POLITECHNIKA BIAŁOSTOCKA
|
|
- Julia Kalinowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 DODATEK A POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI ĆWICZENIE NR 1 CHARAKTERYSTYKI CZASOWE I CZĘSTOTLIWOŚCIOWE PROSTYCH UKŁADÓW DYNAMICZNYCH PRACOWNIA SPECJALISTYCZNA Z PRZEDMIOTU PODSTAWY AUTOMATYKI 2 KOD: EZ1C BIAŁYSTOK 2015 OPRACOWANIE: ZBIGNIEW PRAJS
2 Cel ćwiczenia Zapoznanie z meodami analiycznymi i graficznymi, wspomaganymi kompuerowo, badania prosych układów dynamicznych na podsawie ich charakerysyk dynamicznych i widmowych. Przed ćwiczeniem: Należy zapoznać się na podsawie wykładów, maeriałów pomocniczych zawarych w ym opracowaniu i odpowiednich pozycji lieraurowych z meodami analizy ciągłych układów dynamicznych. Po wykonaniu ćwiczenia: Należy sporządzić sprawozdanie, w kórym powinny być zaware rezulay analiycznych rozwiązań zadań wraz z prezenacją graficzną, wynikającą z zasosowanych echnik kompuerowych (odpowiedzi czasowe i częsoliwościowe). Zadanie 1. Dany jes układ regulacji gdzie ransmiancja układu owarego, ma posać: y o u y () - 1) = () () =, 2) = () () = + 1, 3) = () () = ( + 1), 4) = () () = + 1, 5) = () () = , 6) = () () =
3 Dla zadanej warości: wzmocnienia, sałych czasowych i (Tabela 1) wyznaczyć: 1. posacie analiyczne odpowiedzi dynamicznych układu owarego poddanego jednemu z wymuszeń ypu ( = 0, 1, 2), gdzie rząd oraz warość ampliudy podaje prowadzący zajęcia. 2. posacie analiyczne odpowiedzi częsoliwościowych (charakerysyk częsoliwościowych) układu owarego. Zadanie 2. Dla układu regulacji i danych z zadania 1 wyznaczyć w środowisku programu Malab (dodaek C) charakerysyki: 1. czasowe: impulsowe, skokowe oraz częsoliwościowe układu owarego dla przypadków, gdy: a) = i =, b) = i =. 2. czasowe układu owarego i zamknięego (dla zadanych warości, i z zadania 1) przy rzech ypach sygnałów wymuszających ( = 0, 1, 2) : - zaleca się umiejscowienie na jednym wykresie obu charakerysyk dla poszczególnych członów przy danym wymuszeniu. Tabela , ,5 1,0 2,0 0,5 1,0 1 [s] 0,5 0,5 1,0 0,2 0,25 2,0 1,25 1,0 1,0 2,0 2 [s] 2 1,5 1,5 0,1 1,25 2,0 1 2,0 2,0 5,0 3
4 DODATEK A Meody analizy wiadomości podsawowe Członem dynamicznym nazywany jes dowolny układ fizyczny, w kórym wyodrębniona jes wielkość wejściowa (sygnał wejściowy) i wielkość wyjściowa (sygnał wyjściowy), a właściwości jego dynamiki syneycznie określa ransmiancja operaorowa. Transmiancją operaorową jes sosunek ransforma sygnału wyjściowego () i wejściowego () = () () = (2.1) przy zerowych warunkach począkowych, przy czym >. Znając posać ransmiancji operaorowej układu można wyznaczyć odpowiedź () układu na dowolne wymuszenie, sygnał wejściowy, () () = () (2.2) Posać ransmiancji operaorowej sanowi kryerium, według kórego klasyfikuje się człony auomayki. Rząd członu lub układu określa najwyższa warość wykładnika poęgowego przy operaorze s mianownika ransmiancji operaorowej. Współczynniki mianownika ransmiancji () Rys. 2.1 Umowne oznaczenie bloku auomayki = = = (2.3) deerminują rozkład jego pierwiasków (biegunów) w płaszczyźnie zmiennej zespolonej, kóry decyduje o charakerze przebiegu przejściowego dynamiki układu Charakerysyką czasową dynamiczną nazywana jes graficzna prezenacja przebiegu przejściowego przy zerowych warunkach począkowych. Wyznacza się ją poprzez znalezienie ransformay odwronej funkcji wymiernej (2.2) = L = L (). (2.4) Funkcję wymierną (2.2) można zawsze przedsawić w posaci sumy ułamków prosych o posaci, = () = (2.4) przy czym: jes dowolnym pierwiaskiem wielomianu D(), l jego kronością,, - liczbą rzeczywisą zwaną współczynnikiem udziału, j - liczbą różnych co do warości pierwiasków.
5 Każdemu z prosych ułamków składowych odpowiada znana funkcja zmiennej rzeczywisej - czasu. I ak: Gdy = 0, wówczas przekszałcenie odwrone Laplace a daje L = 1! (2.5) Gdy = σ jes liczbą rzeczywisą, wówczas L = 1! (2.6) Gdy jes liczbą zespoloną lub urojoną, o pierwiaski zespolone wysępują zawsze jako parami sprzężone = ± i wówczas przekszałcenie odwrone Laplace a daje L + = cos sin (2.7) Przy obliczaniu współczynników udziału (2.4) możliwe są dwa posępowania. Pierwsze z nich zwie się meodą współczynników nieoznaczonych. Polega ona na sprowadzeniu sumy ułamków prosych z nieokreślonymi jeszcze współczynnikami,,, do wspólnego mianownika, a nasępnie przyrównaniu wielomianu orzymanego w liczniku ego ułamka do wielomianu licznika funkcji wymiernej (). Oba liczniki są sobie ożsamościowo równe, więc równe są również współczynniki przy wyrazach o akiej samej poędze zmiennej s. Prowadzi o do zbioru równań liniowych względem współczynników, kóry można rozwiązać znanymi sposobami. Drugie posępowanie opare jes na wierdzeniu Heaviside a o rozkładzie. I ak w przypadku jednokronych pierwiasków rzeczywisych wielomianu funkcji wymiernej () warości współczynników udziału wyznacza się ze wzoru. = () (2.8) W przypadku pierwiaska l kronego w (2.4) wysępuje między innymi suma ułamków prosych o posaci Warości l współczynników oblicza się korzysając ze wzorów 5
6 , = (), = (), = 1 2! (), = 1! () (2.9) W przypadku wysępowania pojedynczej pary pierwiasków zespolonych = ± współczynniki udziału uwidocznione w (2.7) można wyznaczyć na podsawie wzoru + = + (2.10) Charaker przebiegu sygnału wyjściowego, odpowiedzi czasowej układu, w sanie nieusalonym jes ściśle zależny od ypu członu dynamicznego opisanego ransmiancją (). Podsawowe ypy składowych sygnałów i ich ransformay operaorowe podane są w dodaku B. W sanie usalonym zaś charaker odpowiedzi zdeerminowany jes charakerem sygnału wejściowego (), czyli wymuszeniem. Sandardy sygnałów wymuszeń esowych sosowanych w analizie zachowań układów dynamicznych umieszczone są w pierwszej kolumnie dodaku B. Należą do nich wymuszenia o charakerze: impulsowym, skokowym, liniowym - prędkościowym, parabolicznym przyspieszeniowym, okresowym sinusoidalnym. Jeżeli na wejście liniowego członu lub układu o ransmiancji operaorowej () będzie wprowadzony sygnał sinusoidalny = sin (rys. 2.2), o po zakończeniu procesu przejściowego na wyjściu usali się sinusoidalny sygnał = sin + o ej samej częsoliwości kąowej (pulsacji) jaką ma sygnał wejściowy, lecz zwykle o innej ampliudzie i fazie, kóre są zależne od bieżącej warości ej częsoliwości. () () = sin () = sin + ϕ Rys.2.2. Przebieg odpowiedzi układu na wymuszenie harmoniczne w sanie usalonym 6
7 Transmiancję operaorową zapisać można w posaci = L sin + = L sin = () Lsin Lsin = () (2.11) Z powyższej zależności ławo sposrzec, że charakerysyką częsoliwościową - widmową jes graficzna prezenacja sanów usalonych członu ()przy zmiennej warości pulsacji, co opisuje zw. ransmiancja widmowa = = () Transmiancja a ma sens wzmocnienia zespolonego przebiegu harmonicznego o pulsacji. Moduł ransmiancji widmowej () = = () = (2.12) określa wzmocnienie - sosunek ampliud sygnałów harmonicznych wyjściowego () i wejściowego (), a argumen ką fazowy Wnoszone przez układ przesunięcie fazowe sygnału wyjściowego względem wejściowego o ką odpowiada przesunięciu ych sygnałów o = jednosek czasu (rys. 2.2). Moduł ransmiancji widmowej () oraz jej ką fazowy są paramerami odpowiedzi członu na wymuszenie sinusoidalne i sąd ransmiancja widmowa jes częso nazywana, szczególnie w lieraurze anglojęzycznej, odpowiedzią częsoliwościową (frequency response). Charakerysyką ampliudowo-fazową lub wykresem Nyquisa jes miejsce geomeryczne punków, jakie zakreśla koniec wekora = Re() + Im() = cos + sin na płaszczyźnie zmiennej zespolonej, przy zmianie pulsacji 0 < < sygnału wejściowego. Tę samą informację co do modułu i fazy można również odczyać z charakerysyk częsoliwościowych Bodego. = = (2.13) 7
8 Składają się one z dwóch wykresów. Jeden doyczy logarymu z modułu a drugi kąa fazowego = 20 log [db], = arg = = arcg, naniesione jako funkcje częsoliwości w skali logarymicznej. 8
9 DODATEK B Podsawowe ypy sygnałów i ich ransformay Laplace a = = = = = = = 1 + = = = = 1 + = = 2 = + = sin = + + = sin = + = cos = = cos 9
10 DODATEK C Zapis ransmiancyjny oraz kreślenie charakerysyk czasowych i częsoliwościowych w środowisku programu Malab Prezenacje zapisu ransmiancji i kreślenia charakerysyk w środowisku Malaba opare będą na przykładzie układu dynamicznego opisanego w najczęściej sosowanej posaci ypu + 1 = , kóra dla porzeb zasosowań programowych winna być rozwinięa do posaci = () () = = + Transmiancja układu zapisywana jes bowiem w Malabie przy użyciu polecenia f: >> G=f(N,D) gdzie N oraz D są odpowiednio +1 i + 1 wymiarowymi wekorami wierszowymi współczynników i wielomianów odpowiednio licznika i mianownika ransmiancji. 1. Operacje na wielomianach Przykładowo wielomiany w posaci iloczynowej = 2s + 1(2s + 1), = 3s + 1(s + 0,5s + 1) mogą być najpierw zadeklarowane poprzez wekory poszczególnych czynników >> N1=2*[1 1], N2=[2 1] N1 = 2 2 N2 = 2 1 >> D1=[1 0], D2=[3 1], D3=[ ] D1 = D2 =
11 DODATEK C 3 1 D3 = kóre nasępnie poddane są poleceniu conv, zwracającemu wyniki mnożenia poszczególnych czynników obu wielomianów >> N=conv(N1,N2) N = >> D=conv(D1,conv(D2,D3)) D = orzymując wielomiany = , = 3 + 2,5 + 3,5 +. W układzie zamknięym regulacji zachodzi porzeba wyznaczenia wielomianu charakerysycznego, będącego sumą wielomianu licznika i mianownika ransmiancji układu owarego. Aby dodać lub odjąć dwa wielomiany wysarczy dodać lub odjąć wekory ich współczynników o ile są ej samej długości. W analizowanym przypadku długość wekora N należy powiększyć o 2 elemeny do długości wekora D o wymiarze 5, czyli >> N=[ ] sąd >> Dz=N+D Dz = Polecenie roos zwraca zera danego wielomianu. Na przykład, aby wyznaczyć zera wielomianów i należy wprowadzić polecenia >> z=roos(n) z = >> p=roos(d) p = i i
12 DODATEK C Polecenie poly worzy wekor współczynników wielomianu z podanych jego zer, np.: >> N_z=poly(z) N_z = >> D_p=poly(p) D_p = orzymując, przy uwzględnieniu współczynników i, wielomiany = 4 + 1,5 + 0,5, = 3 + 0, , , Alernaywne zapisy ransmiancji Poza zapisem ransmiancji wskazanym wyżej, czyli >> G=f(N,D) Transfer funcion: 4 s^2 + 6 s s^ s^ s^2 + s ransmiancje mogą być definiowane alernaywnie >> s=f('s') Transfer funcion: s >> G1=(2*(s+1)*(2*s+1))/(s*(3*s+1)*(s^2+0.5*s+1)) Transfer funcion: 12
13 DODATEK C 4 s^2 + 6 s s^ s^ s^2 + s Transmiancja powyżej zdefiniowana zosała zapisana bezpośrednio w posaci iloczynowej orzymując posać rozwinięą wielomianów. Mając naomias zera i bieguny ransmiancji (srona powyżej) można zdefiniować ransmiancję za pomocą polecenia zpk(z,p,k), w kórym paramerami są: wekory zer i biegunów z,p oraz wskaźnik wzmocnienia k, np.: >> G=zpk(z,p,4/3) Zero/pole/gain: (s+1) (s+0.5) s (s ) (s^ s + 1) Zapis ransmiancji, gdzie będą ujawnione pierwiaski wielomianów licznika i mianownika można uzyskać sosując powyższe polecenie zpk, w kórym paramerem jes ransmiancja zdefiniowana w dowolny inny sposób, np.: >> G2=zpk(G1), G3=zpk(G) Zero/pole/gain: (s+1) (s+0.5) s (s ) (s^ s + 1) Transmiancję układu zamknięego można zapisać za pomocą polecenia feedback(g,1), gdzie pierwszym paramerem jes ransmiancja w orze głównym G, drugim zaś w orze pęli zwronej., w ym przypadku reprezenowany przez człon proporcjonalny o wzmocnieniu 1: >> Gz=feedback(G,1) Transfer funcion: 4 s^2 + 6 s s^ s^ s^2 + 7 s
14 DODATEK C 3. Charakerysyki czasowe - odpowiedzi: skokowa i impulsowa Do wyznaczenia odpowiedzi skokowej układu (odpowiedź na skok jednoskowy) służy funkcja sep(sys) lub sep(sys,t), gdzie sys jes zadeklarowaną ransmiancją układu a T jes czasem końcowym symulacji. Przykładowo >> sep(g,15) Do wyznaczenia odpowiedzi impulsowej (na impuls Dirac a) służy funkcja impulse(sys). Na przykład >> impulse(g) Wyniki działania dwóch powyższych poleceń pokazane są na poniższych rysunkach. 30 Sep Response 3 Impulse Response Ampliude 15 Ampliude Time (sec) Time (sec) 4. Charakerysyki częsoliwościowe Do wykreślenia charakerysyk: ampliudowo-fazowej,wykresu Nyquisa, oraz Bodego (ampliudy i fazy) służą polecenia odpowiednio nyquis(g) i bode(g),w kórych paramerem jes zadeklarowana ransmiancja G. Insrukcja grid spowoduje umieszczenie siaek w akywnych oknach. Rezula działalna obu funkcji pokazują rysunki Charakerysyka Nyquisa jes narysowana zarówno dla zakresu pulsacji = 0 40 Bode Diagram 20 Nyquis Diagram Magniude (db) Imaginary Axis Phase (deg) Frequency (rad/sec) Real Axis jak i = 0. Kierunek zmian pul- 14
15 DODATEK C sacji pokazują srzałki, naomias czerwony krzyżyk oznacza punk Nyquisa ( 1, 0), pomocny przy badaniu sabilności układu zamknięego. Najeżdżając kursorem na wybrane okno każdego z wykresów oraz podrzymując wciśnięy prawy klawisz myszy uzyskuje się dosęp do szeregu narzędzi, za pomocą kórych można usalić cechy charakeryzujące analizowany obiek (zapasy sabilności) jak i cechy edycyjne grafiki wykresu. Za pomocą polecenia >> liview(g) można przedsawić w jednym oknie kilka wybranych charakerysyk badanego obieku G. Wyboru liczby i rodzajów charakerysyk dokonuje się za pomocą narzędzi Edi ->Plo Configuraion Do okna LTI Viewer można zaimporować (File ->Impor ) dowolną liczbę innych obieków, wcześniej zdefiniowanych w przesrzeni roboczej Malaba, co pozwala, na przykład, na analizę porównawczą zachowań badanych układów. 15
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
Bardziej szczegółowoPodstawowe człony dynamiczne
Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()
Bardziej szczegółowoprzy warunkach początkowych: 0 = 0, 0 = 0
MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,
Bardziej szczegółowoCHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Bardziej szczegółowoPodstawowe człony dynamiczne
. Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty
Bardziej szczegółowoĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym
ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Bardziej szczegółowoψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Bardziej szczegółowoANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
Bardziej szczegółowoC d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
Bardziej szczegółowoPodstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan
Podstawowe człony dynamiczne dr hab. inż. Krzysztof Patan Człon proporcjonalny Równanie w dziedzinie czasu Transmitancja y(t) = Ku(t) Y (s) = KU(s) G(s) = Y (s) U(S) = K Transmiancja widmowa G(s) = K G(jω)
Bardziej szczegółowoDYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
Bardziej szczegółowoPOLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH
POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:
Bardziej szczegółowoRuch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.
Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych
Bardziej szczegółowoSzeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności:
Trygonomeryczny szereg Fouriera Szeregi Fouriera Każdy okresowy sygnał x() o pulsacji podsawowej ω, spełniający warunki Dirichlea:. całkowalny w okresie: gdzie T jes okresem funkcji x(), 2. posiadający
Bardziej szczegółowoĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego
Bardziej szczegółowoAnaliza właściwości dynamicznych wybranych podstawowych członów automatyki niecałkowitych rzędów
Mirosław uf, Arur Nowocień, Daniel Pieruszczak Analiza właściwości dynamicznych wybranych podsawowych członów auomayki niecałkowiych rzędów JE: 97 DO: 10.4136/aes.018.443 Daa zgłoszenia: 19.11.018 Daa
Bardziej szczegółowoPAlab_4 Wyznaczanie charakterystyk częstotliwościowych
PAlab_4 Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych
Bardziej szczegółowoĆwiczenie nr 6 Charakterystyki częstotliwościowe
Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na
Bardziej szczegółowoWyznaczanie charakterystyk częstotliwościowych
Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych meod
Bardziej szczegółowoCałka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona
Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu
Bardziej szczegółowoRegulatory. Zadania regulatorów. Regulator
Regulaory Regulaor Urządzenie, kórego podsawowym zadaniem jes na podsawie sygnału uchybu (odchyłki regulacji) ukszałowanie sygnału serującego umożliwiającego uzyskanie pożądanego przebiegu wielkości regulowanej
Bardziej szczegółowoWykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie
Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Bardziej szczegółowoProjektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ
Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania
Bardziej szczegółowoTeoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Bardziej szczegółowoWykład 4 Metoda Klasyczna część III
Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)
Bardziej szczegółowoANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ
Ćwiczenie 8 ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ. Cel ćwiczenia Analiza złożonego przebiegu drgań maszyny i wyznaczenie częsoliwości składowych harmonicznych ego przebiegu.. Wprowadzenie
Bardziej szczegółowoTechnika regulacji automatycznej
Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego
Bardziej szczegółowoPOMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
Bardziej szczegółowoy 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =
Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,
Bardziej szczegółowoWYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 6. Badanie
Bardziej szczegółowoTechnika regulacji automatycznej
Technika regulacji automatycznej Wykład 2 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 56 Plan wykładu Schematy strukturalne Podstawowe operacje na schematach
Bardziej szczegółowo1. Rezonans w obwodach elektrycznych 2. Filtry częstotliwościowe 3. Sprzężenia magnetyczne 4. Sygnały odkształcone
Wyład 6 - wersja srócona. ezonans w obwodach elerycznych. Filry częsoliwościowe. Sprzężenia magneyczne 4. Sygnały odszałcone AMD ezonans w obwodach elerycznych Zależności impedancji dwójnia C od pulsacji
Bardziej szczegółowoStabilność. Krzysztof Patan
Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu
Bardziej szczegółowoLaboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka
Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie
Bardziej szczegółowoPodstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 71 320 3201
Bardziej szczegółowoAutomatyka i robotyka
Automatyka i robotyka Wykład 6 - Odpowiedź częstotliwościowa Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 37 Plan wykładu Wprowadzenie Podstawowe człony
Bardziej szczegółowoWYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.
7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie
Bardziej szczegółowoLABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR
LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje
Bardziej szczegółowoBadanie funktorów logicznych TTL - ćwiczenie 1
adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami
Bardziej szczegółowoRys.1. Podstawowa klasyfikacja sygnałów
Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich
Bardziej szczegółowoTransmitancje układów ciągłych
Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego
Bardziej szczegółowoWykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój
Bardziej szczegółowoAKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
Bardziej szczegółowoAndrzej Wyszkowski. GRAFIKA KOMPUTEROWA W ANALIZIE LINIOWYCH UKŁADÓW REGULACJI Zastosowania programu Mathcad
Andrzej Wyszkowski GRAFIKA KOMPUTEROWA W ANALIZIE LINIOWYCH UKŁADÓW REGULACJI Zasosowania programu Mahcad Andrzej Wyszkowski GRAFIKA KOMPUTEROWA W ANALIZIE LINIOWYCH UKŁADÓW REGULACJI Zasosowania programu
Bardziej szczegółowoUkład regulacji automatycznej (URA) kryteria stabilności
Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()
Bardziej szczegółowoJęzyki Modelowania i Symulacji
Języki Modelowania i Symulacji Projektowanie sterowników Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 4 stycznia 212 O czym będziemy mówili? 1 2 3 rlocus Wyznaczanie trajektorii
Bardziej szczegółowo2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Bardziej szczegółowoE k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny
E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,
Bardziej szczegółowoSygnały zmienne w czasie
Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne
Bardziej szczegółowo4. Modulacje kątowe: FM i PM. Układy demodulacji częstotliwości.
EiT Vsemesr AE Układy radioelekroniczne Modulacje kąowe 1/26 4. Modulacje kąowe: FM i PM. Układy demodulacji częsoliwości. 4.1. Modulacje kąowe wprowadzenie. Cecha charakerysyczna: na wykresie wskazowym
Bardziej szczegółowoBadanie stabilności liniowych układów sterowania
Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny
Bardziej szczegółowoĆw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI
Dr inż. Michał Chłędowski PODSAWY AUOMAYKI I ROBOYKI LABORAORIUM Ćw. S-II. CHARAKERYSYKI SKOKOWE ELEMENÓW AUOMAYKI Cel ćwiczenia Celem ćwiczenia jes zapoznanie się z pojęciem charakerysyki skokowej h(),
Bardziej szczegółowoĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie
ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna
Bardziej szczegółowoTEORIA PRZEKSZTAŁTNIKÓW. Kurs elementarny Zakres przedmiotu: ( 7 dwugodzinnych wykładów :) W4. Złożone i specjalne układy przekształtników sieciowych
EORA PRZEKSZAŁNKÓW W1. Wiadomości wsępne W. Przekszałniki sieciowe 1 W3. Przekszałniki sieciowe Kurs elemenarny Zakres przedmiou: ( 7 dwugodzinnych wykładów :) W4. Złożone i specjalne układy przekszałników
Bardziej szczegółowoSilniki cieplne i rekurencje
6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać
Bardziej szczegółowoWYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 3. Charakterystyki
Bardziej szczegółowoKompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ
Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane
Bardziej szczegółowo4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego
4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W
Bardziej szczegółowoTEORIA PRZEKSZTAŁTNIKÓW. Kurs elementarny Zakres przedmiotu: ( 7 dwugodzinnych wykładów :)
W1. Wiadomości wsępne EORA PRZEKSZAŁNKÓW W. Przekszałniki sieciowe 1 W3. Przekszałniki sieciowe Kurs elemenarny Zakres przedmiou: ( 7 dwugodzinnych wykładów :) W4. Złożone i specjalne układy przekszałników
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
Bardziej szczegółowoPlan wykładu. Własności statyczne i dynamiczne elementów automatyki:
Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu
Bardziej szczegółowoKatedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.
Bardziej szczegółowoĆwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.
Bardziej szczegółowoPolitechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykłady 5,6, str. 1
Poliechnika Poznańska, Kaedra Serowania i Inżynierii Sysemów Wykłady 5,6, sr. 1 18. Klasyfikacja UR ze wzgl. na posać sygn. wejściowego a) regulacja sałowarościowa y () = cons b) regulacja programowa c)
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
Bardziej szczegółowoRównania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
Bardziej szczegółowoDynamiczne formy pełzania i relaksacji (odprężenia) górotworu
Henryk FILCEK Akademia Górniczo-Hunicza, Kraków Dynamiczne formy pełzania i relaksacji (odprężenia) góroworu Sreszczenie W pracy podano rozważania na ema możliwości wzbogacenia reologicznego równania konsyuywnego
Bardziej szczegółowoPodstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny.
Tema. Opracował: esław Dereń Kaedra Teorii Sygnałów Insyu Telekomunikacji Teleinformayki i Akusyki Poliechnika Wrocławska Prawa auorskie zasrzeżone Podsawowe wyidealizowane elemeny obwodu elekrycznego
Bardziej szczegółowoTechnika regulacji automatycznej
Technika regulacji automatycznej Wykład 5 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 38 Plan wykładu Kompensator wyprzedzający Kompensator opóźniający
Bardziej szczegółowoLABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU
Bardziej szczegółowoGr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE
Niekóre z zadań dają się rozwiązać niemal w pamięci, pamięaj jednak, że warunkiem uzyskania różnej od zera liczby punków za każde zadanie, jes przedsawienie, oprócz samego wyniku, akże rozwiązania, wyjaśniającego
Bardziej szczegółowoWNIOSKOWANIE STATYSTYCZNE
Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml
Bardziej szczegółowoWSTĘP DO ELEKTRONIKI
WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki
Bardziej szczegółowoĆWICZENIE 2. Autor pierwotnej i nowej wersji; mgr inż. Leszek Widomski
ĆWICZENIE Auor pierwonej i nowej wersji; mgr inż. Leszek Widomski UKŁADY LINIOWE Celem ćwiczenia jes poznanie właściwości i meod opisu linioch układów elekrycznych i elekronicznych przenoszących sygnały.
Bardziej szczegółowoVII. ZAGADNIENIA DYNAMIKI
Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz
Bardziej szczegółowoPodstawy środowiska Matlab
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Automatyki i Robotyki Podstawy środowiska Matlab Poniżej przedstawione jest użycie podstawowych poleceń w środowisku
Bardziej szczegółowoTeoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji.
eoria serowania ema ćwiczenia nr 7a: Syneza parameryczna uładów regulacji. Celem ćwiczenia jes orecja zadanego uładu regulacji wyorzysując nasępujące meody: ryerium ampliudy rezonansowej, meodę ZiegleraNicholsa
Bardziej szczegółowoWYKŁAD FIZYKAIIIB 2000 Drgania tłumione
YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy
Bardziej szczegółowoLABORATORIUM PODSTAW OPTOELEKTRONIKI WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH TRANSOPTORA PC817
LABORATORIUM PODSTAW OPTOELEKTRONIKI WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH TRANSOPTORA PC87 Ceem badań jes ocena właściwości saycznych i dynamicznych ransopora PC 87. Badany ransopor o
Bardziej szczegółowoDobór przekroju żyły powrotnej w kablach elektroenergetycznych
Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego
Bardziej szczegółowoMacierz A nazywamy macierzą systemu, a B macierzą wejścia.
Dwiczenia 3 Automatyka i robotyka Równaniem stanu. Macierz A nazywamy macierzą systemu, a B macierzą wejścia. Równaniem wyjścia. Do opisu układu możemy użyd jednocześnie równania stanu i równania wyjścia
Bardziej szczegółowoTemat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór
ema 6 Opracował: Lesław Dereń Kaedra eorii Sygnałów Insyu eleomuniacji, eleinformayi i Ausyi Poliechnia Wrocławsa Prawa auorsie zasrzeżone Szeregi ouriera Jeżeli f ( ) jes funcją oresową o oresie, czyli
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
Bardziej szczegółowoWykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
Bardziej szczegółowoPRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki PRZEMYSŁOWE UKŁADY STEROWANIA PID Wykład 5 i 6 Michał Grochowski, dr inż. Studia I stopnia inżynierskie, Semestr IV Charakterystyki częstotliwościowe
Bardziej szczegółowoSposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Bardziej szczegółowoWYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania
Bardziej szczegółowoMetody Lagrange a i Hamiltona w Mechanice
Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /
Bardziej szczegółowoAutomatyka i robotyka
Automatyka i robotyka Wykład 8 - Regulator PID Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu regulator PID 2 z 29 Kompensator wyprzedzająco-opóźniający
Bardziej szczegółowoDetekcja synchroniczna i PLL. Układ mnoŝący -detektor fazy!
Deekcja synchroniczna i PLL Układ mnoŝący -deekor azy! VCC VCC U wy, średnie Deekcja synchroniczna Gdy na wejścia podamy przebiegi o różnych częsoliwościach U cosω i U cosω +φ oraz U ma dużą ampliudę o:
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 13
RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 Geomeria różniczkowa Geomeria różniczkowa o dział maemayki, w kórym do badania obieków geomerycznych wykorzysuje się meody opare na rachunku różniczkowym. Obieky geomeryczne
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Bardziej szczegółowoKURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1
KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych
Bardziej szczegółowoAnaliza rynku projekt
Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes
Bardziej szczegółowoRys 1 Schemat modelu masa- sprężyna- tłumik
Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].
Bardziej szczegółowoukładu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco:
Kryterium Nyquista Kryterium Nyquista pozwala na badanie stabilności jednowymiarowego układu zamkniętego na podstawie przebiegu wykresu funkcji G o ( jω) układu otwartego na płaszczyźnie zmiennej zespolonej.
Bardziej szczegółowoOpis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.
Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t
Bardziej szczegółowo