Scenariusz lekcji matematyki z wykorzystaniem komputera
|
|
- Janusz Jakubowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Scenariusz lekcji matematki z wkorzstaniem komputera Temat: Wpłw współcznników a i b na położenie wkresu funkcji liniowej. (Rsowanie wkresów prz użciu arkusza kalkulacjnego EXCEL.) Czas zajęć: 9 min Cele: Sporządzania wkresów funkcji liniowch w arkuszu kalkulacjnm Ecel Formułowanie właściwch wniosków dotczącch funkcji liniowch Kontrola i ocena własnch wkresów Tok lekcji:. Przpomnienie podstawowch wiadomości dotczącch funkcji liniowej.. Zadanie: Sporządzić wkres niżej podanch funkcji tpu = a + b prz zmieniającej się wartości b. a) dla b= : =, =-, = b) dla b=-: =-, =--, =- Przgotowanie arkusza danch do wkonania ćwiczenia:. Wkres wkonam dla zmiennej w zakresie od do. W tm celu w komórce np. A wpisujem wartość.. Ab wpełnić pozostałe komórki kolumn zmiennej zaznaczam zakres A: A8, a następnie wkorzstujem menu Edcja, z którego wbieram opcję Wpełnij oraz Serie danch. Ustawiam tp artmetczn oraz wartość kroku. A B C = = Przstępujem do wpełnienia kolumn wartości funkcji. W tm celu w komórce B wpisujem wzór: =A, przesuwam wskaźnik msz do prawego dolnego rogu, w tm momencie wskaźnik przbiera kształt krzża, któr przeciągam do komórki B8. Kolumna funkcji zostaje wpełniona obliczonmi przez program danmi.. Wpełniam komórkę C wzorem: = A, komórkę D wzorem: =*A, komórkę E wzorem: =A, F wzorem: = A i G wzorem: =*A. Postępując analogicznie jak wżej kopiujem poszczególne wzor do pozostałch komórek kolumn. Opracowała: mgr Natalia Durka
2 W efekcie otrzmujem tabelę: A B C D E F G H = =- = =- =-- = Wkonanie wkresów funkcji:. Przeciągając mszą zaznaczam tabelę.. Z menu Wstaw wbieram Wkres.. Rozwija się okno Kreator wkresów, wbieram tp wkresu (XY) punktow (liniow), ustalam opcje wkresu: wprowadzam oznaczenia osi, zaznaczam główne linie siatki i umieszczam wkres jako obiekt w naszm arkuszu. Następnie dokonujem kosmetcznej korekt wkresu. (Uwaga: Warto wprowadzić odcienie jednej barw dla wkresów funkcji z podpunktu a) i innej barw dla wkresów z podpunktu b).) Otrzmujem wkres: Zależnosć funkcji od współcznnika b = =- = =- =-- = Sprawdzam zależność funkcji liniowej od wartości b.. Zadanie: Sporządzić wkres funkcji = a + b prz zmieniającm się współcznniku a: a) dla a = : =, =-, =+ b) dla a = - : =-, =-+, =-- Opracowała: mgr Natalia Durka
3 Zależność funkcji od współcznnika a = =- =+ =- =-+ = Sprawdzam zależność funkcji liniowej od współcznnika a.. Formułowanie wniosków:. Wkres funkcji, którch współcznniki a mają tę samą wartość są równoległe. b. Dla a wkres przecina oś OX w punkcie (, ). a b Zatem = jest miejscem zerowm funkcji liniowej. a. Dla a > funkcja jest rosnąca, dla a < jest malejąca.. Dla a = otrzmujem funkcję stałą = b.. Dla a = i b funkcja nie ma miejsc zerowch.. Dla a = i b = wkres pokrwa się z osią OX.. Zapiswanie prac na dskietkach. Opracowała: mgr Natalia Durka Opracowała: mgr Natalia Durka
4 Scenariusz lekcji matematki z wkorzstaniem komputera Temat: Ciągłość funkcji w punkcie i w przedziale. Badanie ciągłości funkcji prz użciu komputera. (Arkusz kalkulacjn Ecel) Czas zajęć: 9 min Cele: Uczeń zna i rozumie pojęcie ciągłości funkcji w punkcie i przedziale Uczeń potrafi właściwie określić możliwe punkt nieciągłości na podstawie wzoru funkcji Uczeń potrafi wkorzstać arkusz kalkulacjn Ecel do określania ciągłości funkcji Tok lekcji:. Przpomnienie pojęć: dziedzina funkcji, granica funkcji w punkcie.. Rsowanie na kalkulatorze graficznm lub komputerze wkresów sześciu funkcji i intuicjne wprowadzenie pojęcia ciągłości funkcji w punkcie = : a) ( + dla f ) = d) f ( ) dla = + dla b) f ( ) = + e) f ( ) dla > + c) f ( ) = f) f ( ) = dla < ;) + f() f() f() Opracowała: mgr Natalia Durka
5 f() f() f() Uczniowie odpowiadają na ptania: o Jak zachowują się funkcje w punkcie o odciętej równej? o Jak uważasz, którą z funkcji można b określić jako ciągłą w punkcie o odciętej równej? Dlaczego, odrzuciłeś pozostałe funkcje?. Nauczciel podaje definicję ciągłości funkcji w punkcie: Funkcja f() nazwam funkcją ciągłą w punkcie o D f wted i tlko wted, gd f ) = f ( ) lim o ( o Uczniowie wspólnie z nauczcielem interpretują treść definicji i układają algortm jej stosowania: o określenie dziedzin funkcji i sprawdzenie cz o w ogóle należ do dziedzin funkcji (jeśli nie funkcja nie jest ciągła w tm punkcie) o obliczenie granic właściwej funkcji w punkcie o (jeśli nie istnieje funkcja nie jest ciągła w tm punkcie) o obliczenie wartości funkcji w punkcie o o porównanie wartości wznaczonej granic z wartością funkcji w punkcie o. Jeśli są identczne funkcja jest ciągła, jeśli nie funkcja nie jest ciągła w tm punkcie.. Uczniowie stosując definicję ciągłości funkcji w punkcie badają ciągłość podanch funkcji w punkcie o =.. Sprawdzenie wników algebraicznego badania ciągłości funkcji z hipotezami postawionmi na początku lekcji (Zwrócenie szczególnej uwagi na funkcję f () cz błab ciągła gdb o D f? ). Nauczciel podaje definicję ciągłości funkcji w przedziale: Funkcja f() jest ciągła w przedziale <a;b>, jeśli jest ciągła w każdm punkcie przedziału (a;b) oraz: lim f ( ) = f ( a) i a + lim f ( ) = f ( b) b Opracowała: mgr Natalia Durka
6 7. Zadanie: Zbadaj ciągłość podanch niżej funkcji: dla + dla a) f ( ) b) f ( ) c) f ( ) = dla = dla > Rozwiązanie zadanie rozpoczna próba wskazania punktów podejrzanch o nieciągłość dla funkcji opisanch wzorem. 8. Podsumowanie: Co to znacz, że funkcja jest ciągła w punkcie? Co to znacz, że funkcja jest ciągła w przedziale? Jak zbadać ciągłość funkcji w punkcie? Jak zbadać ciągłość funkcji w przedziale? 9. Zadanie domowe:. Zbadaj ciągłość funkcji. Zbadaj ciągłość funkcji dla f ( ) w punkcie o =-. dla > + dla < f ( ) dla Opracowała: mgr Natalia Durka Opracowała: mgr Natalia Durka
KONSPEKT LEKCJI. NAUCZYCIEL: mgr inŝ. EWA JAROSZ SZKOŁA: GIMNAZJUM KLASA: 3 PRZEDMIOT: MATEMATYKA
NAUCZYCIEL: mgr inŝ. EWA JAROSZ SZKOŁA: GIMNAZJUM KLASA: 3 PRZEDMIOT: MATEMATYKA KONSPEKT LEKCJI TEMAT LEKCJI: Badanie własności funkcji liniowej za pomocą programu Graphmatica. CELE OPERACYJNE: Uczeń
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era
KONSPEKT LEKCJI na temat: PRZESUWANIE PARABOLI
KONSPEKT LEKCJI na temat: PRZESUWANIE PARABOLI CELE LEKCJI: Poznawcze Uczeń utrwala wiadomości o: funkcji kwadratowej rsowanie wkresu, przesuwaniu wkresu funkcji wzdłuż osi 0 i 0 związkach międz równaniem
SCENARIUSZ LEKCJI. Klasa: I liceum profilowane Blok tematyczny: Funkcje
SCENARIUSZ LEKCJI Klasa: I liceum profilowane Blok tematyczny: Funkcje Temat lekcji: Przesuwanie wykresów funkcji Typ lekcji: ćwiczeniowa Czas realizacji: 45 minut Metody pracy: podająca: - pogadanka problemowa:
TEMAT : Przykłady innych funkcji i ich wykresy.
Elżbieta Kołodziej e-mail: efreet@pf.pl matematyka, informatyka Gimnazjum Nr 5 37-450 Stalowa Wola ul. Poniatowskiego 55 SCENARIUSZ LEKCJI PRZEPROWADZONEJ W KLASIE III TEMAT : Przykłady innych funkcji
Programowanie nieliniowe optymalizacja funkcji wielu zmiennych
Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu
TEMAT: Ilustracja graficzna układu równań.
SCENARIUSZ LEKCJI PRZEPROWADZONEJ W KLASIE III TEMAT: Ilustracja graficzna układu równań. Cel ogólny: Uczeń rozwiązuje metodą graficzną układy równań przy użyciu komputera. Cele operacyjne: Uczeń: - zna
ROZWIĄZANIA I ODPOWIEDZI
Zastosowania matematki w analitce medcznej zestaw do kol. semestr. - rozwiązania i odpowiedzi (część I). ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. a) Rozważając dwa przpadki ze względu na moduł mam: skąd ostatecznie,3>.
Ćwiczenia nr 4. Arkusz kalkulacyjny i programy do obliczeń statystycznych
Ćwiczenia nr 4 Arkusz kalkulacyjny i programy do obliczeń statystycznych Arkusz kalkulacyjny składa się z komórek powstałych z przecięcia wierszy, oznaczających zwykle przypadki, z kolumnami, oznaczającymi
FUNKCJA LINIOWA. Przykłady lekcji 6 matematyki z zastosowaniem komputera. Autor pracy: JOANNA NOWAK
FUNKCJA LINIOWA 8 Przkład lekcji 6 matematki z zastosowaniem komputera. - - -6 Autor prac: JOANNA NOWAK Spis treści str. Wstęp... Informacje ogólne... Odniesienie do podstaw programowch... 5 Propozcje
WYKRESY FUNKCJI LINIOWEJ
GIMNAZJUM NR 2 W KAMIENNEJ GÓRZE WYKRESY FUNKCJI LINIOWEJ Oprcowała Wiesława Kurnyta Kamienna Góra, 2006 Oto wypisy z Podstawy programowej o nauczaniu matematyki w gimnazjum Cele edukacyjne 1. E Przyswajanie
3.3. UKŁADY RÓWNAŃ LINIOWYCH. Równanie liniowe z dwiema niewiadomymi. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci
.. UKŁADY RÓWNAŃ LINIOWYCH Równanie liniowe z dwiema niewiadommi Równaniem liniowm z dwiema niewiadommi i nazwam równanie postaci A B C 0, gdzie A, B, C R i A B 0 m równania z dwiema niewiadommi nazwam
Scenariusz lekcji matematyki w klasie pierwszej szkoły ponadgimnazjalnej z wykorzystaniem komputerów.
Jadwiga Żak nauczyciel matematyki w Liceum Ogólnokształcącym im. Piotra Skargi w Grójcu Scenariusz lekcji matematyki w klasie pierwszej szkoły ponadgimnazjalnej z wykorzystaniem komputerów. Temat: Wykresy
Ciągłość funkcji w punkcie i w zbiorze.
(Scenariusz lekcji o wprowadzeniu pojęcia ciągłości funkcji w punkcie, w zbiorze CFX9859GB PLUS) Ciągłość funkcji w punkcie i w zbiorze. Cele: poznawczy - poznanie pojęć: ciągłość funkcji w punkcie, w
Pochodna funkcji wykład 5
Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren
Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów.
Wkład Test zgodności. Test zgodności służą do werikacji hipotez mówiącch, że a dstrbuanta rozkładu populacji ma określoną z gór postać unkcjną b dstrbuant rozkładów dwóch populacji nie różnią się w sposób
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY Drogi Uczniu Witaj na II etapie konkursu matematcznego. Przecztaj uważnie instrukcję.
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba
EXCEL. Diagramy i wykresy w arkuszu lekcja numer 6. Instrukcja. dla Gimnazjum 36 - Ryszard Rogacz Strona 20
Diagramy i wykresy w arkuszu lekcja numer 6 Tworzenie diagramów w arkuszu Excel nie jest sprawą skomplikowaną. Najbardziej czasochłonne jest przygotowanie danych. Utworzymy następujący diagram (wszystko
Rachunek różniczkowy funkcji jednej zmiennej
Rachunek różniczkow funkcji jednej zmiennej wkład z MATEMATYKI Budownictwo, studia niestacjonarne sem. I, rok ak. 2008/2009 Katedra Matematki Wdział Informatki Politechnika Białostocka 1 Iloraz różnicow
Przenoszenie niepewności
Przenoszenie niepewności Uwaga wstępna: pojęcia niepewność pomiarowa i błąd pomiarow są stosowane wmiennie. Załóżm, że wielkość jest funkcją wielkości,,, dla którch niepewności (,, ) są znane (wnikają
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
Ćwiczenie 361 Badanie układu dwóch soczewek
Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka
Ekstrema funkcji dwóch zmiennych
Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
Przykład wykorzystania Arkusza Kalkulacyjnego Excel
Przykład wykorzystania Arkusza Kalkulacyjnego Excel Wyznaczanie przybliżonych wartości pierwiastków wielomianu 1. Założenia Uczniowie poznali na poprzednich lekcjach następujące wiadomości dotyczące wielomianów:
MES polega na wyznaczaniu interesujących nas parametrów w skończonej ilości punktów. A co leży pomiędzy tymi punktami?
MES- 07 Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami? Na razie rozpatrwaliśm
SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Moduł interdyscyplinarny:
Funkcje wielu zmiennych
Funkcje wielu zmiennch Wkres i warstwice funkcji wielu zmiennch. Przeglad powierzchni stopnia drugiego. Granice i ciagłość funkcji wielu zmiennch. Małgorzata Wrwas Katedra Matematki Wdział Informatki Politechnika
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
Wkład z matematki inżnierskiej BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI IMiF UTP 06 przed wkonaniem wkresu... BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkonujem wkres funkcji wznaczaja c wcześniej: 1 dziedzinȩ
Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji)
Wkład 1: Prosta regresja liniowa Statstczn model regresji liniowej Dane dla prostej regresji liniowej Przedział ufności i test parametrów Przedział ufności dla średniej odpowiedzi Interwał prognoz (dla
Po naciśnięciu przycisku Dalej pojawi się okienko jak poniżej,
Tworzenie wykresu do danych z tabeli zawierającej analizę rozwoju wyników sportowych w pływaniu stylem dowolnym na dystansie 100 m, zarejestrowanych podczas Igrzysk Olimpijskich na przestrzeni lat 1896-2012.
Interpolacja. Układ. x exp. = y 1. = y 2. = y n
MES 07 lokaln Interpolacja. Układ Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami?
3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5.
WYKŁAD 7 3 Podstawowe własności unkcji Funkcje cklometrczne, hiperboliczne Deinicję unkcji o dziedzinie X i przeciwdziedzinie Y mam w 3A5 3A37 (Uwaga: dziedzina naturalna) Często się zdarza, że unkcja
Sposoby sprawdzania osiągnięć edukacyjnych uczniów
1 Sposoby sprawdzania osiągnięć edukacyjnych uczniów Dla uczniów zainteresowanych przygotowywane są ćwiczenia trudniejsze, aby mogli wykazać się swoimi umiejętnościami i wiedzą. Uczniom mającym trudności
Liczby, działania i procenty. Potęgi I pierwiastki
Zakres materiału obowiązując do egzaminu poprawkowego z matematki klasa technikum str Dział programow Liczb, działania i procent Potęgi I pierwiastki Zbior i przedział liczbowe Wrażenia algebraiczne Równania
matematyka Matura próbna
Gazeta Edukacja Sprawdź, cz zdasz! Egzamin maturaln matematka MTEMTYK zas prac: minut Matura próbna Maturzsto! Po raz pierwsz napiszesz obowiązkową maturę z matematki na poziomie podstawowm Rozwiąż zadania
LABORATORIUM PODSTAW AUTOMATYKI
LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA DO ĆWICZENIA 4.Wstęp - DOBÓR NASTAW REGULATORÓW opr. dr inż Krzsztof Kula Dobór nastaw regulatorów uwzględnia dnamikę obiektu jak i wmagania stawiane zamkniętemu
PRZYGOTOWANIE I REALIZACJA HOSPITACJI DIAGNOZUJĄCEJ
PRZYGOTOWANIE I REALIZACJA HOSPITACJI DIAGNOZUJĄCEJ Data: 19.5.25 rok Klasa: I Technikum Ekonomicznego Nauczyciel: J. Mierzejewska Majcherek, Barbara Aleksandrowicz Przedmiot: podstawy ekonomii, technologia
SCENARIUSZ LEKCJI. TEMAT LEKCJI: O czym mówią współczynniki funkcji liniowej? - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki
SCENARIUSZ LEKCJI OPRACOWANY w RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE i OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
2. Metody adresowania w arkuszu kalkulacyjnym
1. Uczeń: Uczeń: 2. Metody adresowania w arkuszu kalkulacyjnym a. 1. Cele lekcji i. a) Wiadomości Zna zastosowanie arkusza kalkulacyjnego, zna sposoby adresowania w arkuszu kalkulacyjnym, zna podstawowe
Matematyka z komputerem dla gimnazjum
IDZ DO PRZYK ADOWY ROZDZIA KATALOG KSI EK ZAMÓW DRUKOWANY KATALOG TWÓJ KOSZYK CENNIK I INFORMACJE ZAMÓW INFORMACJE O NOWO CIACH ZAMÓW CENNIK CZYTELNIA SPIS TRE CI KATALOG ONLINE DODAJ DO KOSZYKA FRAGMENTY
2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH
dam Bodnar: Wtrzmałość Materiałów. Charakterstki geometrczne figur płaskich.. CHRKTERSTKI GEOMETRCZNE FIGUR PŁSKICH.. Definicje podstawowch charakterstk geometrcznch Podczas zajęć z wtrzmałości materiałów
Wykresy. Informatyka Arkusz kalkulacyjny Excel dla WINDOWS. Excel. cz.4. Wykresy. Wykresy. Wykresy. Wykresy
Zespół Szkół Agrotechnicznych i Ogólnokształcących im.józefa Piłsudskiego w śywcu Excel Informatyka Arkusz kalkulacyjny Excel dla WINDOWS cz.4 Najlepszym sposobem prezentacji danych jest prezentacja graficzna.
12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej
1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm
Metoda pasm skończonych płyty dwuprzęsłowe
etoda pasm skończonch płt dwuprzęsłowe Dla płt przedstawionej na rsunku należ: 1. Dla obciążenia ciężarem własnm q oraz obciążeniami p 1 i p obliczć ugięcia w punktach A i B oraz moment, i w punktach A,B
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 17751 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Rozważm treść następujacego
Zadaniem tego laboratorium będzie zaznajomienie się z podstawowymi możliwościami operacji na danych i komórkach z wykorzystaniem Excel 2010
Zadaniem tego laboratorium będzie zaznajomienie się z podstawowymi możliwościami operacji na danych i komórkach z wykorzystaniem Excel 2010 Ms Excel jest przykładem arkusza kalkulacyjnego, grupy oprogramowania
Wektory. P. F. Góra. rok akademicki
Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.
FINAŁ 10 marca 2007 r. KLASA PIERWSZA - POZIOM PODSTAWOWY Czas pisania 90 minut. x +
FINAŁ 0 marca 007 r. KLASA PIERWSZA - POZIOM PODSTAWOWY Czas pisania 90 minut ZADANIE Największ wspóln dzielnik dwóch liczb naturalnch wnosi 6, a ich najmniejsza wspólna wielokrotność tch liczb równa jest
Wymagania na poszczególne oceny szkolne dla klasy VI. (na podstawie Grażyny Koba, Teraz bajty. Informatyka dla szkoły podstawowej.
1 Wymagania na poszczególne oceny szkolne dla klasy VI (na podstawie Grażyny Koba, Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI ) 2 1. Obliczenia w arkuszu kalkulacyjnym słucha poleceń nauczyciela
KURS FUNKCJE WIELU ZMIENNYCH
KURS FUNKCJE WIELU ZMIENNYCH Lekcja 1 Pochodne cząstkowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tlko jedna jest prawdziwa). Ptanie 1 Funkcja dwóch zmiennch a)
Klucz odpowiedzi i schemat punktowania do próbnego zestawu egzaminacyjnego z zakresu przedmiotów matematyczno-przyrodniczych
Klucz odpowiedzi i schemat punktowania do próbnego zestawu egzaminacjnego z zakresu przedmiotów matematczno-przrodniczch Z a d a n i a z a m k n i ę t e Numer zadania 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3
Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS
Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.4 Slajd 1 Excel Slajd 2 Wykresy Najlepszym sposobem prezentacji danych jest prezentacja graficzna. Z pomocą
Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI
1 Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI Opis założonych osiągnięć ucznia przykłady wymagań na poszczególne oceny szkolne dla klasy VI Grażyna Koba Spis treści 1. Obliczenia w arkuszu
INSTRUKCJE DO ARKUSZA KALKULACYJNEGO Excel 2003
INSTRUKCJE DO ARKUSZA KALKULACYJNEGO Excel 2003 Formatowanie arkusza: Ćwiczenie 1 Przygotujmy tabelkę w arkuszu kalkulacyjnym (jak na rysunku). 1. Nazwę Arkusza1 zmieniamy na nazwę Ćw1 Naciskamy prawym
a, b funkcji liniowej y ax + b
. FUNKCJA LINIOWA zadania Zad... Napisz wzór funkcji liniowej, której wkres przechodzi przez punkt A (, ) i przecina oś OY w punkcie B (0,). Zad... Dan jest wzór funkcji liniowej: A) B) C) D) Na podstawie
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma
SCENARIUSZ LEKCJI W KLASIE I GIMNAZJUM
Opracowała Elżbieta Tomczak SCENARIUSZ LEKCJI W KLASIE I GIMNAZJUM Motto lekcji: To, co musiałeś odkryć samodzielnie, zostawia w twym umyśle ścieżkę, którą w razie potrzeby możesz pójść jeszcze raz. Georg
SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Funkcje i instrukcje języka JavaScript
Funkcje i instrukcje języka JavaScript 1. Cele lekcji a) Wiadomości Uczeń : zna operatory i typy danych języka JavaScript, zna konstrukcję definicji funkcji, zna pętlę If i For, Do i While oraz podaje
AUTOR : HANNA MARCINKOWSKA. TEMAT : Symetria osiowa i środkowa UWAGA:
SCENARIUSZ ZAJĘĆ Z MATEMATYKI DLA KLASY I GIMNAZJUM PRZYGOTOWANY W PROGRAMIE NARZĘDZIOWYM EXE LEARNING - SYMETRIA OSIOWA I ŚRODKOWA. Szkoła z klasą 2.0 Zastosowanie technologii informacyjnej AUTOR : HANNA
Scenariusz lekcji. Metody pracy: Pogadanka, dyskusja, ćwiczenia praktyczne przy komputerze
Scenariusz lekcji Przedmiot: technologia informacyjna Klasa: I Technikum Agrobiznesu Prowadzący: Urszula Dziakowska Temat: Praca z tabelami Czas realizacji: 2 jednostki lekcyjne Cele: Ogólny: Zdobycie
Uruchom polecenie z menu Wstaw Wykres lub ikonę Kreator wykresów na Standardowym pasku narzędzi.
Tworzenie wykresów w Excelu. Część pierwsza. Kreator wykresów Wpisz do arkusza poniższą tabelę. Podczas tworzenia wykresów nie ma znaczenia czy tabela posiada obramowanie lub inne elementy formatowania
3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu.
Zadanie: 1) Dana jest funkcja y=-+7.nie wykonując wykresu podaj a) miejsce zerowe b)czy funkcja jest rosnąca czy malejąca(uzasadnij) c)jaka jest rzędna punktu przecięcia wykresu z osią y. ) Wykres funkcji
Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS
Wyższa Szkoła Ekologii i Zarządzania Excel Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.4 Slajd 1 Slajd 2 Najlepszym sposobem prezentacji danych jest prezentacja graficzna. Z pomocą wykresu
TEMAT : TWORZENIE BAZY DANYCH PRZY POMOCY PROGRAMU EXCEL
Konspekt lekcji TEMAT : TWORZENIE BAZY DANYCH PRZY POMOCY PROGRAMU EXCEL Czas trwania : 3 x 45 min. CELE NAUCZANIA : 1. Poziom podstawowy (ocena dostateczna) o uczeń potrafi założyć bazę danych i wprowadzić
Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI
1 Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI 1. Obliczenia w arkuszu kalkulacyjnym Rozwiązywanie problemów z wykorzystaniem aplikacji komputerowych obliczenia w arkuszu kalkulacyjnym wykonuje
V JURAJSKI TURNIEJ MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM FINAŁ 14 maja 2005 r.
V JURAJSKI TURNIEJ MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM FINAŁ 4 maja 005 r. Przecztaj uważnie poniższą instrukcję: Test składa się z dwóch części. Pierwsza część zawiera 0 zadań wielokrotnego wboru. Tlko
SCENARIUSZ ZAJĘĆ KLASY IV A Z UŻYCIEM TIK
SCENARIUSZ ZAJĘĆ KLASY IV A Data: 20.04.2018r. Temat zajęć: Skracamy ułamki zwykłe Opanuję umiejętność upraszczania ułamków. Metody: pogadanka, ćwiczenia praktyczne. Pomoce dydaktyczne: komputer z dostępem
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
WYMAGANIA EDUKACYJNE Z INFORMATYKI dla klasy III gimnazjalnej, Szkoły Podstawowej w Rychtalu
WYMAGANIA EDUKACYJNE Z INFORMATYKI dla klasy III gimnazjalnej, Szkoły Podstawowej w Rychtalu 1 Algorytmika i programowanie Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, stosowanie
Zadanie 2. objętość zmniejszy się o 1 m 3, co odpowiada liczbie 3% 60 m 3 zaokrąglonej w dół do liczby
Zadanie 1. W liceum ogólnokształcącm przeprowadzono badanie wników nauczania z historii. Do tego celu wkorzstano test składając się z 25 ptań, które kolejno dotczł poszczególnch epok historcznch: ptania
ZADANIE 1 Poniżej znajduje się fragment wykresu funkcji y = f (x). ZADANIE 2 Na podstawie podanego wykresu funkcji f
IMIE I NAZWISKO ZADANIE Poniżej znajduje się fragment wkresu funkcji = f (). -7 -- - - 6 7 Dorsuj brakujac a część wkresu wiedzac, że dziedzina funkcji f jest przedział,, a wkres jest smetrczn względem
Matematyka licea ogólnokształcące, technika
Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem
Mikroekonomia II. Narz ¾edzia matematyczne. f 0 (x) = 0. f (x) = 5. f 0 (x) = ax a 1 = ax a 1. f (x) = p x = x 1 2. d (bf(x)) dx.
Mikroekonomia II Narz edzia matematczne Pochodne. Funkcja sta a f () = b f 0 () = 0 f () = 5 f 0 () = 0 2. Funkcja wk adnicza f () = a f 0 () = a a = a a f () = p = 2 f 0 () = 2 2 = 2 2. Funkcja logartmiczna
Twórcza szkoła dla twórczego ucznia Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
SCENARIUSZ LEKCJI PRZEDMIOT: MATEMATYKA TEMAT: GRAFICZNE ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ AUTOR SCENARIUSZA : mgr Halina Bobek OPRACOWANIE ELEKTRONICZNO GRAFICZNE : mgr Beata Rusin TEMAT LEKCJI Graficzne rozwiązywanie
KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA
KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA Temat: Powtórzenie i utrwalenie wiadomości o funkcji liniowej Cel ogólny Przykłady funkcji; odczytywanie własności
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
FUNKCJE. Rozwiązywanie zadań Ćw. 1-3 a) b) str Ćw. 5 i 6 str. 141 dodatkowo podaj przeciwdziedzinę.
FUNKCJE Lekcja 61-6. Dziedzina i miejsce zerowe funkcji str. 140-14 Co to jest funkcja. Może przykłady. W matematyce funkcje najczęściej przedstawiamy za pomocą wzorów. Przykłady. Dziedzina to zbiór argumentów
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine 1. Autor: Anna Wołoszyn 2. Grupa docelowa: klasa 1 Gimnazjum 3. Liczba godzin: 1 4. Temat zajęć: Układ współrzędnych
Wartości i wektory własne
Rozdział 7 Wartości i wektor własne Niech X będzie skończenie wmiarową przestrzenią liniową nad ciałem F = R lub F = C. Niech f : X X będzie endomorfizmem, tj. odwzorowaniem liniowm przekształającm przestrzeń
SCENARIUSZ LEKCJI. Wielomiany komputerowe wykresy funkcji wielomianowych
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007
Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja
Scenariusz lekcji. wymienić nazwy funkcji logicznych (jeżeli, licz.jeżeli); omówić funkcje, korzystając z informacji zawartych w Pomocy programu;
Scenariusz lekcji 1 TEMAT LEKCJI Funkcje warunkowe w arkuszu Excel 2 CELE LEKCJI 2.1 Wiadomości Uczeń potrafi: wymienić nazwy funkcji logicznych (jeżeli, licz.jeżeli); podać zastosowanie funkcji; wymienić
Scenariusz lekcji matematyki w klasie III gimnazjalnej z zastosowaniem metody aktywizującej kula śniegowa
Scenariusz lekcji matematyki w klasie III gimnazjalnej z zastosowaniem metody aktywizującej kula śniegowa TEMAT: FUNKCJE POWTÓRZENIE WIADOMOŚCI Cel ogólny: Powtórzenie i utrwalenie wiadomości o unkcjach
Podsumowanie wiadomości o przekształceniach izometrycznych na płaszczyźnie
Podsumowanie wiadomości o przekształceniach izometrycznych na płaszczyźnie 1. Cele lekcji a) Wiadomości 1. Utrwalenie wiadomości o przekształceniach izometrycznych. b) Umiejętności 1. Uczeń potrafi zastąpić
OPRACOWANIE MONIKA KASIELSKA
KONSPEKT LEKCJI MATEMATYKI DIAGNOZA UMIEJĘTNOŚCI ZGODNYCH ZE STANDARDAMI WYMAGAŃ MATURALNYCH PRZEDMIOT : Matematyka KLASA: III TEMAT: Rozwiązywanie problemów poprzez stosowanie algorytmów. STANDARDY WYMAGAŃ
Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki. Podstawy Informatyki i algorytmizacji
Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki Podstawy Informatyki i algorytmizacji wykład 1 dr inż. Maria Lachowicz Wprowadzenie Dlaczego arkusz
Realizacja funkcji przełączających
Realizacja funkcji przełączającch. Wprowadzenie teoretczne.. Podstawowe funkcje logiczne Funkcja logiczna NOT AND OR Zapis = x x = = x NAND NOR.2. Metoda minimalizacji funkcji metodą tablic Karnaugha Metoda
FORMUŁY AUTOSUMOWANIE SUMA
Wskazówki do wykonania Ćwiczenia 1, ocena sprawdzianu (Excel 2007) Autor: dr Mariusz Giero 1. Pobierz plik do pracy. W pracy należy wykonać obliczenia we wszystkich żółtych polach oraz utworzyć wykresy
Wymagania edukacyjne z informatyki dla uczniów klas VI SP nr 53 w Krakowie w roku szkolnym 2019/2020
Prowadzący: Elwira Kukiełka Ewa Pawlak-Głuc 1 Opracowano na podstawie: 1. Podstawa programowa(dz.u. z 017r. poz. ) Rozporządzenie Ministra Edukacji Narodowej z dnia 1 lutego 017 r. w sprawie podstawy programowej
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Laboratorium 7b w domu wykresy w Excelu
Ćwiczenie Laboratorium 7b w domu wykresy w Excelu Otwórz nowy Zeszyt. Utwórz formułę dla funkcji: f x log 3x i policz jej wartości w przedziale [-, ] z krokiem,. Wykonaj wykres tej funkcji Zaznacz cały
SPOSÓB WYKONANIA OBLICZEŃ I FORMATOWANIA KOMÓREK
SPOSÓB WYKONANIA OBLICZEŃ I FORMATOWANIA KOMÓREK Tworzenie Listy wyboru Tworzenie obliczeo z wykorzystaniem adresowania mieszanego (symbol $) Tworzenie wykresu i zmiana jego parametrów Wszelkie wskazówki
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Ć w i c z e n i e K 2 b
Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:
Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox
A: 1 OK Muszę to powtórzyć... Potrzebuję pomocy Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox 1. Uruchom program Modellus. 2. Wpisz x do okna modelu. 3. Naciśnij przycisk Interpretuj