Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
|
|
- Jakub Tomczyk
- 7 lat temu
- Przeglądów:
Transkrypt
1 Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera pewna lokata na przszłość jest współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
2 3. Funkcja liniowa Funkcję postaci f(x) = ax + b, gdzie a, b R, a 0 nazwam funkcją liniową. Jeśli a > 0, to funkcja liniowa jest rosnąca. Jeśli a < 0, to funkcja liniowa jest malejąca. Jeśli a = 0, to funkcja liniowa jest stała. Wkresem funkcji liniowej jest prosta. a = tg α, gdzie α jest kątem nachlenia prostej do osi OX a współcznnik kierunkow f(x)=ax+b a>0 b b a b f(x)=ax+b a<0 b a Równanie linowe ax + b = 0 Gd a 0, to równanie ma jedno rozwiązanie x = b a (równanie oznaczone) Gd a = 0, b = 0, to rozwiązaniem jest każda liczba rzeczwista (równanie tożsamościowe) Gd a = 0, b 0, to brak rozwiązania (równanie sprzeczne) Nierówności liniowe ax + b < 0, ax + b > 0, ax + b 0, ax + b 0 Układ równań liniowch Układ równań { a1 x + b 1 = c 1 a x + b = c gdzie a 1 +b 1 0 oraz a +b 0 nazwam układem dwóch równań liniowch z dwiema niewiadommi. I sposób Metoda podstawiania Z jednego równania wliczam jedną niewiadomą w zależności od drugiej i otrzmaną zależność wstawiam do drugiego równania. II sposób Metoda przeciwnch współcznników Mnożm równania układu przez tak dobrane liczb, ab następnie po dodaniu pomnożonch równań stronami otrzmać równanie z jedną niewiadomą. 9
3 III sposób [ Metoda ] wznaczników a1 b W = det 1 = a a b 1 b a b 1 wznacznik główn układu Jeśli W 0, to x = Wx W, = W W, gdzie [ ] [ ] c1 b W x = det 1 a1 c, W c b = det 1 a c Jeśli W = 0 i W x 0, W 0, to układ nie ma rozwiązania (układ sprzeczn). Jeśli W = 0 i W x = W = 0, to układ ma nieskończenie wiele rozwiązań. WARTOŚĆ BEZWZGLĘDNA Wartością bezwzględną (modułem) liczb x R nazwam wielkość x = Własności: a 0 a = a, a a a Jeśli a, b R, to a b = a b, a b = a b dla b 0, a + b a + b, a b a b a + b, { x dla x 0, x dla x < 0. Jeśli a 0, to x a a x a. Jeśli a 0, to x a x a x a. { x a dla x a, x a = (x a) dla x < a. Przkładowe zadania 1. Rozwiązać równanie 3x 5 = x + 3. Na lewą stronę przenosim zmienne, a na prawą stałe. 3x x = 3 + 5, zatem x = 8 Odpowiedź: x = 8. Rozwiązać nierówność x + 3 < 4x 1. Na lewą stronę przenosim zmienne, a na prawą stałe. x 4x < 1 3, czli x < 4, zatem x > (prz mnożeniu nierówności przez liczbę ujemną, zmieniam znak nierówności na przeciwn). Odpowiedź: x > { x + 3 = 4 3. Rozwiązać układ równań 5x + 6 = 7 10
4 I sposób Z pierwszego równania wliczam x i podstawiam do drugiego x = 4 3, stąd x = 3 5( 3 ) + 6 = = 7 3 = 3, czli = Zatem x = 3 ( ) = 1 II sposób Pierwsze równanie mnożm przez { 4x 6 = 8 5x + 6 = 7 i dodajem równania stronami. Zatem x = 1 Teraz drugie równanie mnożm przez 5 { x + 3 = 4 x 1 5 = 14 5 i dodajem równania stronami. Zatem = , stąd = III sposób [ ] 3 W = det = = 1 15 = [ ] 4 3 W x = det = ( 7) = = [ ] 4 W = det = ( 7) ( 4) 5 = = x = Wx W 3 = 1, = W W Odpowiedź: x = 1, = = 3 = 6 3 = 4. Rozwiązać układ nierówności { x + 4 > 1 < x < 1 Pierwsza nierówność jest równoważna nierówności x > 3 Druga nierówność jest równoważna nierówności x 1 < < x + =x+ x 3 =x-1 11
5 5. Narsować funkcję = x. Rsujem wkres funkcji = x i smetrcznie odbijam względem osi OX tę część, która jest pod osią. 6. Narsować funkcję = x 1. Rsujem wkres funkcji = x 1 i smetrcznie odbijam względem osi OX tę część, która jest pod osią Narsować funkcję = x +. Rsujem wkres funkcji = x i dokonujem translacji o wektor [0, ]. 8. Narsować zbiór będąc rozwiązaniem nierówności x + < 1. Dla x 0, 0 mam x + < 1, czli < x + 1 Dla x 0, < 0 mam x < 1, czli > x 1 Dla x < 0, 0 mam x + < 1, czli < x + 1 Dla x < 0, < 0 mam x < 1, czli > x x Rozwiązać równanie x 5 = x. Rozpatrujem dwa przpadki: a) x 5 < 0, czli x < 5 Wówczas (x 5) = x, stąd x = 5 Sprawdzam, cz obliczon x należ do przedziału (, 5). b) x 5 0, czli x 5 Wted równanie przjmuje postać x 5 = x, czli 5 = 0. Zatem otrzmaliśm sprzeczność Odpowiedź: x = 5 1
6 10. Rozwiązać równanie x x + 1 =. { { x dla x < 0, (x + 1) dla x < 1, x = x + 1 = x dla x 0. x + 1 dla x 1. Dzielim zbiór liczb rzeczwistch na przedział, którch końcami są liczb 1 i 0. Rozpatrujem trz przpadki: a) x < 1 Wted x = x, x + 1 = (x + 1) Zatem x + x + 1 =, czli x = 1, ale nie należ do przedziału (, 1), czli brak rozwiązań b) 1 x < 0 Wted x = x, x + 1 = x + 1 Zatem x (x + 1) =, czli x = 1, należ do przedziału [ 1, 0) c) x 0 Wted x = x, x + 1 = x + 1 Zatem x (x + 1) =, czli x = 3, należ do przedziału [0, + ) Odpowiedź: x = 1 x = Rozwiązać równanie 1 x + x + 4 = 0. Rozważam dwa przpadki: a) 1 x < 0, czli x > 1 Wówczas 1 x = (1 x), zatem 1 + x + x + 4 = 0, czli x = 1, nie należ do przedziału (1, + ) b) 1 x 0, czli x 1 Wówczas 1 x = 1 x, zatem 1 x + x + 4 = 0, czli x = 5, należ do przedziału (, 1] Odpowiedź: x = 5 1. Rozwiązać nierówność x x x x 1 Odpowiedź: x [, 1] 13. Rozwiązać nierówność 3x > 4. 3x > 4 3x < 4 3x > 6 3x < x > x < 3 Odpowiedź: x (, 3 ) (, + ) 13
7 14. Rozwiązać nierówność 4 x < x. { { x dla x < 0, (4 x) dla x >, x = 4 x = x dla x 0. 4 x dla x. Dzielim zbiór liczb rzeczwistch na przedział, którch końcami są liczb 0 i. Rozpatrujem trz przpadki: a) x < 0 Wówczas 4 x = 4 x, x = x Nierówność przjmuje wted postać 4 x < x. Zatem x > 4. Po uwzględnieniu dziedzin otrzmujem, że x. b) 0 x < Wówczas 4 x = 4 x, x = x Nierówność przjmuje wted postać 4 x < x, zatem x > 4 3. Po uwzględnieniu dziedzin otrzmujem, że x ( 4 3, ). c) x Wówczas 4 x = (4 x), x = x Nierówność przjmuje wted postać 4 + x < x, zatem x < 4. Po uwzględnieniu dziedzin otrzmujem, że x [, 4). Rozwiązaniem jest suma przedziałów x ( 4 3, ) i x [, 4). Odpowiedź: x ( 4 3, 4) Zadania 1. Napisać równanie funkcji liniowej przechodzącej przez punkt o współrzędnch: A( 1, ), B(4, 5).. Napisać wzór funkcji liniowej, która przechodzi przez punkt P (1, ) i jest nachlona do oso OX pod kątem Dla jakich wartości parametru m funkcja f(x) = ( 3m + 3)x + jest malejąca? 4. Dla jakich wartości parametru m miejscem zerowm funkcji f(x) = 3x + m 3 jest liczba 4? Rozwiązać równanie: 5. (x + 1) 3 (x 1) 3 = 6(x + x + 1). 6. 3x + 4(3 x) (3x + ) = (3 x) + 5(3x + 1) = 8(1 x). 8. 4(x + 7) 3(x + 3) = 5( x). 9. 3(x + 4) 7(x 3) = 8(x 5). 10. x( x) 3x = x[x (5 + x)]. Rozwiązać nierówność: 11. 6(x + 1) (4 x) > 5(x ). 1. 3(4 x) + 4(x + 3) x (3 4x) x 3(x 5) (5x 3) 1 3 ( 3x) < 1 4 (x ). 15. (x ) + 3x > (x + ) + x (8 x) + 19 (x 9). 14
8 Rozwiązać układ równań: { 3x + = 5 { x + 3 = 7 { x = x = x + 9 = 1 3. x = 0 { 3 = x + 4 { 3x + = 1 { x + = = 4x 1. x 3 = x + = 1 { x + = 1 { x + 5 = 6 { x + 3 = x 3 = 0. 3x = 1 5. x = Znaleźć rozwiązanie analitczne i graficzne układu nierówności: { 3x 1 > 3 x { x + 4 > 3 4(x 1) > Sporządzić wkres funkcji: { x 8. x + 4 { x x x x + 4 x + 4 > 0 x f(x) = x f(x) = x f(x) = x 1 + x. 34. f(x) = x x f(x) = x f(x) = x f(x) = x f(x) = 4 + 7x f(x) = x f(x) = x 4. Rozwiązać równanie: 41. x + 3 = x 3 + x 5 = x = x + 1 = 4 x x + = (3 x) x + x = x x =. 48. x + x + = x x x 3 + x = x x = x 4. Rozwiązać nierówność: 51. x x x + x. 53. x x 1 < x x < x + 6 > x < x + 3x x 1 < x > x + < x + x 1 + x 3 < 4. 15
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Bardziej szczegółowo3.3. UKŁADY RÓWNAŃ LINIOWYCH. Równanie liniowe z dwiema niewiadomymi. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci
.. UKŁADY RÓWNAŃ LINIOWYCH Równanie liniowe z dwiema niewiadommi Równaniem liniowm z dwiema niewiadommi i nazwam równanie postaci A B C 0, gdzie A, B, C R i A B 0 m równania z dwiema niewiadommi nazwam
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszeo roku kierunku zamawianeo Biotecnoloia w ramac projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera pewna lokata
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera
Bardziej szczegółowoFUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)
FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Bardziej szczegółowo1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)
1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Bardziej szczegółowoRozwiązywanie układu równań metodą przeciwnych współczynników
Rozwiązwanie układu równań metodą przeciwnch współcznników Sposob postępowania krok po kroku: I. przgotowanie równań. pozbwam się ułamków mnoŝąc kaŝd jednomian równania równań przez najmniejszą wspólną
Bardziej szczegółowoPojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
Bardziej szczegółowoDefinicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Bardziej szczegółowoRównania różniczkowe
Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz
Bardziej szczegółowoEgzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 3
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma
Bardziej szczegółowo3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5.
WYKŁAD 7 3 Podstawowe własności unkcji Funkcje cklometrczne, hiperboliczne Deinicję unkcji o dziedzinie X i przeciwdziedzinie Y mam w 3A5 3A37 (Uwaga: dziedzina naturalna) Często się zdarza, że unkcja
Bardziej szczegółowoMatematyka licea ogólnokształcące, technika
Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem
Bardziej szczegółowoROZWIĄZANIA I ODPOWIEDZI
Zastosowania matematki w analitce medcznej zestaw do kol. semestr. - rozwiązania i odpowiedzi (część I). ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. a) Rozważając dwa przpadki ze względu na moduł mam: skąd ostatecznie,3>.
Bardziej szczegółowoFUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b.
FUNKCJA LINIOWA Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. Jakie znaki mają współczynniki a i b? R: Przedstawiona prosta, jest wykresem funkcji
Bardziej szczegółowoFunkcje Andrzej Musielak 1. Funkcje
Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie
Bardziej szczegółowo3.2. RÓWNANIA I NIERÓWNOŚCI LINIOWE.
.. RÓWNANIA I NIERÓWNOŚCI LINIOWE. m równania (pierwiastkiem równania) z jedną niewiadomą nazywamy liczbę, która spełnia dane równanie, tzn. jeśli w miejsce niewiadomej podstawimy tę liczbę, to otrzymamy
Bardziej szczegółowoFUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest
Bardziej szczegółowoZADANIE 1 Poniżej znajduje się fragment wykresu funkcji y = f (x). ZADANIE 2 Na podstawie podanego wykresu funkcji f
IMIE I NAZWISKO ZADANIE Poniżej znajduje się fragment wkresu funkcji = f (). -7 -- - - 6 7 Dorsuj brakujac a część wkresu wiedzac, że dziedzina funkcji f jest przedział,, a wkres jest smetrczn względem
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Bardziej szczegółowo3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Bardziej szczegółowoRównania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
Bardziej szczegółowoFINAŁ 10 marca 2007 r. KLASA PIERWSZA - POZIOM PODSTAWOWY Czas pisania 90 minut. x +
FINAŁ 0 marca 007 r. KLASA PIERWSZA - POZIOM PODSTAWOWY Czas pisania 90 minut ZADANIE Największ wspóln dzielnik dwóch liczb naturalnch wnosi 6, a ich najmniejsza wspólna wielokrotność tch liczb równa jest
Bardziej szczegółowoZadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11
Bardziej szczegółowoFunkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
Bardziej szczegółowoM10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
Bardziej szczegółowoFunkcja liniowa i prosta podsumowanie
Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik
Bardziej szczegółowoEGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA PRZYKŁADOWEGO ZESTAWU ZADAŃ PAŹDZIERNIK 2011 Zadania
Bardziej szczegółowoFUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Zadania funkcje cz.1
1 TEST WSTĘPNY 1. (1p) Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 jej największy dzielnik będący liczbą pierwszą. Spośród liczb f(42), f(44), f(45), f(48) A. f(42) B. f(44) C. f(45)
Bardziej szczegółowoScenariusz lekcji matematyki z wykorzystaniem komputera
Scenariusz lekcji matematki z wkorzstaniem komputera Temat: Wpłw współcznników a i b na położenie wkresu funkcji liniowej. (Rsowanie wkresów prz użciu arkusza kalkulacjnego EXCEL.) Czas zajęć: 9 min Cele:
Bardziej szczegółowoRównania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
Bardziej szczegółowomatematyka Matura próbna
Gazeta Edukacja Sprawdź, cz zdasz! Egzamin maturaln matematka MTEMTYK zas prac: minut Matura próbna Maturzsto! Po raz pierwsz napiszesz obowiązkową maturę z matematki na poziomie podstawowm Rozwiąż zadania
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Bardziej szczegółowoPOWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA
POWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA I. Wykresy funkcji 1. Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y=ax+b. Jakie znaki mają współczynniki a i b? A. a
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Bardziej szczegółowox a 1, podając założenia, przy jakich jest ono wykonywalne. x a 1 = x a 2 ( a 1) = x 1 = 1 x.
Zestaw. Funkcja potęgowa, wykładnicza i logarytmiczna. Elementarne równania i nierówności. Przykład 1. Wykonać działanie x a x a 1, podając założenia, przy jakich jest ono wykonywalne. Rozwiązanie. Niech
Bardziej szczegółowoKONSPEKT LEKCJI. NAUCZYCIEL: mgr inŝ. EWA JAROSZ SZKOŁA: GIMNAZJUM KLASA: 3 PRZEDMIOT: MATEMATYKA
NAUCZYCIEL: mgr inŝ. EWA JAROSZ SZKOŁA: GIMNAZJUM KLASA: 3 PRZEDMIOT: MATEMATYKA KONSPEKT LEKCJI TEMAT LEKCJI: Badanie własności funkcji liniowej za pomocą programu Graphmatica. CELE OPERACYJNE: Uczeń
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Bardziej szczegółowoFUNKCJE ELEMENTARNE I ICH WŁASNOŚCI
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można
Bardziej szczegółowoZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.
I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Bardziej szczegółowoa, b funkcji liniowej y ax + b
. FUNKCJA LINIOWA zadania Zad... Napisz wzór funkcji liniowej, której wkres przechodzi przez punkt A (, ) i przecina oś OY w punkcie B (0,). Zad... Dan jest wzór funkcji liniowej: A) B) C) D) Na podstawie
Bardziej szczegółowoUKŁADY RÓWNAŃ LINIOWYCH
Projekt dofinansowała Fundacja mbanku UKŁADY RÓWNAŃ LINIOWYCH CZĘŚĆ I Układ równań to przynajmniej dwa równania spięte z lewej strony klamrą, np.: x + 0 Każde z równań musi zawierać przynajmniej jedną
Bardziej szczegółowoFUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci
Bardziej szczegółowoZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY
ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY Zadanie Wskaż w zbiorze A = Zadanie Usuń niewymierność z wyrażenia,(0); 0,9; ; 0; 8; 0; 0 liczby wymierne 6 Zadanie Rozwiąż nierówność x + > Rozwiązanie
Bardziej szczegółowoZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:
Bardziej szczegółowoZakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność
Bardziej szczegółowoWykład Analiza jakościowa równań różniczkowych
Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie
Bardziej szczegółowoPRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba
Bardziej szczegółowoZajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Bardziej szczegółowoNa rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8].
Zadania 1 28 stanowią przykłady spełniające kryteria na ocenę 3. Zadanie 1 Na rysunku przedstawiony jest wykres funkcji f() określonej dla [-7, 8]. Odczytaj z wykresu i zapisz: a) największą wartość funkcji
Bardziej szczegółowoFunkcje wielu zmiennych
Funkcje wielu zmiennch Wkres i warstwice funkcji wielu zmiennch. Przeglad powierzchni stopnia drugiego. Granice i ciagłość funkcji wielu zmiennch. Małgorzata Wrwas Katedra Matematki Wdział Informatki Politechnika
Bardziej szczegółowo1 S t r o n a ZDASZ MATURĘ! Cz.1. Do każdego zadania dodano film z rozwiązaniem
1 S t r o n a ZDASZ MATURĘ! Cz.1 Do każdego zadania dodano film z rozwiązaniem S t r o n a Autor: ADAM CZYŻ E-book Zdasz maturę! w całości napisał, przygotował i dokonał poprawek: Adam Czyż prywatny korepetytor
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 17751 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Rozważm treść następujacego
Bardziej szczegółowoLiczby, działania i procenty. Potęgi I pierwiastki
Zakres materiału obowiązując do egzaminu poprawkowego z matematki klasa technikum str Dział programow Liczb, działania i procent Potęgi I pierwiastki Zbior i przedział liczbowe Wrażenia algebraiczne Równania
Bardziej szczegółowo12.Rozwiązywanie równań i nierówności liniowych oraz ich układów.
matematyka /.Rozwiązywanie równań i nierówności liniowych oraz ich układów. I. Przypomnij sobie:. Co to jest równanie /nierówność? Rodzaje nierówności. Ogólnie: Równaniem nazywamy dwa wyrażenia algebraiczne
Bardziej szczegółowoFUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str
FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci
Bardziej szczegółowoFUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c
FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie
Bardziej szczegółowoPendolinem z równaniami, nierównościami i układami
Pendolinem z równaniami, nierównościami i układami 1. Równaniem nazywamy równość dwóch wyrażeń algebraicznych. Równaniami z jedną niewiadomą są, np. równania: 2 x+3=5 x 2 =4 2x=4 9=17 x 3 2t +3=5t 7 Równaniami
Bardziej szczegółowoVIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Bardziej szczegółowoMATURA PRÓBNA 2 KLASA I LO
IMIE I NAZWISKO MATURA PRÓBNA KLASA I LO CZAS PRACY: 90 MIN. SUMA PUNKTÓW: 60 ZADANIE (5 PKT) Znajdź wszstkie funkcje liniowe określone na zbiorze ;, którch zbiorem wartości jest przedział ; 0. ZADANIE
Bardziej szczegółowoZad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4
Zad. 1 Liczba jest równa A B C D Zad. Liczba log16 jest równa A 3log + log8 B log4 + log3 C 3log4 log4 D log0 log4 Zad. 3 Rozwiązaniem równania jest liczba A B 18 C 1, D 6 Zad. 4 Większą z dwóch liczb
Bardziej szczegółowoProgramowanie nieliniowe optymalizacja funkcji wielu zmiennych
Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu
Bardziej szczegółowoKształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Bardziej szczegółowoFUNKCJE. Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Teoria funkcje cz.1. Definicja funkcji i wiadomości podstawowe
1 FUNKCJE Definicja funkcji i wiadomości podstawowe Jeżeli mamy dwa zbiory: zbiór X i zbiór Y, i jeżeli każdemu elementowi ze zbioru X przyporządkujemy dokładnie jeden element ze zbioru Y, to takie przyporządkowanie
Bardziej szczegółowoMatura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP
Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP I Zadania zamknięte (pkt) Zadanie Liczba - jest miejscem zerowym funkcji liniowej = x + B. f ( x) = x C. f ( x) = x + D. f
Bardziej szczegółowoFunkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:
Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie
Bardziej szczegółowoWartość bezwzględna. Funkcja wymierna.
Wartość bezwzględna. Funkcja wymierna. Kurs matematyki w oratorium autorami materiałów są: dr Barbara Wolnik i Witold Bołt 31 marca 2006 Spis treści 1 Wartość bezwzględna 2 1.1 Własności wartości bezwzględnej..................
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 5
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje
Bardziej szczegółowoLogarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
Bardziej szczegółowoPRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba
Bardziej szczegółowoFunkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.
Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w
Bardziej szczegółowoWymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Bardziej szczegółowoUkłady równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi
Układy równań Kinga Kolczyńska - Przybycień 22 marca 2014 1 Układ dwóch równań liniowych z dwiema niewiadomymi 1.1 Pojęcie układu i rozwiązania układu Układem dwóch równań liniowych z dwiema niewiadomymi
Bardziej szczegółowoFunkcja liniowa -zadania. Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz
Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz x argumenty funkcji y wartości funkcji a współczynnik kierunkowy prostej ( a = tg, gdzie osi OX) - kąt nachylenia wykresu funkcji
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Bardziej szczegółowo1.UKŁADY RÓWNAŃ LINIOWYCH
UKŁADY RÓWNAŃ 1.UKŁADY RÓWNAŃ LINIOWYCH Układ: a1x + b1y = c1 a x + by = c nazywamy układem równań liniowych. Rozwiązaniem układu jest kaŝda para liczb spełniająca kaŝde z równań. Przy rozwiązywaniu układów
Bardziej szczegółowoPrzygotowanie do poprawki klasa 1li
Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku
Bardziej szczegółowoPierwiastki kwadratowe z liczby zespolonej
Pierwiastki kwadratowe z liczb zespolonej Pierwiastkiem kwadratowm z liczb w C nazwam każdą liczbę zespoloną z C, dla której z = w. Zbiór wszstkich pierwiastków oznaczam smbolem w. Innmi słow w = {z C
Bardziej szczegółowoROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z
Bardziej szczegółowo12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej
1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm
Bardziej szczegółowoWymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
Bardziej szczegółowo[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.
rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Bardziej szczegółowoWykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Bardziej szczegółowoTeoria. a, jeśli a < 0.
Teoria Definicja 1 Wartością bezwzględną liczby a R nazywamy liczbę a określoną wzorem a, jeśli a 0, a = a, jeśli a < 0 Zgodnie z powyższym określeniem liczba a jest równa odległości liczby a od liczby
Bardziej szczegółowo3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu.
Zadanie: 1) Dana jest funkcja y=-+7.nie wykonując wykresu podaj a) miejsce zerowe b)czy funkcja jest rosnąca czy malejąca(uzasadnij) c)jaka jest rzędna punktu przecięcia wykresu z osią y. ) Wykres funkcji
Bardziej szczegółowoRozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony
Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY
Bardziej szczegółowoCałkowanie przez podstawianie i dwa zadania
Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,
Bardziej szczegółowodr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Bardziej szczegółowoPLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,
Bardziej szczegółowo