Systemy Mobilne i Bezprzewodowe laboratorium 3

Wielkość: px
Rozpocząć pokaz od strony:

Download "Systemy Mobilne i Bezprzewodowe laboratorium 3"

Transkrypt

1 Systemy Mobile i Bezprzewodowe laboratorium 3

2 Pla laboratorium Modele masowej obsługi (SMO), Charakterystyki modeli masowej obsługi, Systemy kolejkowe: z pojedyczym kaałem obsługi: M/M/1, M/G/1, M/D/1, z wielokrotym kaałem obsługi: M/M/s, Model matematyczy fukcjoowaia SMO. a podstawie : D. P. Agrawal, Q.-A. Zeg, Itroductio to Wireless ad Mobile Systems, 2e, Thomso, 26 Jędrzejczyk Z., Kukuła K., Skrzypek J., Walkosz A., Badaia operacyje w przykładach i zadaiach, PWN, Warszawa, 27

3 Modele masowej obsługi Potrzeba masowej obsługi zrodziła się w okresie II wojy światowej. Jako pierwszy rozważay był problem, gdy stosukowo duża liczba samolotów bombowych, po wykoaiu zadaia bojowego, musiała wylądować w możliwie krótkim czasie a ograiczoej, zwykle małej liczbie lądowisk. Teoria masowej obsługi, zwaa także teorią kolejek, zajmuje się budową modeli matematyczych, które moża wykorzystać w racjoalym zarządzaiu dowolymi systemami działaia, zwaymi systemami masowej obsługi (SMO). Przykładami takich systemów są: sklepy, porty loticze, podsystem użytkowaia samochodów przedsiębiorstwa trasportowe, podsystem obsługiwaia obrabiarek itp. Rozróżiamy jedokaałowe systemy obsługi wielokaałowe systemy obsługi

4 Modele masowej obsługi c.d. W systemie masowej obsługi mamy do czyieia z: apływającymi w miarę upływu czasu zgłoszeiami (p. uszkodzoy pojazd, kliet, statek, proces, kliet/aboet w sieci), kolejką obiektów oczekujących a obsługę, staowiskami obsługi (p. staowiska diagozowaia pojazdu, sprzedawca, staowisko wyładuku, procesor, serwer/stacja bazowa/mobila sieci). Rozróżia się systemy masowej obsługi: z oczekiwaiem bez oczekiwaia W SMO z oczekiwaiem zgłoszeie (obiekt zgłoszeia) oczekuje w kolejce a obsługę, zaś w systemie bez oczekiwaia, wszystkie staowiska obsługi są zajęte i obiekt zgłoszeia wychodzi z systemu ie obsłużoy.

5 ... Kolejka Sta. Obsł. Przybycie zadaia / zadań do systemu Kolejka Kolejka Kolejka Kolejka Sta. Obsł. Sta. Obsł. Sta. Obsł. Sta. Obsł. Sta. Obsł. Sta. Obsł.

6 Charakterystyki procet czasu zajętości wszystkich staowisk obsługi prawdopodobieństwo, że system ie jest pusty średia liczba klietów czekających średia liczba klietów czekających i obsługiwaych średi czas czekaia średi czas czekaia i obsługi prawdopodobieństwo, że przybywający kliet czeka prawdopodobieństwo, że klietów jest w systemie

7 Proces wejściowy Pojęcia związae z procesem wejściowym: itesywość strumieia wejściowego (itesywość przybywaia), liczba klietów-tred, czas czekaia a klieta. Rozkład przybycia zadań w jedostce czasu T (w przedziale [, t)), p. Poissoa: P( T t) gdzie: - itesywość przybywaia 1/ - średi czas przybywaia ( t)! e -t,,1,2,...

8 Pojęcia związae z procesem obsługi: Proces obsługi czas obsługi (bez czasu czekaia w kolejce), Rozkład czasu obsługi w jedostce czasu T (w przedziale [t 1, t 2 ]), p. wykładiczy: gdzie: x t1 t2 P( t T t ) m -m -m -m e dx e - e 1 m - itesywość obsługi 1/m - średi czas obsługi 2 t t 2 1, t 1 t 2

9 Przykład 1: Rozważmy orgaizację obsługi kasowej w sklepie samoobsługowym. W momecie podejścia klieta do kasy może zaistieć sytuacja: Przed kasą ie ma kolejki, kliet jest obsłużoy atychmiast Przed kasą stoi kolejka, kliet ustawia się a jej końcu i oczekuje a obsługę. Istote jest ustaleie czy kolejka pozostaje ie zmieioa, kurczy się, czy wydłuża. W iteresie właściciela sklepu jest ieprzerwaa praca kasjera, a w przypadku licziejszej obsady kasowej, możliwie pełe jej wykorzystaie. Należy skalkulować opłacalość uruchomieia owego staowiska, które usprawi obsługę klietów.

10 Notacja Kedalla System kolejkowy opisay jest 3 lub 4 parametrami: 1/ 2 / 3 / 4 czas przybycia / czas obsługi / liczba staowisk / liczba miejsc w systemie Parametr 1 rozkład apływu M = Markowa (rozkład Poissoa) czas przybycia D = Determiistyczy czas przybycia Parametr 2 rozkład czasu obsługi M = Markowa (wykładiczy) czas obsługi G = Dowoly rozkład czasu obsługi D = Determiistyczy czas obsługi (jedopuktowy) Parametr 3 Liczba staowisk obsługi Parametr 4 liczba miejsc w systemie (łączie staowiska obsługi+ kolejka) Jeśli jest ieskończoa jest pomijaa w zapisie

11 System M/M/s r staowisk obsługi, strumień wejściowy, rozkład Poissoa z parametrem, obsługa wykładicza z parametrem m, dyscyplia obsługi FIFO, pojedycza kolejka, < r *m.

12 System M/G/1 Model : Strumień wejściowy Poisso z parametrem l. Czas obsługi o dowolym rozkładzie, średiej m i odchyleiu stadardowym s. Jedo staowisko obsługi. Czas obsługi ie musi mieć rozkładu wykładiczego. p.: Naprawa telewizora Badaie wzroku Usługa fryzjerska Usługa sieciowa (p. połączeie telefoicze)

13 System M/D/1 Czas obsługi może być ustaloy, p.. Taśma produkcyja. Myjia automatycza. Czas obsługi determiistyczy Aby uzyskać system M/D/1 w systemie M/G/1 trzeba przyjąć odchyleie stadardowe rówe (s= ).

14 Schemat systemu masowej obsługi (SMO) wej wyj 1 zgłoszeia (obiekty zgłoszeia), 2 kolejka obiektów, 3 staowiska obsługi, 4 przemieszczeia obiektów w systemie bez oczekiwaia, 5 przemieszczeia obiektów w systemie z priorytetem obsługi, 6 przemieszczeia obiektu w systemie z oczekiwaiem, wej strumień wejściowy zgłoszeń, wyj strumień wyjściowy obsłużoych obiektów.

15 Rodzaje dyscypli obsługi W zależości od dyscypliy obsługi SMO moża podzielić astępująco: FIFO (first i first out), czyli kolejość obsługi według przybycia; SIRO (selectio i radom order) czyli kolejość obsługi losowa; LIFO (last i first out), czyli ostatie zgłoszeie jest ajpierw obsłużoe; priorytet dla iektórych wariatów obsługi (5 a poprzedim slajdzie), p. bezwzględy priorytet obsługi ozacza, że zostaje przerwae aktualie wykoywaa obsługa obiektu, a a jego miejsce wchodzi obiekt z priorytetem.

16 Model matematyczy fukcjoowaia SMO Model matematyczy fukcjoowaia SMO opiera się a teorii procesów stochastyczych. W modelu tym występują zmiee losowe: czas upływający między wejściem do systemu dwóch kolejych zgłoszeń; czas obsługi jedego zgłoszeia przez staowisko obsługi; liczba staowisk; liczebość miejsc w kolejce zgłoszeń oczekujących a obsługę.

17 Założeia modelu określają typ rozkładu prawdopodobieństwa zmieych losowych (rozkład determiistyczy rówe odstępy czasu), rozkład wykładiczy, rozkład Erlaga, dowoly rozkład; zależość lub iezależość zmieych losowych czasu czekaia a zgłoszeie i czasu obsługi; skończoa lub ieskończoa wartość liczby staowisk obsługi, długości poczekali; obowiązującą w systemie dyscyplię obsługi.

18 Kaał obsługi: stopa przybycia - przecięta liczba klietów przypadająca a jedostkę czasu, ma rozkład Poissoa, stopa obsługi m - przecięta liczba klietów obsłużoych w jedostce czasu, ma rozkład wykładiczy, liczba rówoległych kaałów obsługi r, parametr itesywości ruchu - stosuek liczby klietów przybywających do liczby klietów obsłużoych w jedostce czasu.

19 Założeia w teoretyczym modelu: rozpatrywae są tylko sytuacje w których klieci obsługiwai są według kolejości przybywaia do puktu świadczącego usługę, zatem wszyscy klieci są traktowai a rówi.

20 Rozpatruje się dwa przypadki: Gdy < rm układ zmierza do stau rówowagi (jeżeli obie wartości stałe) to prawdopodobieństwo tego, iż kolejka ma określoą długość, jest stałe w każdej jedostce czasu. Gdy rm układ jest iestabily, a prawdopodobieństwo długiej kolejki rośie (układ ie może adrobić czasu w którym był chwilowo iewykorzystay).

21 Rozwiązaie problemu kolejki Rozwiązaie astępuje po ustaleiu podstawowych parametrów (, m,, r). Rozwiązaie sprowadza się do wskazaia ajlepszego w daych warukach układu czyików kotrolowaych przez kierowictwo kotrolowaej jedostki. Chodzi tu przede wszystkim o zaleceie usprawieia pracy samego staowiska obsługi a drodze zwiększeia wydajości lub postulat zwiększeia liczby staowisk.

22 System z pojedyczym kaałem obsługi

23 Własości: przecięta stopa przybycia : Przecięta stopa obsługi m: m parametr itesywości ruchu : liczba _ kiletow czas _ przyjscia liczba_ kiletow czas_ obslugi Gdy < m ( < 1) układ zmierza do stau rówowagi (jeżeli obie wartości stałe) to prawdopodobieństwo tego, iż kolejka ma określoą długość, jest stałe w każdej jedostce czasu. Gdy m ( 1)układ jest iestabily, a prawdopodobieństwo długiej kolejki rośie (układ ie może adrobić czasu w którym był chwilowo iewykorzystay). m

24 Przykład 2: Na poczcie obok iych staowisk jedo jest przezaczoe do obsługi wpłat i wypłat gotówkowych osób fizyczych. Ruch w godziach jest tak duży, że rozważa się możliwość uruchomieia dodatkowego staowiska obsługi. Sprawdzić, czy jest to słusza decyzja. Poiżej podao obserwacje poczyioe w czasie jedej z godzi szczytowych.

25 Przykład 2 c.d.: Numer klieta Czas przyjścia liczoy od przybycia poprzedie go klieta (w mi) Czas obsługi klieta (w mi) Numer klieta Czas przyjścia liczoy od przybycia poprzedie go klieta (w mi) Czas obsługi klieta (w mi) 1 1, ,5 2,5 2,5 12 1,5 4, , , , ,5 1,5 7,5, ,5 18 3, , , ,5 3 Razem 4 6

26 Rozwiązaie: stopa przybycia 2 4,5 stopa obsługi m parametr itesywości ruchu m ,5 Zatem zachodzi ierówość m, czyli stopa przybyć przewyższa stopę obsługi. Wartość parametru 1 sugeruje, że mamy do czyieia z układem iestabilym, a prawdopodobieństwo długiej kolejki się zwiększa. Osiągięcie stau rówowagi jest tylko możliwe dzięki podjęciu radykalych działań: skróceiu czasu obsługi klieta zaistalowaiu dodatkowego staowiska obsługi.

27 System z wielokrotym kaałem obsługi uogólieie przypadku z pojedyczym kaałem obsługi

28 Własości: przecięta stopa przybycia : Przecięta stopa obsługi m: m parametr itesywości ruchu : liczba _ kiletow czas _ przyjscia liczba_ kiletow czas_ obslugi Gdy < mr ( < 1) układ zmierza do stau rówowagi (jeżeli obie wartości stałe) to prawdopodobieństwo tego, iż kolejka ma określoą długość, jest stałe w każdej jedostce czasu. Gdy mr ( 1)układ jest iestabily, a prawdopodobieństwo długiej kolejki rośie (układ ie może adrobić czasu w którym był chwilowo iewykorzystay). mr

29 Prawdopodobieństwo, że w systemie jest brak klietów, czyli = obliczamy ze wzoru: P ( ) r - 1 i i i! 1 r r- r- 1!

30 Przecięta (średia) liczba klietów oczekujących w kolejce to: Q r1 P 2 r - r -1!

31 Przecięty (średi) czas oczekiwaia klietów a wykoaie usługi: W r 1 2 Q P rm( r!) -

32 Prawdopodobieństwo, że w kolejce oczekuje klietów określa wzór: - r dla r P r r dla P P r!!

33 Prawdopodobieństwo, że w kolejce oczekuje więcej iż klietów (pod warukiem gdy ) określa wzór! 1 r r P r P r r

34 Prawdopodobieństwo, tego że czas oczekiwaia w kolejce jest dłuższy iż t określa wzór: t t P r - e -mt r- P 1

35 Przykład 3: W pewej komórce sieci telefoii komórkowej dostępe są dwie częstotliwości a których moża zrealizować połączeie. Przecięty czas zgłoszeia aboeta wyosi 3,8 a godz., a stopa obsługi (realizacja rozmów) wyosi 2 rozmowy a godz. Czy system obsługi zmierza do stau rówowagi?

36 Rozwiązaie: układ zmierza do stau rówowagi, gdy: < rm m 3,8 2 r 2 mr 3,8 2 2,95 sta rówowagi systemu jest zachoway, bo 3,8 4

37 Ile wyosi prawdopodobieństwo, że ie będzie kolejki? P ( ) r - 1 i i i! 1 r r - r -1! P( ) 1,95 Prawdopodobieństwo, że ie będzie kolejki do realizacji połączeia wyosi,36 (36% szas). 1,95 1,51 2,36

38 Ile wyosi prawdopodobieństwo, że kliet będzie musiał oczekiwać? Prawdopodobieństwo, że kliet będzie musiał oczekiwać a realizację rozmowy wyosi,64 (64% szas).,64 2!,95 2,36, P! 1 r r P r P r - -

39 Ile wyosi prawdopodobieństwo, że w kolejce zajdują się więcej iż dwie osoby? Prawdopodobieństwo, że w kolejce zajdują się więcej iż dwie osoby wyosi,15 (15% szas).,15 2!,95 2,36, P! 1 r r P r P r - -

40 Ile wyosi prawdopodobieństwo, że kliet będzie musiał oczekiwać w kolejce dłużej iż,5 godz.? -m t r- t t P r -1 e P P ,95,36 2 -,95 2!,3-2,52-,95,5,3e P t,3,35,11 Prawdopodobieństwo, że kliet będzie musiał oczekiwać w kolejce dłużej iż,5 godz. wyosi,11 (11% szas).

41 Ile przeciętie klietów oczekuje w kolejce a realizację połączeia? Q r1 P 2 r - r -1! Q,95 21, ,95 2-1!,28 Przeciętie w kolejce oczekuje,28 klieta.

42 Jaki jest przecięty czas oczekiwaia klietów a wykoaie usługi? W Q,28 W,74godz. 3,8,74*6 mi. 4,44mi. Przeciętie w kolejce oczekuje się 4,44 miuty.

43 Jak wygląda sytuacja z puktu widzeia zarządcy sieci? Sytuacja z puktu widzeia zarządcy sieci jest komfortowa. Wprawdzie prawdopodobieństwo bezkolejkowej realizacji połączeia ie jest duże, bo wyoszące,36. Ale małe jest prawdopodobieństwo oczekiwaia w kolejce więcej iż dwóch aboetów, bo wyoszące,15. Bardzo małe jest prawdopodobieństwo, że aboet będzie czekał dłużej iż pół godziy, bo wyosi,11. Z aalizy wyika, że przeciętie w kolejce przez 4,44 miuty oczekuje,28 klieta.

Sieci Mobilne i Bezprzewodowe laboratorium 3

Sieci Mobilne i Bezprzewodowe laboratorium 3 Sieci Mobile i Bezprzewodowe laboratorium 3 Pla laboratorium Modele masowej obsługi (SMO), Charakterystyki modeli masowej obsługi, Systemy kolejkowe: z pojedyczym kaałem obsługi: M/M/1, M/G/1, M/D/1, z

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 9 Systemy kolejkowe Spis treści Wstęp Systemy masowej obsługi (SMO) Notacja Kendalla Schemat systemu masowej obsługi Przykład systemu M/M/1 Założenia modelu matematycznego

Bardziej szczegółowo

Literatura TEORIA MASOWEJ OBSŁUGI TEORIA KOLEJEK. Teoria masowej obsługi. Geneza. Teoria masowej obsługi

Literatura TEORIA MASOWEJ OBSŁUGI TEORIA KOLEJEK. Teoria masowej obsługi. Geneza. Teoria masowej obsługi TEORIA MASOWEJ OBSŁUGI TEORIA KOLEJEK Wykład 1 Dr inż. Anna Kwasiborska Literatura B. von der Veen: Wstęp do teorii badań operacyjnych. PWN, Warszawa 1970. Gniedenko B. W., Kowalenko I. N.: Wstęp do teorii

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykªad 9 Systemy kolejkowe

Elementy Modelowania Matematycznego Wykªad 9 Systemy kolejkowe Elementy Modelowania Matematycznego Wykªad 9 Systemy kolejkowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis tre±ci 1 2 3 Spis tre±ci 1 2 3 Spis tre±ci 1 2 3 Teoria masowej obsªugi,

Bardziej szczegółowo

SMO. Procesy stochastyczne WYKŁAD 6

SMO. Procesy stochastyczne WYKŁAD 6 Procesy stochastycze WYKŁAD 6 SMO Systemy masowe obsługi (zastosowaie procesu urodzeń i śmierci) - przyłady: - cetrala telefoicza, - staca bezyowa, - asa biletowa, - system omputerowy. Założeia: - liczba

Bardziej szczegółowo

Literatura TEORIA MASOWEJ OBSŁUGI TEORIA KOLEJEK. Teoria masowej obsługi. Geneza. Teoria masowej obsługi

Literatura TEORIA MASOWEJ OBSŁUGI TEORIA KOLEJEK. Teoria masowej obsługi. Geneza. Teoria masowej obsługi TEORIA MASOWEJ OBSŁUGI TEORIA KOLEJEK Wykład 1 Dr inż. Anna Kwasiborska Literatura B. von der Veen: Wstęp do teorii badań operacyjnych. PWN, Warszawa 1970. Gniedenko B. W., Kowalenko I. N.: Wstęp do teorii

Bardziej szczegółowo

Literatura TEORIA MASOWEJ OBSŁUGI TEORIA KOLEJEK. Geneza. Teoria masowej obsługi. Cele masowej obsługi. Teoria masowej obsługi

Literatura TEORIA MASOWEJ OBSŁUGI TEORIA KOLEJEK. Geneza. Teoria masowej obsługi. Cele masowej obsługi. Teoria masowej obsługi Literatura TEORIA MASOWEJ OBSŁUGI TEORIA KOLEJEK B. von der Veen: Wstęp do teorii badań operacyjnych. PWN, Warszawa 1970. Gniedenko B. W., Kowalenko I. N.: Wstęp do teorii obsługi masowej. PWN, Warszawa

Bardziej szczegółowo

, dla n = 1, 2, 3, 4 : 2

, dla n = 1, 2, 3, 4 : 2 Ćwiczeia VI Uwagi do zadań -5 : W każdym z zadań proszę : A. arysować graf przejść i macierz itesywości B. podać graiczą itesywość zgłoszeń λ gr dla której system jest już iestabily C. obliczyć prawdopodobieństwa

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Modele procesów masowej obsługi

Modele procesów masowej obsługi Modele procesów masowej obsługi Musiał Kamil Motek Jakub Osowski Michał Inżynieria Bezpieczeństwa Rok II Wstęp Teoria masowej obsługi to samodzielna dyscyplina, której celem jest dostarczenie możliwie

Bardziej szczegółowo

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie

Bardziej szczegółowo

4. MODELE ZALEŻNE OD ZDARZEŃ

4. MODELE ZALEŻNE OD ZDARZEŃ 4. MODELE ZALEŻNE OD ZDARZEŃ 4.. Wrowadzeie W sysemach zależych od zdarzeń wyzwalaie określoego zachowaia się układu jes iicjowae rzez dyskree zdarzeia. Modelowaie akich syuacji ma a celu symulacyją aalizę

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

ZADANIA NA ĆWICZENIA 3 I 4

ZADANIA NA ĆWICZENIA 3 I 4 Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

Ćwiczenia IV i V. 1 Rozwiązanie: Π. średnia liczba obsługiwanych klientów: 6.67 w ciągu godziny = Π1

Ćwiczenia IV i V. 1 Rozwiązanie: Π. średnia liczba obsługiwanych klientów: 6.67 w ciągu godziny = Π1 Ćwiczeia IV i V We wszystkich poiższych zadaiach ależy przyjąć, że zgłoszeia (lub ich odpowiediki) przychodzą zgodie z rozkładem Poissoa, a czasy obsługi podlegają rozkładowi wykładiczemu. Zadaia r i pochodzą

Bardziej szczegółowo

oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:

oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że: Zadaie. Niech zmiee losowe: X t,k = μ + α k + β t + ε t,k, k =,2,, K oraz t =,2,, T, ozaczają łącze wartości szkód odpowiedio dla k-tego kotraktu w t-tym roku. O składikach aszych zmieych zakładamy, że:

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA TATYTYKA MATEMATYCZNA ROZKŁADY PODTAWOWYCH TATYTYK zmiea losowa odpowiedik badaej cechy, (,,..., ) próba losowa (zmiea losowa wymiarowa, i iezależe zmiee losowe o takim samym rozkładzie jak (taką próbę

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

dr Adam Sojda Wykład Politechnika Śląska Badania Operacyjne Teoria kolejek

dr Adam Sojda Wykład Politechnika Śląska Badania Operacyjne Teoria kolejek dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Teoria kolejek Teoria kolejek zajmuje się badaniem systemów związanych z powstawaniem kolejek. Systemy kolejkowe W systemach, którymi zajmuje

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

2.1. Studium przypadku 1

2.1. Studium przypadku 1 Uogóliaie wyików Filip Chybalski.. Studium przypadku Opis problemu Przedsiębiorstwo ŚRUBEX zajmuje się produkcją wyrobów metalowych i w jego szerokim asortymecie domiują różego rodzaju śrubki i wkręty.

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są

Bardziej szczegółowo

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7, Matematyka ubezpieczeń majątkowych.0.008 r. Zadaie. r, Zmiea losowa N ma rozkład ujemy dwumiaowy z parametrami (, q), tz.: Pr( N k) (.5 + k) (.5) k! Γ Γ * Niech k ozacza taką liczbę aturalą, że: * k if{

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

2. INNE ROZKŁADY DYSKRETNE

2. INNE ROZKŁADY DYSKRETNE Ie rozkłady dyskrete 9. INNE ROZKŁADY DYSKRETNE.. Rozkład dwumiaowy - kotyuacja Przypomijmy sobie pojęcie rozkładu dwumiaowego prawdopodobieństwa k sukcesów w próbach Beroulli ego: P k k k k = p q m =

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

Zeszyty naukowe nr 9

Zeszyty naukowe nr 9 Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę

Bardziej szczegółowo

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów

Bardziej szczegółowo

ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE

ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 8. ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE 1 Zbieżość ciągu zmieych losowych z prawdopodobieństwem 1 (prawie apewo) Ciąg zmieych losowych (X ) jest

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

Podstawy Informatyki Elementy teorii masowej obsługi

Podstawy Informatyki Elementy teorii masowej obsługi Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Wprowadzenie Źródło, kolejka, stanowisko obsługi Notacja Kendalla 2 Analiza systemu M/M/1 Wyznaczenie P n (t) Wybrane

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1). TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym) Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli

Bardziej szczegółowo

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o 1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady

Bardziej szczegółowo

Statystyczny opis danych - parametry

Statystyczny opis danych - parametry Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,

Bardziej szczegółowo

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy. MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wykład wstępy. Teoria prawdopodobieństwa i elemety kombiatoryki 3. Zmiee losowe 4. Populacje i próby daych 5. Testowaie hipotez i estymacja parametrów 6. Test t 7. Test 8. Test

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą

Bardziej szczegółowo

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I) Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod

Bardziej szczegółowo

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności) IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym

Bardziej szczegółowo

Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej

Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej Opracowaie daych pomiarowych dla studetów realizujących program Pracowi Fizyczej Pomiar Działaie mające a celu wyzaczeie wielkości mierzoej.. Do pomiarów stosuje się przyrządy pomiarowe proste lub złożoe.

Bardziej szczegółowo

Teoria Kolejek. dr inż. Piotr Gajowniczek. Instutut Telekomunikacji Politechnika Warszawska

Teoria Kolejek. dr inż. Piotr Gajowniczek. Instutut Telekomunikacji Politechnika Warszawska Teoria Kolejek dr iż. Piotr Gajowiczek Istutut Telekomuikacji Politechika Warszawska WPROWADZENIE Wprowadzeie Systemy masowej obsługi obsługa dużej ilości klietów przez system o ograiczoych zasobach Modele

Bardziej szczegółowo

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą

Bardziej szczegółowo

Histogram: Dystrybuanta:

Histogram: Dystrybuanta: Zadaie. Szereg rozdzielczy (przyjmujemy przedziały klasowe o długości 0): x0 xi i środek i*środek i_sk częstości częstości skumulowae 5 5 8 0 60 8 0,6 0,6 5 5 9 0 70 7 0,8 0, 5 5 5 0 600 0, 0,6 5 55 8

Bardziej szczegółowo

14. RACHUNEK BŁĘDÓW *

14. RACHUNEK BŁĘDÓW * 4. RACHUNEK BŁĘDÓW * Błędy, które pojawiają się w czasie doświadczeia mogą mieć włase źródła. Są imi błędy związae z błędą kalibracją torów pomiarowych, szumy, czas reagowaia przyrządu, ograiczeia kostrukcyje,

Bardziej szczegółowo

Ekonomia matematyczna 2-2

Ekonomia matematyczna 2-2 Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów

Bardziej szczegółowo

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ MECHANICZNY Katedra Budowy i Eksploatacji Maszy Istrukcja do zajęć laboratoryjych z przedmiotu: EKSPLOATACJA MASZYN Wpływ waruków eksploatacji pojazdu a charakterystyki

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

Urządzenia wej.-wyj. Plan (1) Plan (2) Właściwości urządzeń wejścia-wyjścia (2) Właściwości urządzeń wejścia-wyjścia (1)

Urządzenia wej.-wyj. Plan (1) Plan (2) Właściwości urządzeń wejścia-wyjścia (2) Właściwości urządzeń wejścia-wyjścia (1) Pla () Urządzeia wej.-wyj.. Rodzaje ń wejścia-wyjścia 2. Struktura mechaizmu wejścia-wyjścia a) sterowik ia b) moduł sterujący c) podsystem wejścia-wyjścia 3. Miejsce ń wejścia-wyjścia w architekturze

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017 STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1 1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych

Bardziej szczegółowo

Zestaw II Odpowiedź: Przeciętna masa ciała w grupie przebadanych szczurów wynosi 186,2 g.

Zestaw II Odpowiedź: Przeciętna masa ciała w grupie przebadanych szczurów wynosi 186,2 g. Zadaia przykładowe z rozwiązaiami Zadaie Dokoao pomiaru masy ciała 8 szczurów laboratoryjych. Uzyskao astępujące wyiki w gramach: 70, 80, 60, 90, 0, 00, 85, 95. Wyzaczyć przeciętą masę ciała wśród zbadaych

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII AKADEMIA MORSKA W SZCZECINIE Cetrum Iżyierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczeie 5 Aaliza statystycza wyików pomiarów pozycji GNSS Szczeci, 010 Zespół wykoawczy: Dr iż. Paweł Zalewski Mgr

Bardziej szczegółowo

Statystyka w rozumieniu tego wykładu to zbiór metod służących pozyskiwaniu, prezentacji, analizie danych.

Statystyka w rozumieniu tego wykładu to zbiór metod służących pozyskiwaniu, prezentacji, analizie danych. Statystyka w rozumieiu tego wykładu to zbiór metod służących pozyskiwaiu, prezetacji, aalizie daych. Celem geeralym stosowaia tych metod, jest otrzymywaie, a podstawie daych, użyteczych uogólioych iformacji

Bardziej szczegółowo

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzamiacyja dla Aktuariuszy XLVII Egzami dla Aktuariuszy z 6 paździerika 2008 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Kredytobiorca

Bardziej szczegółowo

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne D o u ż y t k u w e w ę t r z e g o Katedra Iżyierii i Aparatury Przemysłu Spożywczego POMIARY WARSZTATOWE Ćwiczeia laboratoryje Opracowaie: Urszula Goik, Maciej Kabziński Kraków, 2015 1 SUWMIARKI Suwmiarka

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0, Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi

Bardziej szczegółowo

STATYSTKA I ANALIZA DANYCH LAB II

STATYSTKA I ANALIZA DANYCH LAB II STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

Ekonometria Mirosław Wójciak

Ekonometria Mirosław Wójciak Ekoometria Mirosław Wójciak Literatura obowiązkowa Barczak A, ST. Biolik J, Podstawy Ekoometrii, Wydawictwo AE Katowice, Katowice 1998 Dziechciarz J. Ekoometria Metody, przykłady, zadaia (wyd. ) Kukuła

Bardziej szczegółowo

Metody oceny projektów inwestycyjnych

Metody oceny projektów inwestycyjnych Metody ocey projektów iwestycyjych PRZEDMIIOT : EFEKTYWNOŚĆ SYSTEMÓW IINFORMATYCZNYCH Pla wykładu Temat: Metody ocey projektów iwestycyjych 5 FINANSOWE METODY OCENY PROJEKTÓW INWESTYCYJNYCH... 4 5.1. WPROWADZENIE...

Bardziej szczegółowo

Statystyka opisowa. () Statystyka opisowa 24 maja / 8

Statystyka opisowa. () Statystyka opisowa 24 maja / 8 Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów

Bardziej szczegółowo

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU Celem każdego ćwiczeia w laboratorium studeckim jest zmierzeie pewych wielkości, a astępie obliczeie a podstawie tych wyików pomiarów

Bardziej szczegółowo

Parametryczne Testy Istotności

Parametryczne Testy Istotności Parametrycze Testy Istotości Wzory Parametrycze testy istotości schemat postępowaia pukt po pukcie Formułujemy hipotezę główą H odośie jakiegoś parametru w populacji geeralej Hipoteza H ma ajczęściej postać

Bardziej szczegółowo

o zmianie ustawy o finansach publicznych oraz niektórych innych ustaw.

o zmianie ustawy o finansach publicznych oraz niektórych innych ustaw. SENAT RZECZYPOSPOLITEJ POLSKIEJ VIII KADENCJA Warszawa, dia 12 listopada 2013 r. Druk r 487 MARSZAŁEK SEJMU RZECZYPOSPOLITEJ POLSKIEJ Pa Bogda BORUSEWICZ MARSZAŁEK SENATU RZECZYPOSPOLITEJ POLSKIEJ Zgodie

Bardziej szczegółowo

Uwarunkowania rozwojowe województw w Polsce analiza statystyczno-ekonometryczna

Uwarunkowania rozwojowe województw w Polsce analiza statystyczno-ekonometryczna 3 MAŁGORZATA STEC Dr Małgorzata Stec Zakład Statystyki i Ekoometrii Uiwersytet Rzeszowski Uwarukowaia rozwojowe województw w Polsce aaliza statystyczo-ekoometrycza WPROWADZENIE Rozwój społeczo-gospodarczy

Bardziej szczegółowo

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7 Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

TESTY LOSOWOŚCI. Badanie losowości próby - test serii.

TESTY LOSOWOŚCI. Badanie losowości próby - test serii. TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407 Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie

Bardziej szczegółowo

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Łukasz WOJCIECHOWSKI, Tadeusz CISOWSKI, Piotr GRZEGORCZYK ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Streszczeie W artykule zaprezetowao algorytm wyzaczaia optymalych parametrów

Bardziej szczegółowo