium Podstaw Informatyki PAKIET MathCad - Część III RÓWNANIA I UKŁADY RÓWNAŃ 1. Równania z jedną niewiadomą MathCad
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
dyfuzja w płynie nieruchomym (lub w ruchu laminarnym) prowadzi do wzrostu chmury zanieczyszczenia
6. Dyspersja i adwekcja w przepływie urbulennym podsumowanie własności laminarnej (molekularnej) dyfuzji: ciągły ruch molekuł (molekularne wymuszenie) prowadzi do losowego błądzenia cząsek zanieczyszczeń
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Prognozowanie wska ników jako ciowych i ilo ciowych dla gospodarki polskiej z wykorzystaniem wybranych metod statystycznych
dr Anna Koz owska-grzybek mgr Marcin Kowalski Kaedra Mikroekonomii Akademia Ekonomiczna w Poznaniu Prognozowanie wska ników jako ciowych i ilo ciowych dla gospodarki polskiej z wykorzysaniem wybranych
Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych
Podstawowe pojęcia: Badanie statystyczne - zespół czynności zmierzających do uzyskania za pomocą metod statystycznych informacji charakteryzujących interesującą nas zbiorowość (populację generalną) Populacja
Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia
Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych
Kurs z matematyki - zadania
Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie
AUTOR MAGDALENA LACH
PRZEMYSŁY KREATYWNE W POLSCE ANALIZA LICZEBNOŚCI AUTOR MAGDALENA LACH WARSZAWA, 2014 Wstęp Celem raportu jest przedstawienie zmian liczby podmiotów sektora kreatywnego na obszarze Polski w latach 2009
Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny:
Matematyka ubezpieczeń majątkowych 5.2.2008 r. Zadanie. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Pr ( N = k) = 0 dla k = 0,, K, 9. Liczby szkód w
Prognozowanie i symulacje
Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez
Kurs wyrównawczy dla kandydatów i studentów UTP
Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno
STA T T A YSTYKA Korelacja
STATYSTYKA Korelacja Pojęcie korelacji Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi. Charakteryzując korelację dwóch cech podajemy dwa czynniki: kierunek oraz
OBWODY REZYSTANCYJNE NIELINIOWE
Politechnika Białostocka Wydział Elektryczny atedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zaj laboratoryjnych OBWODY REZYSTANCYJNE NELNOWE Numer wiczenia E17 Opracowanie: dr in. Jarosław
Mapa umiejętności czytania, interpretacji i posługiwania się mapą Polski.
Mapa umiejętności czytania, interpretacji i posługiwania się mapą Polski. Uczeń: odczytuje z map informacje przedstawione za pomocą różnych metod kartograficznych Mapa i jej przeznaczenie Wybierając się
Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce
Ekonomiczno-echniczne aspeky wykorzysania gazu w energeyce Janusz Koowicz Wydział Inżynierii i Ochrony Środowiska Poliechnika zęsochowska Inerpreacja wskazników NPV oraz IRR Janusz Koowicz W7 Wydział Inżynierii
Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?
Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych
ASD - ćwiczenia III. Dowodzenie poprawności programów iteracyjnych. Nieformalnie o poprawności programów:
ASD - ćwiczenia III Dowodzenie poprawności programów iteracyjnych Nieformalnie o poprawności programów: poprawność częściowa jeżeli program zakończy działanie dla danych wejściowych spełniających założony
Budowanie roli HR Business Partnera w firmach świadczących usługi profesjonalne - wdrożenie projektu
Budowanie roli HR Business Partnera w firmach świadczących usługi profesjonalne - wdrożenie projektu 8-letnie doswiadczenie w roli HR Business Partnera / HR Managera w firmach świadczących usługi profesjonalne
E k o n o m e t r i a S t r o n a 1
E k o n o m e t r i a S t r o n a Liniowy model ekonometryczny Jednorównaniowy liniowy model ekonometryczny (model regresji wielorakiej) można zapisać w postaci: y = α + α x + α x +... + α x + ε, t =,,...,
Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1
Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a
EKONOMETRIA II SYLABUS A. Informacje ogólne
EKONOMETRIA II SYLABUS A. Informacje ogólne Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów /semestr Wymagania wstępne (tzw. sekwencyjny system zajęć
DTR.ZL-24-08 APLISENS PRODUKCJA PRZETWORNIKÓW CIŚNIENIA I APARATURY POMIAROWEJ INSTRUKCJA OBSŁUGI (DOKUMENTACJA TECHNICZNO-RUCHOWA)
DTR.ZL-24-08 APLISENS PRODUKCJA PRZETWORNIKÓW CIŚNIENIA I APARATURY POMIAROWEJ INSTRUKCJA OBSŁUGI (DOKUMENTACJA TECHNICZNO-RUCHOWA) ZASILACZ SIECIOWY TYPU ZL-24-08 WARSZAWA, KWIECIEŃ 2008. APLISENS S.A.,
Ćwiczenie: "Ruch harmoniczny i fale"
Ćwiczenie: "Ruch harmoniczny i fale" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ODPOWIED NA PYTANIE PROFESORA RAUTSKAUKASA
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO NR 394 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 15 2004 JÓZEF HOZER Uniwersye Szczeci ski ODPOWIED NA PYTANIE PROFESORA RAUTSKAUKASA 1. PYTANIE PROFESORA RAUTSKAUKASA
7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka
7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka Oczekiwane przygotowanie informatyczne absolwenta gimnazjum Zbieranie i opracowywanie danych za pomocą arkusza kalkulacyjnego Uczeń: wypełnia komórki
4.3. Warunki życia Katarzyna Gorczyca
4.3. Warunki życia Katarzyna Gorczyca [w] Małe i średnie w policentrycznym rozwoju Polski, G.Korzeniak (red), Instytut Rozwoju Miast, Kraków 2014, str. 88-96 W publikacji zostały zaprezentowane wyniki
Optyka geometryczna i falowa
Pojęcie podstawowe: promień świetlny. Optyka geometryczna i alowa Podstawowa obserwacja: jeżeli promień świetlny pada na granicę dwóch ośrodków to: ulega odbiciu na powierzchni granicznej za!amaniu przy
KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1
KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych
Wyklad 1. Analiza danych za pomocą pakietu SAS. Obiekty i zmienne. Rodzaje zmiennych
Bioinformatyka - rozwój oferty edukacyjnej Uniwersytetu Przyrodniczego we Wrocławiu projekt realizowany w ramach Programu Operacyjnego Kapitał Ludzki współfinansowanego ze środków Europejskiego Funduszu
Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt):
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2014/2015 Zadanie I. 1. Według podanych współrzędnych punktów wyznaczyć ich położenie w przestrzeni (na jednym rysunku aksonometrycznym) i określić,
EKONOMETRIA dr inż.. ALEKSANDRA ŁUCZAK Uniwersytet Przyrodniczy w Poznaniu Katedra Finansów w i Rachunkowości ci Zakład Metod Ilościowych Collegium Maximum,, pokój j 617 Tel. (61) 8466091 luczak@up.poznan.pl
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
www.biznesplan.waw.pl
www.biznesplan.waw.pl A. WSKAŹNIKI PŁYNNOŚCI FINANSOWEJ A 1. Wskaźnik płynności bieżącej: WPB AB AB - aktywa bieżące, - zobowiązania bieżące. Wskaźnik ten informuje o tym, ile razy bieżące aktywa pokrywają
14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY
14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY Ruch jednostajny po okręgu Pole grawitacyjne Rozwiązania zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego
Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez
Czas trwania obligacji (duration)
Czas rwaia obligacji (duraio) Do aalizy ryzyka wyikającego ze zmia sóp proceowych (szczególie ryzyka zmiay cey) wykorzysuje się pojęcie zw. średiego ermiu wykupu obligacji, zwaego rówież czasem rwaia obligacji
WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji. Laboratorium Obróbki ubytkowej materiałów.
WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Obróbki ubytkowej materiałów Ćwiczenie nr 1 Temat: Geometria ostrzy narzędzi skrawających Cel ćwiczenia Celem ćwiczenia
LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDA DZENNE e LAORATORUM PRZYRZĄDÓW PÓŁPRZEWODNKOWYH LPP 2 Ćwiczenie nr 10 1. el ćwiczenia Przełączanie tranzystora bipolarnego elem
OGÓLNODOSTĘPNE IFORMACJE O WYNIKACH EGZAMINÓW I EFEKTYWNOŚCI NAUCZANIA W GIMNAZJACH przykłady ich wykorzystania i interpretowania
Teresa Kutajczyk, WBiA OKE w Gdańsku Okręgowa Komisja Egzaminacyjna w Gdańsku OGÓLNODOSTĘPNE IFORMACJE O WYNIKACH EGZAMINÓW I EFEKTYWNOŚCI NAUCZANIA W GIMNAZJACH przykłady ich wykorzystania i interpretowania
K P K P R K P R D K P R D W
KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
Program zdrowotny. Programy profilaktyczne w jednostkach samorz du terytorialnego. Programy zdrowotne a jednostki samorz du terytorialnego
Mirosław Moskalewicz 1 z 7 Programy profilaktyczne w jednostkach samorz du terytorialnego Specjalista Zdrowia Publicznego i Medycyny Spo ecznej Specjalista Po o nictwa i Ginekologii Lek. Med. Miros aw
TEORIA GIER W EKONOMII WYKŁAD 1: GRY W POSTACI EKSTENSYWNEJ I NORMALNEJ
TEORIA GIER W EKONOMII WYKŁAD : GRY W POSTACI EKSTENSYWNEJ I NORMALNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Schemat gry. Początek gry. 2. Ciąg kolejnych posunięć
Efektywność nauczania w Gimnazjum w Lutyni
Efektywność nauczania w Gimnazjum w Lutyni Efektywność nauczania w danej szkole często utożsamiana jest z jej wynikami egzaminacyjnymi. Gdyby wszystkie szkoły w Polsce pracowały z uczniami o tym samym
Rozwój małych elektrowni wodnych w kontekście sytemu wsparcia OZE
Rozwój małych elektrowni wodnych w kontekście sytemu wsparcia OZE Radosław Koropis Poznań 28.05.2013 r. DOTYCHCZASOWE WARUNKI SYSTEMU WSPARCIA ANALIZA RENTOWNOŚCI MEW ILE KOSZTUJE ZANIECHANIE SYSTEMU WSPARCIA?
Surowiec Zużycie surowca Zapas A B C D S 1 0,5 0,4 0,4 0,2 2000 S 2 0,4 0,2 0 0,5 2800 Ceny 10 14 8 11 x
Przykład: Przedsiębiorstwo może produkować cztery wyroby A, B, C, i D. Ograniczeniami są zasoby dwóch surowców S 1 oraz S 2. Zużycie surowca na jednostkę produkcji każdego z wyrobów (w kg), zapas surowca
Warszawa, dnia 22 stycznia 2015 r. Poz. 112 ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 15 stycznia 2015 r.
DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 22 stycznia 2015 r. ROZPORZĄDZENIE MINISTRA ŚRODOWISKA z dnia 15 stycznia 2015 r. w sprawie wzoru zaświadczenia potwierdzającego recykling oraz wzoru
MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.
INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję
Rozdzia 5. Uog lniona metoda najmniejszych kwadrat w : ::::::::::::: Podstawy uog lnionej metody najmniejszych kwadrat w :::::: Zastos
Spis tre ci PRZEDMOWA :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 11 CZ I. Wprowadzenie do modelowania ekonometrycznego ::::::::::: 13 Rozdzia 1. Modelowanie ekonometryczne ::::::::::::::::::::::::::::::
O MIERNIKACH DOKŁADNOŚCI PROGNOZ EX POST W PROGNOZOWANIU ZMIENNYCH O SILNYM NATĘŻENIU SEZONOWOŚCI
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/, 0, s. 3 O MIERNIKACH DOKŁADNOŚCI PROGNOZ EX POST W PROGNOZOWANIU ZMIENNYCH O SILNYM NATĘŻENIU SEZONOWOŚCI Maia Szmuksa Zawadzka Sudium Maemayki Zachodniopomoski
METODA OKREŚLANIA WIELKOŚCI KONTRAKTÓW NA ENERGIĘ ELEKTRYCZNĄ
B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 2009 Barbara GŁADYSZ* METODA OKREŚLANIA WIELKOŚCI KONTRAKTÓW NA ENERGIĘ ELEKTRYCZNĄ W arykule zaproponowano meodę określania wielkości konraków na
Copyright by Politechnika Białostocka, Białystok 2017
Recenzenci: dr hab. Sanisław Łobejko, prof. SGH prof. dr hab. Doroa Wikowska Redakor naukowy: Joanicjusz Nazarko Auorzy: Ewa Chodakowska Kaarzyna Halicka Arkadiusz Jurczuk Joanicjusz Nazarko Redakor wydawnicwa:
W tym elemencie większość zdających nie zapisywała za pomocą równania reakcji procesu zobojętniania tlenku sodu mianowanym roztworem kwasu solnego.
W tym elemencie większość zdających nie zapisywała za pomocą równania reakcji procesu zobojętniania tlenku sodu mianowanym roztworem kwasu solnego. Ad. IV. Wykaz prac według kolejności ich wykonania. Ten
Regulamin Rozgrywania Mistrzostw Polski oraz innych Turniejów Tańca w Show
Regulamin Rozgrywania Mistrzostw Polski oraz innych Turniejów Tańca w Show Warunek: uczestnikami mogą być amatorzy pow.15 lat 1. Style taneczne turniejów tańca w show. 1. 1. Turnieje tańca w show przeprowadzane
Ekonomiczny Uniwersytet Dziecięcy
Ekonomiczny Uniwersytet Dziecięcy Akcje na giełdzie dr Adam Zaremba Uniwersytet Ekonomiczny w Poznaniu 28 kwietnia 2016 r. EKONOMICZNY UNIWERSYTET DZIECIĘCY WWW.UNIWERSYTET-DZIECIECY.PL PLAN WYKŁADU I.
Jan Olek. Uniwersytet Stefana Kardynała Wyszyńskiego. Procesy z Opóźnieniem. J. Olek. Równanie logistyczne. Założenia
Procesy z Procesy z Jan Olek Uniwersytet Stefana ardynała Wyszyńskiego 2013 Wzór równania logistycznego: Ṅ(t)=rN(t)(1- N ), gdzie Ṅ(t) - przyrost populacji w czasie t r - rozrodczość netto, (r > 0) N -
ANALIZA ZMIAN KURSU EURO/DOLAR: MODEL VAR I PERCEPTRON WIELOWARSTWOWY
Aleksandra Mauszewska, Doroa Wikowska 2 Insyu Zarządzania PŁ, 2 Kaedra Ekonomerii i Informayki SGGW e-mail: alma@mail.p.lodz.pl; dwikowska@mors.sggw.waw.pl ANALIZA ZMIAN KURSU EURO/DOLAR: MODEL VAR I PERCEPRON
Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych
Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2011 roku. Warszawa 2011 I. Badana populacja
REGULAMIN przeprowadzania okresowych ocen pracowniczych w Urzędzie Miasta Mława ROZDZIAŁ I
Załącznik Nr 1 do zarządzenia Nr169/2011 Burmistrza Miasta Mława z dnia 2 listopada 2011 r. REGULAMIN przeprowadzania okresowych ocen pracowniczych w Urzędzie Miasta Mława Ilekroć w niniejszym regulaminie
Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo.
Konspekt lekcji Przedmiot: Informatyka Typ szkoły: Gimnazjum Klasa: II Nr programu nauczania: DKW-4014-87/99 Czas trwania zajęć: 90min Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia
Zarządzanie Produkcją II
Zarządzanie Produkcją II Dr Janusz Sasak Poziomy zarządzania produkcją Strategiczny Taktyczny Operatywny Uwarunkowania decyzyjne w ZP Poziom strategiczny - wybór strategii - wybór systemu produkcyjnego
ROZWIĄZANIA PRZYKŁADOWYCH ZADAŃ. KORELACJA zmiennych jakościowych (niemierzalnych)
ROZWIĄZANIA PRZYKŁADOWYCH ZADAŃ KORELACJA zmiennych jakościowych (niemierzalnych) Zadanie 1 Zapytano 180 osób (w tym 120 mężczyzn) o to czy rozpoczynają dzień od wypicia kawy czy też może preferują herbatę.
Standardowe tolerancje wymiarowe WWW.ALBATROS-ALUMINIUM.COM
Standardowe tolerancje wymiarowe WWW.ALBATROSALUMINIUM.COM Tolerancje standardowe gwarantowane przez Albatros Aluminium obowiązują dla wymiarów co do których nie dokonano innych uzgodnień podczas potwierdzania
WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO I MATEMATYCZNEGO
Nr ćwiczenia: 101 Prowadzący: Data 21.10.2009 Sprawozdanie z laboratorium Imię i nazwisko: Wydział: Joanna Skotarczyk Informatyki i Zarządzania Semestr: III Grupa: I5.1 Nr lab.: 1 Przygotowanie: Wykonanie:
Badania skuteczności działania filtrów piaskowych o przepływie pionowym z dodatkiem węgla aktywowanego w przydomowych oczyszczalniach ścieków
Uniwersytet Rolniczy im. Hugona Kołł łłątaja w Krakowie, Wydział Inżynierii Środowiska i Geodezji Katedra Inżynierii Sanitarnej i Gospodarki Wodnej K r z y s z t o f C h m i e l o w s k i Badania skuteczności
Zagadnienia transportowe
Mieczysław Połoński Zakład Technologii i Organizacji Robót Inżynieryjnych Wydział Inżynierii i Kształtowania Środowiska SGGW Zagadnienia transportowe Z m punktów odprawy ma być wysłany jednorodny produkt
Metrologia cieplna i przepływowa
Metrologia cieplna i przepływowa Systemy, Maszyny i Urządzenia Energetyczne, I rok mgr Pomiar małych ciśnień Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska AGH Kraków
Instrukcja zarządzania systemem informatycznym służącym do przetwarzania danych osobowych
Załącznik nr 1 do Zarządzenia Nr 1/2013 Dyrektora Zespołu Obsługi Szkół i Przedszkoli w Muszynie z dnia 30 grudnia 2013 r. Instrukcja zarządzania systemem informatycznym służącym do przetwarzania danych
Objaśnienia do Wieloletniej Prognozy Finansowej(WPF) Gminy Dmosin na lata 2016 2027 ujętej w załączniku Nr 1
Załącznik Nr 2 do Uchwały Nr XV/83/15 Rady Gminy Dmosin z dnia 30 grudnia 2015 r. Objaśnienia do Wieloletniej Prognozy Finansowej(WPF) Gminy Dmosin na lata 2016 2027 ujętej w załączniku Nr 1 I. Objaśnienia
Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz
Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia
Eksperyment,,efekt przełomu roku
Eksperyment,,efekt przełomu roku Zapowiedź Kluczowe pytanie: czy średnia procentowa zmiana kursów akcji wybranych 11 spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie (i umieszczonych już
Usprawnij kontrolę nad produkcją i obiegiem dokumentów
Usprawnij kontrolę nad produkcją i obiegiem dokumentów Pakiet OSD Monitoring to zestaw narzędzi informatycznych, który umożliwia wygodny nadzór i optymalizację procesu produkcji dokumentów w Twojej firmie.
Modele ARIMA prognoza, specykacja
Modele ARIMA prognoza, specykacja Wst p do ekonometrii szeregów czasowych wiczenia 3 5 marca 2010 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Funkcja autokorelacji
Analiza szeregów czasowych uwagi dodatkowe
Analiza szeregów czasowch uwagi dodakowe Jerz Sefanowski Poliechnika Poznańska Zaawansowana Eksploracja Danch Prognozowanie Wbór i konsrukcja modelu o dobrch własnościach predkcji przszłch warości zmiennej.
Julian Zawistowski Instytut Badań Strukturalnych
Moduł 1: Monitoring oparty na danych dostępnych - przedstawienie wniosków z badania, prezentacja funkcjonalności utworzonej w ramach modułu bazy danych i wskaźników dotyczących mazowieckiego rynku pracy
FORMULARZ OFERTOWY do zapytania nr TAB/PR3/RPO/17
FORMULARZ OFERTOWY do zapytania nr TAB/PR3/RPO/17 ZAMAWIAJĄCY DC Edukacja Sp. z o.o., 80280 Gdańsk, ul. Szymanowskiego 2, NIP: 58500020 OFERENT Pełna nazwa Oferenta Ulica, nr lokalu Kod i miejscowość NIP:
JTW SP. Z OO. Zapytanie ofertowe. Zakup i dostosowanie licencji systemu B2B część 1
JTW SP. Z OO Zapytanie ofertowe Zakup i dostosowanie licencji systemu B2B część 1 Strona 1 z 8 Spis treści 1. Wskazówki dla oferentów... 3 1.1 Osoby kontaktowe... 3 2.2 Termin składania ofert... 4 2.3
Regulamin Obrad Walnego Zebrania Członków Stowarzyszenia Lokalna Grupa Działania Ziemia Bielska
Załącznik nr 1 do Lokalnej Strategii Rozwoju na lata 2008-2015 Regulamin Obrad Walnego Zebrania Członków Stowarzyszenia Lokalna Grupa Działania Ziemia Bielska Przepisy ogólne 1 1. Walne Zebranie Członków
GŁOWICE DO WYTŁACZANIA MGR INŻ. SZYMON ZIĘBA
GŁOWICE DO WYTŁACZANIA MGR INŻ. SZYMON ZIĘBA GŁOWICE WYTŁACZARSKIE Zadaniem głowic wytłaczarskich jest nadanie przetwarzanemu w procesie wytłaczania materiałowi żądanego kształtu i wymiarów, przy zapewnieniu
Adres strony internetowej, na której Zamawiający udostępnia Specyfikację Istotnych Warunków Zamówienia: www.gorczanskipark.pl
Adres strony internetowej, na której Zamawiający udostępnia Specyfikację Istotnych Warunków Zamówienia: www.gorczanskipark.pl Niedźwiedź: WYKONANIE RECENZJI OPERATÓW SZCZEGÓŁOWYCH ORAZ PROJEKTU PLANU OCHRONY
Ewaluacja projektu szkoleniowego Międzykulturowe ABC
1. Definicja obiektu 2. Cele ewaluacji 3. Zakres przedmiotowy 4.Zakres czasowy Szkolenia dla 50 urzędników zatrudnionych w różnych departamentach i wydziałach Urzędu Miasta Lublina, obecnie lub w przyszłości
Statystyka matematyczna 2015/2016
Statystyka matematyczna 2015/2016 nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe Opis sylabusu Nazwa przedmiotu Statystyka matematyczna Kod przedmiotu 0600-FS2-2SM Nazwa jednostki
Przetwornik temperatury TxBlock-USB
Przetwornik temperatury TxBlock-USB Wydanie LS 1/01 Opis TxBlock USB jest uniwersalnym przetwornikiem temperatury z wyjściem 0 ma do przeznaczonym do montażu głowicowego. Zasilany jest przez pętlę prądową.
Obciążenia środowiskowe: śnieg i wiatr wg PN-B-02010/Az1 i PN-B-02011/Az1
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Obciążenia środowiskowe: śnieg i wiatr wg PN-B-02010/Az1 i PN-B-02011/Az1 Jerzy Bobiński Gdańsk, wersja 0.32 (2014) gruntu Podstawa: Norma PN-80/B-02010/Az1:2006.