PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK
|
|
- Seweryna Zych
- 8 lat temu
- Przeglądów:
Transkrypt
1 1 PROGNOZOWANIE I SYMULACJE
2 2
3 DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest dostępny w menu Narzędzia, należy kliknąć w tymże menu opcję Dodatki. Otworzy sie wtedy okno, w którym należy zaznaczyć opcję Dodatek Solver i kliknąć OK.
4 DODATEK SOLVER EXCEL Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsoft Office, a następnie kliknij przycisk Opcje programu Excel. 2. Kliknij pozycję Dodatki, a następnie w polu Zarządzaj wybierz pozycję Dodatki programu Excel. 3. Kliknij przycisk Przejdź. 4. W polu Dostępne dodatki zaznacz pole wyboru Solver, a następnie kliknij przycisk OK. Porada: jeśli pozycja Solver nie jest wyświetlana w polu Dostępne dodatki, kliknij przycisk Przeglądaj, aby odnaleźć ten dodatek. Jeśli zostanie wyświetlony monit informujący, że dodatek Solver nie został zainstalowany na komputerze, kliknij przycisk Tak, aby go zainstalować. Po załadowaniu dodatku Solver polecenie Solver będzie dostępne w grupie Analiza na karcie Dane.
5 DODATEK SOLVER EXCEL Kliknij kartę Plik, a następnie kliknij pozycję Opcje. 2. Kliknij pozycję Dodatki, a następnie w polu Zarządzaj wybierz pozycję Dodatki programu Excel. 3. Kliknij pozycję Przejdź. 4. W polu Dostępne dodatki zaznacz pole wyboru Solver, a następnie kliknij przycisk OK. Porada Jeśli pozycja Solver nie jest wyświetlana w polu Dostępne dodatki, należy kliknąć przycisk Przeglądaj, aby odnaleźć ten dodatek. Jeśli zostanie wyświetlony monit informujący, że dodatek Solver nie został zainstalowany na komputerze, kliknij przycisk Tak, aby go zainstalować. 5. Po załadowaniu dodatku Solver polecenie Solver będzie dostępne w grupie Analiza na karcie Dane.
6 DEFINICJA PROGNOZOWANIA 6 Prognozowanie oparte na naukowych podstawach przewidywanie kształtowania się zjawisk i procesów w przyszłości, którego celem jest zmniejszenie ryzyka w procesie podejmowania decyzji. 1, 2 Określenie naukowe podstawy oznacza, że przy prognozowaniu korzysta się z dorobku nauki - z metod matematycznych, statystycznych oraz ogólnej metodologii postępowania w procesie prognozowania E. Nowak, Ogólne zagadnienia prognozowania, [w:] Prognozowanie gospodarcze. Metody, modele, zastosowania, przykłady., E. Nowak (red.), Agencja Wydawnicza Placet, Warszawa 1998, s P. Dittmann, Prognozowanie w przedsiębiorstwie. Metody i ich zastosowanie., Oficyna a Wolters Kluwer business, Kraków 2008, s M. Cieślak, Wprowadzenie, [w:] Prognozowanie gospodarcze. Metody i zastosowania., M. Cieślak (red.), Wydawnictwo Naukowe PWN, Warszawa 2004, s.18.
7 SZEREG CZASOWY 7 Szereg czasowy uporządkowany zbiór obserwacji statystycznych (zbiór stanów zmiennych), które charakteryzują zmiany poziomu określonego zjawiska w czasie. t lata Sprzedaż produktu X (w tys. szt.) , , , , , , , , ,0
8 METODY PROGNOZOWANIA KRÓTKOTERMINOWEGO 8 stały poziom trend sezonowość Model naiwny, Modele średniej arytmetycznej, Model Browna Model Holta Modele analityczne Model wskaźników sezonowości Model Wintersa
9 WYGŁADZANIE WYKŁADNICZE 9 Stała aktualizacja prognoz wraz z napływem nowych informacji o zaobserwowanych wartościach prognozowanej zmiennej oraz o trafności wcześniejszych prognoz. Przyszłe wartości zmiennej ustalane na podstawie średniej ważonej dotychczasowych obserwacji, przy czym wagi maleją wraz z wiekiem.
10 MODEL BROWNA 10 Model Browna może być zastosowany, gdy w szeregu czasowym występuje: stały (przeciętny) poziom zmiennej prognozowanej, wahania przypadkowe. Wzór na obliczanie prognozy na jeden okres w przód y * t y t1 ( 1) y * t1 * y t y t1 * y t1 - prognoza zjawiska na okres t - wielkość badanego zjawiska w okresie t-1 - prognoza zjawiska (wartość wygładzania wykładniczego) w okresie t-1 - parametr modelu stała wygładzania o wartości z przedziału [0,1]
11 MODEL BROWNA 11 y * t y t1 * ( 1) yt 1 - stała wygładzania waga przypisana ostatniej najświeższej obserwacji α przyjmuje wartości z przedziału [0,1] 0 stała prognoza 1 model naiwny * * y t y t 1 * y t y t 1
12 produkcja [tys. szt.] 12 MODEL BROWNA Porównanie prognoz otrzymanych przy pomocy wygładzania wykładniczego dla różnych wartości stałej α kwartał rzeczywista ilość wyprodukowanego produktu X model Browna, 0,05 model Browna, 0,5 model Browna, 0,8
13 MODEL BROWNA 13 W przypadku prostego modelu wygładzania wykładniczego niezbędne do wyznaczenia prognozy jest ustalenie wartości początkowej. Zazwyczaj przyjmuje się: pierwszą wartość rzeczywistą zmiennej prognozowanej lub średnią arytmetyczną rzeczywistych wartości zmiennej z przyjętej próbki wstępnej Przykład: Okres Wartość zmiennej - obserwacje Prognoza =( )/
14 MODEL BROWNA 14 y * t y t1 * ( 1) yt 1 Przykład dla α =0,5 : Okres Wartość zmiennej - obserwacje Prognoza ( )/3 = ,5*120+(1-0,5)*120= ,5*123+(1-0,5)*120=121, ,5*117+(1-0,5)*121,5=119,
15 ZADANIE 1 15 Kwartał t Ilość wyprodukowanego produktu X [tys. szt.] Firma Alfa jest jednym z głównych dostawców firmy Beta. Ilość produktu X, wyrażona w tysiącach wyprodukowanych i dostarczonych sztuk firmie Beta, w poszczególnych kwartałach, począwszy od I kwartału 2009 roku kształtowała się następująco: 1) Stwórz model prognostyczny oraz wyznacz prognozę na I kwartał 2012 roku korzystając z modelu Browna. 2) Stwórz wykres. 3) Oceń trafność prognozy korzystając ze średniego kwadratowego błędu prognozy oraz średniego względnego błędu prognozy.
16 ZADANIE ) Stwórz model prognostyczny oraz wyznacz prognozę na I kwartał 2012 roku korzystając z modelu Browna. Kwartał t Ilość wyprodukowanego produktu X [tys. szt.]
17 ZADANIE ) Stwórz wykres. Kwartał t Ilość wyprodukowanego produktu X [tys. szt.]
18 ZADANIE ) Oceń trafność prognozy korzystając ze średniego kwadratowego błędu prognozy oraz średniego względnego błędu prognozy. Kwartał t Ilość wyprodukowanego produktu X [tys. szt.]
19 TRAFNOŚĆ PROGNOZY 19 Trafność prognozy określa się po upływie czasu, na który prognoza była wyznaczona. Stopień trafności prognozy ilościowej mierzy się za pomocą błędów ex post. 1 1 M. Cieślak, Organizacja procesu prognostycznego, [w:] Prognozowanie gospodarcze. Metody i zastosowania., M. Cieślak (red.), Wydawnictwo Naukowe PWN, Warszawa 2004, s.48.
20 MIERNIKI TRAFNOŚCI PROGNOZY 20 Błędy prognoz ex post: 1) Średni kwadratowy (standardowy) błąd prognozy ex post Informuje o przeciętnym odchyleniu prognoz od wartości rzeczywistych w całym przedziale weryfikacji. n liczba obserwacji w szeregu czasowym
21 MIERNIKI TRAFNOŚCI PROGNOZY 21 2) Średni względny błąd prognozy ex post Informuje nas jaki procent rzeczywistych wartości zmiennej, stanowiło przeciętne bezwzględne odchylenie prognoz od danych rzeczywistych w rozpatrywanym przedziale weryfikacji. 1 n n t1 y t y y t * t 100
22 ZADANIE 2 22 Miesiące Rzeczywista Ilość wysyłek Prognozy ilości wysyłek Rzeczywiste ilości wysyłek niewielkiej firmy kurierskiej oraz ich prognozy (wyznaczone modelem naiwnym) w kolejnych miesiącach 2011 roku kształtowały się następująco: 1) Wyznacz wielkość odchylenia standardowego. 2) Wyznacz wielkość współczynnika zmienności. 3) Oceń trafność prognozy ex post wykorzystując średni kwadratowy (standardowy) błąd prognozy ex post oraz średni względny błąd prognozy ex post.
23 ZADANIE ) Wyznacz wielkość odchylenia standardowego. Miesiące Rzeczywista Ilość wysyłek Prognozy ilości wysyłek
24 MIERNIKI JAKOŚCI MODELU PROGNOSTYCZNEGO ODCHYLENIE STANDARDOWE 24 Wartość odchylenia standardowego informuje o tym, jakie są przeciętne odchylenia wartości rzeczywistych zmiennej prognozowanej od teoretycznych. Im mniejsza jest wartość tego miernika, tym lepsza jakość modelu. s 1 n 1 n t1 y t y 2 0,5 n - liczba obserwacji w szeregu czasowym m - liczba zmiennych objaśniających (nie uwzględniając wyrazu wolnego) y 1 n n t1 y t M. Cieślak, Organizacja procesu prognostycznego, [w:] Prognozowanie gospodarcze. Metody i zastosowania., M. Cieślak (red.), Wydawnictwo Naukowe PWN, Warszawa 2004, s.45.
25 ZADANIE ) Wyznacz wielkość współczynnika zmienności. Miesiące Rzeczywista Ilość wysyłek Prognozy ilości wysyłek
26 MIERNIKI JAKOŚCI MODELU PROGNOSTYCZNEGO WSPÓŁCZYNNIK WYRAZISTOŚCI 26 Współczynnik wyrazistości (zmienności) informuje, jaką część średniej wartości Y stanowi jej odchylenie standardowe reszt. Jest więc charakterystyką zmienności losowej. Model jest tym lepszy, im mniejsza jest wartość współczynnika wyrazistości. s odchylenie standardowe M. Cieślak, Organizacja procesu prognostycznego, [w:] Prognozowanie gospodarcze. Metody i zastosowania., M. Cieślak (red.), Wydawnictwo Naukowe PWN, Warszawa 2004, s.45.
27 ZADANIE ) Oceń trafność prognozy ex post wykorzystując średni kwadratowy (standardowy) błąd prognozy ex post oraz średni względny błąd prognozy ex post. Miesiące Rzeczywista Ilość wysyłek Prognozy ilości wysyłek
28 MIERNIKI TRAFNOŚCI PROGNOZY 28 Błędy prognoz ex post: 1) Średni kwadratowy (standardowy) błąd prognozy ex post Informuje o przeciętnym odchyleniu prognoz od wartości rzeczywistych w całym przedziale weryfikacji. n liczba obserwacji w szeregu czasowym
29 MIERNIKI TRAFNOŚCI PROGNOZY 29 2) Średni względny błąd prognozy ex post Informuje nas jaki procent rzeczywistych wartości zmiennej, stanowiło przeciętne bezwzględne odchylenie prognoz od danych rzeczywistych w rozpatrywanym przedziale weryfikacji. 1 n n t1 y t y y t * t 100
30 POZNAŃ UL. E. ESTKOWSKIEGO 6 Rektorat tel Dziekanat tel Księgowość tel Kadry tel fax rektorat@wsl.com.pl DZIĘKUJEMY ZA UWAGĘ
Zapraszamy do współpracy FACULTY OF ENGINEERING MANAGEMENT www.fem.put.poznan.pl Agnieszka Stachowiak agnieszka.stachowiak@put.poznan.pl Pokój 312 (obok czytelni) Dyżury: strona wydziałowa Materiały dydaktyczne:
PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006
Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap
Prognozowanie popytu. mgr inż. Michał Adamczak
Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej
Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas
Wydatki [zł] Zestaw zadań z Zastosowania metod progn. Zadanie 1 Dany jest następujący szereg czasowy: t 1 2 3 4 5 6 7 8 y t 11 14 13 18 17 25 26 28 Dokonaj jego dekompozycji na podstawowe składowe. Wykonaj
SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne
SYLABUS 1.Nazwa przedmiotu Prognozowanie i symulacje 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod przedmiotu E/I/A.16 4.Studia Kierunek studiów/specjalność
Wprowadzenie do teorii prognozowania
Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Prognozowanie i symulacje Forecasting and simulations Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: obowiązkowy Poziom studiów:
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
egzamin oraz kolokwium
KARTA PRZEDMIOTU Kod przedmiotu E/FIRP/PSY w języku polskim Prognozowanie i symulacje Nazwa przedmiotu w języku angielskim Forecasting and simulation USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND Finanse i Rachunkowość rok 2 Analiza dynamiki Szereg czasowy: y 1 y 2... y n 1 y n. y t poziom (wartość) badanego zjawiska w
PODSTAWY LOGISTYKI ZARZĄDZANIE ZAPASAMI PODSTAWY LOGISTYKI ZARZĄDZANIE ZAPASAMI MARCIN FOLTYŃSKI
PODSTAWY LOGISTYKI ZARZĄDZANIE ZAPASAMI WŁAŚCIWIE PO CO ZAPASY?! Zasadniczą przyczyną utrzymywania zapasów jest występowanie nieciągłości w przepływach materiałów i towarów. MIEJSCA UTRZYMYWANIA ZAPASÓW
23 Zagadnienia - Prognozowanie i symulacje
1. WYJAŚNIJ POJĘCIE PROGNOZY I OMÓW PODSTAWOWE PEŁNIONE PRZEZ PROGNOZĘ FUNKCJE. Prognoza - jest to sąd dotyczący przyszłej wartości pewnego zjawiska o następujących właściwościach: jest sformułowany w
Indeksy dynamiki (o stałej i zmiennej podstawie)
Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy
3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw
Arkadiusz Manikowski Zbigniew Tarapata Prognozowanie i symulacja rozwoju przedsiębiorstw Warszawa 2002 Recenzenci doc. dr. inż. Ryszard Mizera skład i Łamanie mgr. inż Ignacy Nyka PROJEKT OKŁADKI GrafComp,
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
maj 2014 Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. II stop., sem. I
Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. II stop., sem. I Podstawy teorii optymalizacji Wykład 12 M. H. Ghaemi maj 2014 Podstawy teorii optymalizacji Oceanotechnika, II stop., sem.
ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK
1 ANALIZA, PROGNOZOWANIE I SYMULACJA 2 POBRAĆ Z INTERNETU Plaforma WSL on-line Nazwisko prowadzącego Maryna Kupczyk Folder z nazwą przedmiou - Analiza, prognozowanie i symulacja Plik o nazwie Baza do ćwiczeń
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
t y x y'y x'x y'x x-x śr (x-x śr)^2
Na podstawie:w.samuelson, S.Marks Ekonomia menedżerska Zadanie 1 W przedsiębiorstwie toczy się dyskusja na temat wpływu reklamy na wielkość. Dział marketingu uważa, że reklama daje wysoce pozytywne efekty,
Prognozowanie na podstawie modelu ekonometrycznego
Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)
ANALIZA, PROGNOZOWANIE I SYMULACJA WARUNKI ZALICZENIA. AUTOR: mgr inż. MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA WARUNKI ZALICZENIA
1 ANALIZA, PROGNOZOWANIE I SYMULACJA AUTOR: mgr inż. MARTYNA KUPCZYK DANE KONTAKTOWE 2 mgr inż. Martyna Kupczyk Katedra Systemów Logistycznych Pokój nr 115A (I piętro) e-mail: martyna.kupczyk@wsl.com.pl
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
Zagadnienia programowania liniowego dotyczą modelowania i optymalizacji wielu problemów decyzyjnych, na przykład:
Programowanie liniowe. 1. Aktywacja polecenia Solver. Do narzędzia Solver można uzyskać dostęp za pomocą polecenia Dane/Analiza/Solver, bądź Narzędzia/Solver (dla Ex 2003). Jeżeli nie można go znaleźć,
PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Analiza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny
Analiza sezonowości Wiele zjawisk charakteryzuje się nie tylko trendem i wahaniami przypadkowymi, lecz także pewną sezonowością. Występowanie wahań sezonowych może mieć charakter kwartalny, miesięczny,
1. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących przetwornika napięcia zgodnie z poniższym przykładem
1 Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących przetwornika napięcia zgodnie z poniższym przykładem Znaczenie symboli: Tab 1 Wyniki i błędy pomiarów Lp X [mm] U
LOGISTYKA. Zapas: definicja. Zapasy: podział
LOGISTYKA Zapasy Zapas: definicja Zapas to określona ilość dóbr znajdująca się w rozpatrywanym systemie logistycznym, bieżąco nie wykorzystywana, a przeznaczona do późniejszego przetworzenia lub sprzedaży.
parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
=B8*E8 ( F9:F11 F12 =SUMA(F8:F11)
Microsoft EXCEL - SOLVER 2. Elementy optymalizacji z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję
Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie
Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie Jerzy Stefanowski, Instytut Informatyki Politechnika Poznańska 2010/11. Cel studium przypadku: Studium poświęcone
Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA
Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce (1990-2015)) Na
PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY
Joanna Chrabołowska Joanicjusz Nazarko PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY NA PRZYKŁADZIE PRZEDSIĘBIORSTWA HANDLOWEGO TYPU CASH & CARRY Wprowadzenie Wśród wielu prognoz szczególną rolę w zarządzaniu
Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce
Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce Ekonomiczne Problemy Turystyki nr 3 (27), 57-70 2014 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO
PROGNOZOWANIE POPYTU NIEZALEŻNEGO JAKO ELEMENT WSPOMAGAJĄCY PLANOWANIE POTRZEB MATERIAŁOWYCH W ZAKŁADACH PRODUKCYJNYCH
SYSTEMY WSPOMAGANIA W INŻYNIERII PRODUKCJI Wspomaganie Zarządzania Systemami Produkcyjnymi 2013 8 PROGNOZOWANIE POPYTU NIEZALEŻNEGO JAKO ELEMENT WSPOMAGAJĄCY PLANOWANIE POTRZEB MATERIAŁOWYCH W ZAKŁADACH
KARTA INFORMACYJNA PRZEDMIOTU
Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: PROGNOZOWANIE Z WYKORZYSTANIEM SYSTEMÓW INFORMATYCZNYCH Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU
4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE. 1. Wstęp
1 Sugerowany przypis: Chybalski F., Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE, Przegląd Statystyczny, nr 3/2006, Dom Wydawniczy Elipsa, Warszawa 2006, s. 73-82 Propozycja
Sterowanie wielkością zamówienia w Excelu - cz. 3
Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji
Statystyka. Wykład 13. Magdalena Alama-Bućko. 12 czerwca Magdalena Alama-Bućko Statystyka 12 czerwca / 30
Statystyka Wykład 13 Magdalena Alama-Bućko 12 czerwca 2017 Magdalena Alama-Bućko Statystyka 12 czerwca 2017 1 / 30 Co wpływa na zmiany wartości danej cechy w czasie? W najbardziej ogólnym przypadku, na
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Excel - użycie dodatku Solver
PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym
Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie
Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie Jerzy Stefanowski, Instytut Informatyki Politechnika Poznańska - 2011 aktualizacja dla edycji 2013/14. Cel studium
Analiza Statystyczna
Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza
7.4 Automatyczne stawianie prognoz
szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Ćwiczenia 13 WAHANIA SEZONOWE
Ćwiczenia 3 WAHANIA SEZONOWE Wyrównanie szeregu czasowego (wyodrębnienie czystego trendu) mechanicznie Zadanie. Badano spożycie owoców i przetworów (yt) (w kg) w latach według kwartałów: kwartał lata 009
Analiza Zmian w czasie
Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Zmian w czasie Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka
Ekonomia II stopień ogólnoakademicki. stacjonarne wszystkie Katedra Matematyki Dr hab. Artur Maciąg. podstawowy. obowiązkowy polski.
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Z-EKO2-500 Nazwa modułu Ekonometria i prognozowanie procesów ekonomicznych Nazwa modułu w języku angielskim Econometrics and forecasting economics proceses Obowiązuje
PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
APROKSYMACJA ZJAWISK RYNKOWYCH NARZĘDZIEM WSPOMAGAJĄCYM PODEJMOWANIE DECYZJI
APROKSYMACJA ZJAWISK RYNKOWYCH NARZĘDZIEM WSPOMAGAJĄCYM PODEJMOWANIE DECYZJI Łukasz MACH Streszczenie: W artykule przedstawiono wybrane aspekty prognozowania czynników istotnie określających sytuację na
Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007
Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja
Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński
Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia
Dobór wartości początkowych w modelu wyrównywania wykładniczego Browna a wyniki prognozowania
Zeszyty Naukowe nr 797 Uniwersytetu Ekonomicznego w Krakowie 2008 Katedra Statystyki Dobór wartości początkowych w modelu wyrównywania wykładniczego Browna a wyniki prognozowania 1. Wprowadzenie Metoda
Instrukcja ustawienia autorespondera (odpowiedzi automatycznych) dla pracowników posiadających konto pocztowe Microsoft Outlook Exchange
Instrukcja ustawienia autorespondera (odpowiedzi automatycznych) dla pracowników posiadających konto pocztowe Microsoft Outlook Exchange UWAGA! Osoby nie posiadające konta pocztowego Microsoft Outlook
Ćwiczenie 5 PROGNOZOWANIE
Ćwiczenie 5 PROGNOZOWANIE Prognozowanie jest procesem przewidywania przyszłych zdarzeń. Obszary zastosowań prognozowania obejmują np. analizę danych giełdowych, przewidywanie zapotrzebowania na pracowników,
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Projekt okładki: Aleksandra Olszewska. Redakcja: Leszek Plak. Copyright: Wydawnictwo Placet Wydanie ebook. Wydawca
1 Projekt okładki: Aleksandra Olszewska Redakcja: Leszek Plak Copyright: Wydawnictwo Placet 2011 Wydanie ebook Wszelkie prawa zastrzeżone. Publikacja ani jej części nie mogą być w żadnej formie i za pomocą
Zad.2. Korelacja - szukanie zależności.
Ćw. III. MSExcel obliczenia zarządcze Spis zagadnień: Funkcje statystyczne Funkcje finansowe Tworzenie prognoz Scenariusze >>>Otwórz plik: excel_02.xls> przejdź do arkusza
Problemy techniczne. 3. Udostępnić folder nadrzędny do folderu z danymi (czyli folder Finanse Optivum) operatorom programu na końcówkach roboczych.
Problemy techniczne Jak udostępnić dane sieciowo w programach z pakietu Finanse Optivum praca w trybie współużytkowania Programy z pakietu Finanse Optivum mogą pracować na wspólnej bazie danych. Baza ta
PROGNOZOWANIE RENTOWNOŚCI PRODUKCJI WĘGLA KAMIENNEGO Z WYKORZYSTANIEM MODELU KOMPUTEROWEGO
PROGNOZOWANIE RENTOWNOŚCI PRODUKCJI WĘGLA KAMIENNEGO Z WYKORZYSTANIEM MODELU KOMPUTEROWEGO Jolanta BIJAŃSKA, Krzysztof WODARSKI Streszczenie: W artykule przedstawiono model komputerowy, który został opracowany
Rozwiązywanie programów matematycznych
Rozwiązywanie programów matematycznych Program matematyczny składa się z następujących elementów: 1. Zmiennych decyzyjnych:,,, 2. Funkcji celu, funkcji-kryterium, która informuje o jakości rozwiązania
Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?
Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak
A.Światkowski. Wroclaw University of Economics. Working paper
A.Światkowski Wroclaw University of Economics Working paper 1 Planowanie sprzedaży na przykładzie przedsiębiorstwa z branży deweloperskiej Cel pracy: Zaplanowanie sprzedaży spółki na rok 2012 Słowa kluczowe:
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Symulacyjne metody wyceny opcji amerykańskich
Metody wyceny Piotr Małecki promotor: dr hab. Rafał Weron Instytut Matematyki i Informatyki Politechniki Wrocławskiej Wrocław, 0 lipca 009 Metody wyceny Drzewko S 0 S t S t S 3 t S t St St 3 S t St St
Dopasowywanie modelu do danych
Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;
ZESTAW LABORATORYJNY I ZESTAW FARMACEUTYCZNY : Instrukcja instalacji
ZESTAW LABORATORYJNY I ZESTAW FARMACEUTYCZNY : Instrukcja instalacji Spis treści SPIS TREŚCI 2 1. INSTRUKCJA INSTALACJI I DEZINSTALACJI 3 1.1. Instalacja i konfiguracja wersji jednostanowiskowej 3 1.2.
Zajęcia 1. Statystyki opisowe
Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,
Kierunkowy Obowiązkowy Polski Semestr VI
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2015/2016 Z-ID-603 Prognozowanie i symulacje w przedsiębiorstwie Forecasting and
UE we Wrocławiu, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki
UE we Wrocławiu, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki http://keii.ue.wroc.pl Prognozowanie procesów gospodarczych prowadzący: dr inż. Tomasz Bartłomowicz tomasz.bartlomowicz@ue.wroc.pl
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF
Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych Mariusz Hamulczuk Pułtusk 06.12.1011 Wprowadzenie Przewidywanie a prognozowanie Metoda prognozowania rodzaje metod i prognoz Czy moŝna
FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS
FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION
( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
PROGNOZOWANIE W ZARZĄDZANIU
Politechnika Białostocka Wydział Zarządzania Katedra Informatyki Gospodarczej i Logistyki Redaktor naukowy joanicjusz Nazarko PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM Cz. III Prognozowanie na podstawie
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011
SYLLABUS na rok akademicki 00/0 Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu
Imię, nazwisko i tytuł/stopień KOORDYNATORA przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, dr
Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu w systemie USOS 1000-ES1-3EC1 Liczba
Spis treści Szybki start... 4 Podstawowe informacje opis okien... 6 Tworzenie, zapisywanie oraz otwieranie pliku... 23
Spis treści Szybki start... 4 Podstawowe informacje opis okien... 6 Plik... 7 Okna... 8 Aktywny scenariusz... 9 Oblicz scenariusz... 10 Lista zmiennych... 11 Wartości zmiennych... 12 Lista scenariuszy/lista
KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH. Sławomir Śmiech, Monika Papież
KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH Sławomir Śmiech, Monika Papież email: smiechs@uek.krakow.pl papiezm@uek.krakow.pl Plan prezentacji Wprowadzenie Ceny
Analiza metod prognozowania kursów akcji
Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl
Ekonometria i prognozowanie Econometrics and prediction
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Ekonometria i prognozowanie Econometrics and prediction A. USYTUOWANIE
Analiza porównawcza koniunktury gospodarczej w województwie zachodniopomorskim i w Polsce w ujęciu sektorowym
Jacek Batóg Uniwersytet Szczeciński Analiza porównawcza koniunktury gospodarczej w województwie zachodniopomorskim i w Polsce w ujęciu sektorowym Warunki działania przedsiębiorstw oraz uzyskiwane przez
Wprowadzenie do analizy dyskryminacyjnej
Wprowadzenie do analizy dyskryminacyjnej Analiza dyskryminacyjna to zespół metod statystycznych używanych w celu znalezienia funkcji dyskryminacyjnej, która możliwie najlepiej charakteryzuje bądź rozdziela
Spis treści. Przedmowa
Spis treści Przedmowa 1.1. Magazyn i magazynowanie 1.1.1. Magazyn i magazynowanie - podstawowe wiadomości 1.1.2. Funkcje i zadania magazynów 1.1.3. Rodzaje magazynów 1.1.4. Rodzaje zapasów 1.1.5. Warunki
Płace Optivum. 1. Zainstalować serwer SQL (Microsoft SQL Server 2008 R2) oraz program Płace Optivum.
Płace Optivum Jak przenieść dane programu Płace Optivum na nowy komputer? Aby kontynuować pracę z programem Płace Optivum na nowym komputerze, należy na starym komputerze wykonać kopię zapasową bazy danych
KOSZTY. Ćwiczenie 1 1 W menu Widok kliknij polecenie Arkusz zasobów.
IV. Koszty KOSZTY W każdym projekcie niezbędne jest śledzenie jego kosztów realizacji poszczególnych zadań jak i całego projektu. Konieczne jest zawsze sprawdzenie, czy projekt pozostaje w ramach budżetu.
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
ANALIZA SPRZEDAŻY: - rozproszenia
KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - rozproszenia - koncentracji - sezonowości Spis treści Wstęp... 3 Analiza rozproszenia sprzedaży... 4 Analiza koncentracji sprzedaży...
Jak na podstawie danych zgromadzonych w arkuszu przygotować różne zestawienia i dokumenty?
Arkusz Optivum Jak na podstawie danych zgromadzonych w arkuszu przygotować różne zestawienia i dokumenty? Dane zgromadzone w arkuszu można wykorzystać do sporządzenia różnych zestawień i dokumentów. Służy
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Ćwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
PROGNOZOWANIE SPRZEDAŻY STUDIUM PRZYPADKU
PROGNOZOWANIE SPRZEDAŻY STUDIUM PRZYPADKU prof. dr hab. Andrzej Sokołowski 2 W tym opracowaniu przedstawiony zostanie przebieg procesu poszukiwania modelu prognostycznego wykorzystującego jedynie przeszłe