Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji)
|
|
- Martyna Sobolewska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wkład 1: Prosta regresja liniowa Statstczn model regresji liniowej Dane dla prostej regresji liniowej Przedział ufności i test parametrów Przedział ufności dla średniej odpowiedzi Interwał prognoz (dla przszłch obserwacji)
2 Przkład: Obserwujem 9 mężczzn w wieku od 0 do 9 lat. Mierzm grubość fałdu skórnego i gęstość ciała: ID Iskin Den
3 Wkres punktow z linią najmniejszch kwadratów:
4 Dane wjściowe SAS (będziem często użwać oprogramowania do obliczeń): The SAS Sstem 17:47 Thursda, Jul, The REG Procedure Model: MODEL1 Dependent Variable: Den Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t 99% Confidence Limits Intercept < Iskin <
5 Excel, dla tch samch danch:
6 SPSS, dla tch samch danch:
7 Przpomnienie Mieliśm zmienną objaśniającą (X) i zmienną odpowiedzi (Y). Zrobiliśm wkres punktowe, regresję najmniejszch kwadratów i korelację. Linia najmniejszch kwadratów to a + bx, gdzie a jest punktem przecięcia, a b jest nachleniem. Nie rozróżnialiśm jeszcze prób od populacji.
8 Stuacja dla prostej regresji liniowej Pomślim o linii regresji obliczonej z prób jako oszacowaniu linii regresji dla populacji. Tpe of line Least Squares Regression equation of line slope -intercept Ch. General ŷ a bx b a Ch. 10 Sample ˆ b0 b1x b 1 b 0 Ch. 10 Population 0 1x 1 0
9 Model statstczn dla prostej regresji liniowej: x i i i 0 1 Dane: n obserwacji w formie (x 1, 1 ), (x, ), (x n, n ). Przjmuje się, że odchlenia i są niezależne i normalne ze średnią 0 i odchleniem standardowm. Parametrami modelu są: 0, 1 oraz.
10 Dwie grup o tm samm SD i różnmi średnimi:
11 Regresja liniowa: wiele grup ze średnimi zależnmi liniowo od x
12 Rzeczwiste dane nie będą dokładnie pasować do linii regresji: DANE = DOPASOWANIE + RESZTA DOPASOWANIE to linia regresji (najmniejszch kwadratów) RESZTA ( szum ),, jest różnica międz danmi a tm, co przewiduje linia.
13 Wzor (nie zapamiętuj) Dane: Statstki pochodne: , 1 ) (, 1 ) (1 ) ˆ (, ˆ,, r n r SE b t n r s s x x s SE n n r s n s b b bx b a s s r b b b x i b i i i i x ) ( ) ( ) )( (, 1 ) (, 1 ) (,,, x x x x r n s n x x s x n i i i i i i x
14 Przedział ufności i test istotności dla nachlenia regresji i przechwtwania Przedział ufności na poziomie C dla przecięcia 0: * 0 b b t SE Przedział ufności na poziomie C dla nachlenia 1: * 1 b b t SE t * z tabeli t z n- stopniami swobod 0 1
15 Ćwiczenie: Oblicz przedział ufności dla średniego spadku gęstości ciała na jednostkę grubości fałd skór. Porównaj z wnikami obok.
16 Statstka: Testowanie hipotez dla H0: 1=0 t b 1 SE b1 To t-test z df = n. Gd 1 =0, to = 0, tj. średnia nie zmienia się z x. W przeciwnm razie mam "zależność liniową", tj. niezerowe nachlenie (populacjne). Oprogramowanie zapewni statstkę testu i dwustronną P-wartość. W większości przpadków tlko interpretujem wniki.
17 Test jednostronnej hipotez dla H0: 1=0 Statstka: t b 1 SE b1 df = n.
18 Ćwiczenie: Cz istnieje "liniowa zależność" międz gęstością ciała a grubością fałdu skórnego?
19 Przedział ufności dla średniej odpowiedzi, : * ˆ t SE ˆ To zależ od x. Specjalistczne oprogramowanie oblicza ten przedział. Na niektórch wkresach rozrzutu będą to pasma krzwoliniowe (wewnętrzne) wokół danch. Uwaga: Dane szacunkowe dla średniej mają mniejszą zmienność niż te dla indwidualnch obserwacji.
20 To zależ od x. Specjalistczne oprogramowanie poda ten przedział. Na niektórch wkresach rozrzutu będą to krzwoliniowe (zewnętrzne) pasma wokół danch. Uwaga: indwidualne obserwacje mają większą zmienność, więc ten przedział jest szersz niż poprzedni. Przedział predkcjne dla pojednczej obserwacji: * ˆ t SEˆ
21 PU dla średnich i dla indwidualnch obserwacji DEN (w funkcji Lskin)
22 Któr jest któr?
23 Wniki SAS: przedział ufności dla indwidualnch obserwacji i średnich (w zależności od x = lskin)
24 Średnia odpowiedź ma liniow związek z x. Ab sprawdzić, cz relacja jest w przbliżeniu liniowa, wkonuje się wkres rozproszenia lub wkres resztkow. Założenia dla regresji: Kolejne odpowiedzi są niezależne od siebie. Możem wkrć problem, odnosząc wartości rezdualne do numeru obserwacji (czasu). Dla każdej ustalonej wartości x odpowiedź zmienia się zgodnie z rozkładem normalnm. Ab sprawdzić założenie normalności, można wkonać normaln wkres kwantlow reszt.
25 Założenia dla regresji: cd. Odchlenie standardowe dla (σ) jest takie samo dla wszstkich wartości x. Wartość ta jest nieznana. Ab potwierdzić stałą zmienność, patrzm na wkres resztkow. Należ również sprawdzić odstające lub wpłwowe obserwacje przed użciem regresji (mogą one dramatcznie wpłnąć na wniki).
26 Reszta w funkcji nr obserwacji
27 Reszta w funkcji Lskin
28 (ładn) Normaln wkres kwantlow reszt
Badanie zależności cech
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i element kombinatorki. Zmienne losowe i ich rozkład 3. Populacje i prób danch, estmacja parametrów 4. Testowanie hipotez 5. Test parametrczne (na przkładzie
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K.
Motto Cz to nie zabawne, że ci sami ludzie, którz śmieją się z science fiction, słuchają prognoz pogod oraz ekonomistów? (K. Throop III) 1 Specfika szeregów czasowch Modele szeregów czasowch są alternatwą
PAKIETY STATYSTYCZNE
. Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa
Jednoczynnikowa analiza wariancji. Wnioskowanie dla jednoczynnikowej ANOV-y. Porównywanie poszczególnych średnich
(Wykład 13) Jednoczynnikowa analiza wariancji Wnioskowanie dla jednoczynnikowej ANOV-y Format danych Hipotezy i model ANOVA Tabela ANOVA i test F Porównywanie poszczególnych średnich Jednoczynnikowa ANOVA
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Zmienne losowe typu ciągłego. Parametry zmiennych losowych. Izolda Gorgol wyciąg z prezentacji (wykład III)
Zmienne losowe tpu ciągłego. Parametr zmiennch losowch. Izolda Gorgol wciąg z prezentacji (wkład III) Zmienna losowa tpu ciągłego Zmienna losowa X o ciągłej dstrbuancie F nazwa się zmienną losową tpu ciągłego,
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
Analiza zależności cech ilościowych regresja liniowa (Wykład 13)
Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y 2. Współczynnik korelacji Pearsona 3. Siła i kierunek związku między zmiennymi 4. Korelacja ma sens, tylko wtedy, gdy związek między zmiennymi
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Ekonometria dla IiE i MSEMat Z7
Ekonometria dla IiE i MSEMat Z7 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 21-11-2016 Na podstawie zbioru danych cps_small.dat z książki Principles of Econometrics oszacowany
Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
Wykład 9 Wnioskowanie o średnich
Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Stosowana Analiza Regresji
prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile
Przypomnienie: wykłady i zadania kursu były zaczerpnięte z podręczników: Model statystyczny Format danych
Wkład 13: (prota) regreja lnowa Model tattczn Format danch Przedzał ufnośc tet totnośc dla parametrów modelu Przpomnene: wkład zadana kuru bł zaczerpnęte z podręcznków: Stattka dla tudentów kerunków techncznch
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Regresja liniowa Korelacja Modelowanie Analiza modelu Wnioskowanie Korelacja 3 Korelacja R: charakteryzuje
Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Wykład 4 Związki i zależności
Wykład 4 Związki i zależności Rozważmy: Dane z dwiema lub więcej zmiennymi Zagadnienia do omówienia: Zmienne objaśniające i zmienne odpowiedzi Wykres punktowy Korelacja Prosta regresji Słownictwo: Zmienna
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 1-2
Stanisław Cichocki Natalia Nehreecka Zajęcia - . Model liniow Postać modelu liniowego Zapis macierzow modelu liniowego. Estmacja modelu Przkład Wartość teoretczna (dopasowana) Reszt 3. MNK - przpadek wielu
REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji
Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji
STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
MODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów.
Wkład Test zgodności. Test zgodności służą do werikacji hipotez mówiącch, że a dstrbuanta rozkładu populacji ma określoną z gór postać unkcjną b dstrbuant rozkładów dwóch populacji nie różnią się w sposób
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)
PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
S t a t y s t y k a, część 3. Michał Żmihorski
S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x
ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych
Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego
Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w
Przenoszenie niepewności
Przenoszenie niepewności Uwaga wstępna: pojęcia niepewność pomiarowa i błąd pomiarow są stosowane wmiennie. Załóżm, że wielkość jest funkcją wielkości,,, dla którch niepewności (,, ) są znane (wnikają
Testy dla dwóch prób w rodzinie rozkładów normalnych
Testy dla dwóch prób w rodzinie rozkładów normalnych dr Mariusz Grządziel Wykład 12; 18 maja 2009 Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego)
Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych
Wykład 12 (21.05.07): Testy dla dwóch prób w rodzinie rozkładów normalnych Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego) n 1 = 9 poletek w dąbrowie,
W statystyce stopień zależności między cechami można wyrazić wg następującej skali: n 1
Temat: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00 0,20) Słaba
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Prawdopodobieństwo i rozkład normalny cd.
# # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego
Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów regresji z wykorzystaniem metody bootstrap. Wrocław, 22.03.2017r Wybór najlepszej procedury - podsumowanie Co nas interesuje przed przeprowadzeniem
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Autor: Dariusz Piwczyński 1 Ćwiczenie. Analiza zmienności złożona. Testy wielokrotnych porównań
Autor: Dariusz Piwczyński 1 Ćwiczenie. Analiza zmienności złożona. Testy wielokrotnych porównań Analizę wariancji możemy wykonać w SAS za pomocą procedury ANOVA oraz GLM. ANOVA Analysis of variance (Analiza
WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno
WERYFIKACJA MODELI MODELE LINIOWE Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno ANALIZA KORELACJI LINIOWEJ to NIE JEST badanie związku przyczynowo-skutkowego, Badanie współwystępowania cech (czy istnieje
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Ekonometria egzamin 07/03/2018
imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichoci Natalia Nehrebeca Wyład 10 1 1. Testowanie hipotez prostych Rozład estymatora b Testowanie hipotez prostych przy użyciu statystyi t Przedziały ufności Badamy czy hipotezy teoretyczne
ANALIZA REGRESJI SPSS
NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek
Badanie normalności rozkładu
Temat: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby liczebność
Ćwiczenia 10. Analiza regresji. Część I.
Ćwiczenia 10. Analiza regresji. Część I. Zadania obowiązkowe UWAGA! Elementy zadań oznaczone kolorem czerwonym należy przygotować lub wypełnić. Zadanie 10.1. (R/STATISTICA) Twoim zadaniem jest możliwie
Metody prognozowania: Jakość prognoz Wprowadzenie (1) 6. Oszacowanie przypuszczalnej trafności prognozy
Metod prognozowania: Jakość prognoz Dr inż. Sebastian Skoczpiec ver. 03.2012 Wprowadzenie (1) 1. Sformułowanie zadania prognostcznego: 2. Określenie przesłanek prognostcznch: 3. Zebranie danch 4. Określenie
Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015
Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ, σ 2 X ),
Testowanie hipotez statystycznych
round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
dr hab. Dariusz Piwczyński, prof. nadzw. UTP
dr hab., prof. nadzw. UTP HASŁA Z DOMU I MEDIÓW Ucz się a wyrosną z Ciebie ludzie Pij mleko będziesz wielki Każdy wypalony papieros skraca Twoje życie o 5 minut 2 WZROST I STOPY 3 GRAFICZNA OCENA ZALEŻNOŚCI
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Stanisza r xy = 0 zmienne nie są skorelowane 0 < r xy 0,1
Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25
Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Autor: Dariusz Piwczyński 1 Ćwiczenie: Doświadczenia 2-grupowe w układzie niezależnym i zależnym.
Autor: Dariusz Piwczyński 1 Ćwiczenie: Doświadczenia 2-grupowe w układzie niezależnym i zależnym. Zadania: Arkusz kalkulacyjny Excel Do weryfikacji różnic między dwiema grupami obiektów w Excelu wykorzystujemy
WYKŁAD 8 ANALIZA REGRESJI
WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej
Wykład 8: Testy istotności
Wykład 8: Testy istotności Hipotezy Statystyki testowe P-wartości Istotność statystyczna Test dla średniej w populacji Dwustronny test a przedział ufności Używanie i nadużywanie testów Testy istotności
Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu
Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13
Elementarna statystyka Wnioskowanie o regresji (Inference for regression) Alexander Bendikov Uniwersytet Wrocªawski 2 czerwca 2016 Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for
Scenariusz lekcji matematyki z wykorzystaniem komputera
Scenariusz lekcji matematki z wkorzstaniem komputera Temat: Wpłw współcznników a i b na położenie wkresu funkcji liniowej. (Rsowanie wkresów prz użciu arkusza kalkulacjnego EXCEL.) Czas zajęć: 9 min Cele:
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichocki Natalia Nehrebecka Wykład 10 1 1. Testy diagnostyczne Testowanie prawidłowości formy funkcyjnej: test RESET Testowanie normalności składników losowych: test Jarque-Berra Testowanie stabilności
Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota
Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych
Prognozowanie na podstawie modelu ekonometrycznego
Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Konrad Miziński, nr albumu 233703 31 maja 2015 Zadanie 1 Wartości oczekiwane µ 1 i µ 2 oszacowano wg wzorów: { µ1 = 0.43925 µ = X
BADANIE ZALEśNOŚCI CECHY Y OD CECHY X - ANALIZA REGRESJI PROSTEJ
WYKŁAD 3 BADANIE ZALEśNOŚCI CECHY Y OD CECHY X - ANALIZA REGRESJI PROSTEJ Było: Przykład. Z dziesięciu poletek doświadczalnych zerano plony ulw ziemniaczanych (cecha X) i oznaczono w nich procentową zawartość
PODSTAWY STATYSTYKI SEMINARIUM 3 ! UWAGA! SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE
STUDIUM DOKTORANCKIE KATOWICE, 2011/12 PODSTAWY STATYSTYKI SEMINARIUM 3! UWAGA! SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE Jan E. Zejda Katedra Epidemiologii WLK, SUM TREŚĆ SEMINARIUM
PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
Założenia do analizy wariancji. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW
Założenia do analizy wariancji dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Zagadnienia 1. Normalność rozkładu cechy Testy: chi-kwadrat zgodności, Shapiro-Wilka, Kołmogorowa-Smirnowa
Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym
Wykład 3 Testowanie hipotez statystycznych o wartości średniej i wariancji z populacji o rozkładzie normalnym Wrocław, 08.03.2017r Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną
STATYSTYKA MATEMATYCZNA WYKŁAD października 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
Ćwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym. Wrocław, r
Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym Wrocław, 18.03.2016r Testowanie hipotez dla średniej w rozkładzie normalnym dla jednej próby Model 1 Testowanie hipotez dla
X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9
Zadanie W celu sprawdzenia, czy pipeta jest obarczona błędem systematycznym stałym lub zmiennym wykonano szereg pomiarów przy różnych ustawieniach pipety. Wyznacz równanie regresji liniowej, które pozwoli
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
INFORMATYKA W SELEKCJI
INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne
Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb
Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę
zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka MODELE
zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka Przebieg regresji liniowej: 1. Znaleźć funkcję y=f(x) (dopasowanie modelu) 2. Sprawdzić: a) Wsp. determinacji R 2 b) Test istotności
STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 5 2 listopada 2009 Poprzedni wykład: przedział ufności dla µ, σ nieznane Rozkład N(µ, σ). Wnioskowanie o średniej µ, gdy σ nie jest znane Testowanie H : µ = µ 0, K : µ
Elementy statystyki STA - Wykład 5
STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne