ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU
|
|
- Krystyna Stachowiak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Łukasz WOJCIECHOWSKI, Tadeusz CISOWSKI, Piotr GRZEGORCZYK ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Streszczeie W artykule zaprezetowao algorytm wyzaczaia optymalych parametrów eksploatacyjych dla środków trasportu, oparty a programowaiu dyamiczym. Opisao w im strukturę oraz zbiory daych algorytmu. Sformułowao i omówioo fukcję oraz podfukcje celu, dotyczące parametrów eksploatacyjych pojazdów. Przedstawioo istotę doboru waruków ograiczających jak i możliwości aplikacyje opracowaego algorytmu. WSTĘP Fudametem opracowaego algorytmu jest jeda z techik matematyczych o azwie programowaie dyamicze, która ie udostępia pojedyczego uiwersalego algorytmu obliczeiowego a jedyie sposób podejścia do rozwiązaia problemu. Metodykę obliczeiową zagadieia rozbito a wieloetapowe oraz sekwecyjie rozwiązywae podproblemy, co jest zgode z zasadą optymalości Bellmaa. Mówi oa, że każde rozwiązaie zagadień z zakresu programowaia dyamiczego ma tę własość, iż optymale rozwiązaie dla k-tego etapu jest jedocześie rozwiązaiem optymalym dla etapów k+, k+2, k+3,, N. W związku z powyższą zasadą problem z zakresu programowaia dyamiczego rozwiązuje się rozpoczyając od poszukiwaia rozwiązaia dla pierwszego etapu, a astępie idąc dalej dla etapu []. W przygotowaiu algorytmu posiłkowao się metodą ajiższego kosztu przewozu (miimalego współczyika) pochodzącą z zagadieia trasportowego w postaci macierzowej. Metoda ta polega a odajdywaiu ajmiejszego elemetu z macierzy i przypisaiu mu maksymalej ilości przewożoego towaru [2, 3]. Z połączeia powyższych metod opracoway został algorytm uiwersaly, przedstawioy w zarysie w iiejszym artykule.. STRUKTURA ALGORYTMU Przyjęto, ze wszelkie koszty eksploatacji środków trasportu zależe są od czasu oraz długości przebytej przez ie trasy. Tak, więc algorytm miimalizuje długości wszelkich tras pojazdów tz. wybiera środek trasportowy, który jest ajbliżej węzła adawczego, posiada ajkrótszą trasę do węzła odbiorczego oraz ajkrótszą trasę powrotu do węzła bazowego. Zastosowaie tego algorytmu w plaowaiu rozwózki z -tego węzła adawczego do -tego węzła odbiorczego przyosi optymalą trasę przewozu oraz korzyści ekoomicze, takie jak oszczędość w kosztach eksploatacyjych i w zużyciu paliwa. Algorytm poszukiwaia ajkorzystiejszych marszrut przewozowych opisao poiżej. AUTOBUSY
2 . Zbiory daych występujących w algorytmie: a) zbiór węzłów + W {N, P p, P d, T zr, W x, W y } ) N azwa, uikatowy idetyfikator węzła, P p podaż a przewóz [kg], P d popyt a przewóz [kg], T zr czas załaduku/rozładuku [mi], W x, W y współrzęde węzła; b) zbiór łuków L + {N w, N w2, S, K e, T p } (2) N w azwa pierwszego węzła sąsiediego, N w2 azwa drugiego węzła sąsiediego, S długość łuku [km], K e koszt eksploatacji po -tym łuku [zł/km], T p czas przejazdu po -tym łuku[mi]; c) zbiór środków trasportu St + {N w, D, L max, I pl, S pm, KE ksp, SKE ksp, SIP km, S sp, C p, S kzp } (3) N w idetyfikator węzła, w którym przebywa St, D data, L max maksymala ładowość St [kg], I pl ilość przewożoego ładuku [kg], S pm sumarycza ilość przewiezioego ładuku [kg], KE ksp koszt eksploatacji St [zł/km], SKE ksp sumaryczy koszt eksploatacji St [zł], SIP km sumarycza ilość przejechaych kilometrów [km], S sp średie zużycie paliwa przez St [l/00km], C p cea paliwa [zł], S kzp sumaryczy koszt zużycia paliwa [zł]. Fukcją celu jest suma kosztów eksploatacji i kosztów zużycia paliwa dla wszystkich środków trasportu, które zostały wyzaczoe przez algorytm do wykoaia przewozów lub powrotów do bazy. a) fukcja celu FC K e + K p mi (4) 2 AUTOBUSY
3 Podfukcje celu: Wad. FC( St) = S mi Wst Wad 2. FC( St) = S mi Wst + M Wad 3. FC( St ) = S mi Wodb Wbaz 4. FC( St ) = S mi Wodb S jest długością łuku w bieżącym kroku poszukiwaia trasy, Wst węzeł, w którym St przebywa, Wad węzeł adawczy załadukowy, Wodb węzeł odbiorczy wyładukowy, Wbaz węzeł bazowy powroty. Pomocicze wyrażeia, które są kalkulowae w każdym kroku algorytmu to: (5) S calk = FC() + FC(2) + FC(3) +FC(4) (6) Ke = S calk KE ksp (7) Kp = (S calk S sp /00) Cp (8) C k = Ke + Kp mi (9) S calk całkowita długość przebyta przez St, Ke koszt eksploatacyjy dla -tego St, Kp koszt paliwa dla -tego St, C k całkowite koszty poiesioe w daym kroku... Istota podfukcji celu Każda marszruta M + będzie optymala, jeśli dla każdego -tego środka trasportu (St) w bieżącym kroku optymalizacji zostaą wyzaczoe: a) ajkrótsza trasa z węzła, w którym przebywa do węzła adawczego (w przypadku, kiedy -ty St już przebywa w tym węźle długość tej trasy będzie rówa zero), b) ajkrótsza trasa z węzła adawczego do węzła odbiorczego, c) ajkrótsza trasa z węzła odbiorczego do węzła adawczego podfukcja jest wykoywaa przez algorytm za każdym razem, kiedy po sprawdzeiu stau podaży i popytu w bieżącym kroku optymalizacji okaże się, ze popyt i podaż są większe od zera, d) potecjala ajkrótsza trasa St w bieżącym kroku optymalizacji z węzła odbiorczego do węzła bazowego. Podfukcja ta wymusza a algorytmie takie plaowaie rozmieszczeia pojazdów, aby w sytuacji, kiedy będzie brak zapotrzebowaia a przewozy, suma długości dróg powrotów wszystkich St do węzła bazowego była jak ajkrótsza (są to tzw. puste przebiegi). Spośród tych czterech podfukcji, dwie pierwsze są obowiązkowe w algorytmie, atomiast 3 i 4 są opcjoale i mogą być uwzględiae w algorytmie aprzemieie. AUTOBUSY 3
4 Jeśli jest pewość, że będzie ciągłe zapotrzebowaie a przewozy, i po wykoaiu przewozu ie będzie żadych ruchów środków trasportu do węzła bazowego lub węzłów bazowych to moża, a właściwie ależy fukcję 4 wyłączyć z algorytmu. W tym przypadku algorytm będzie uwzględiał tylko ajkrótsze trasy z węzłów, w których przebywają St do węzłów adawczych, astępie do węzłów odbiorczych, i z odbiorczych do ajbliższych węzłów adawczych: S calk =FC() + FC(2) + FC(3) (0) Jeśli jest absoluta pewość, ze wszystkie St lub ich większość będą wracać do bazy, wtedy fukcje 4 ależy uwzględić w algorytmie, atomiast podfukcje 3 wyłączyć. W takiej kofiguracji podfukcji algorytm tak operuje rejsami St, aby w każdym kroku wyzaczaia marszruty M trasa przejazdu St była ajkrótsza, włączając w ią trasę powrotu do bazy zarówo dla tego St jak i wszystkich pozostałych St: S calk =FC() + FC(2)) +FC(4) () Jeśli ie ma absolutej pewości czy St pozostają dalej poza bazą, czy tez wracają do bazy, ależy w algorytmie uwzględić obie podfukcje 3 i 4. W tym przypadku algorytm będzie tak plaował trasę dla St, aby była oa ajkrótsza z węzła, w którym St przebywa do węzła adawczego, astępie do węzła odbiorczego, i z węzła odbiorczego ajkrótszą do węzła bazowego lub do węzła adawczego: S calk =FC() + FC(2) + FC(3) +FC(4) (2) W kolejym etapie daego kroku obliczae są astępujące parametry dla aalizowaego St: całkowita droga, koszt eksploatacji, koszt zużycia paliwa, koszt całkowity. Środek trasportu St, dla którego całkowity koszt Ck potecjalego rejsu będzie ajmiejszy, umieszczay jest w marszrucie M razem z azwami tras, ich długościami oraz parametrami przewozowymi i eksploatacyjymi, które zostały w tym kroku skalkulowae..2. Waruki ograiczające algorytm Aby algorytm mógł fukcjoować muszą być spełioe astępujące waruki ograiczające: + W Pp>0 3) + W Pd>0 (4) Db=max(St + D) (5) St D<Db (6) Wx Wstop Wstart Wx stop Wy i Wstop Wstart Wy stop (7) 4 AUTOBUSY
5 Waruki ograiczające (5) i (6) wymuszają a algorytmie chroologicze plaowaie rejsów środków trasportu w czasie. Waruek (5) w każdym bieżącym kroku optymalizacji ustala tzw. datę bieżącą Db. Termi te jest ajdalszą datą wybraą z dat przypisywaych i kalkulowaych dla St biorącego udział w rejsie o umerze -, czyli rejsie poprzedim. Waruek (6) wymusza a algorytmie wybór takiego środka trasportu, który jest dostępy w daej chwili. Ustawieie daty Db a sztywo pozwala określić możliwości wykoaia przewozów w arzucoym termiie. Środki trasportu St, których data D będzie a tyle zbliżoa do daty Db, że każdy astępy rejs dla tego St będzie wychodził poza ramy czasowe daty bieżącej Db, spowodują ieuwzględiaie ich w astępym kroku algorytmu. Niespełieie w algorytmie waruków (5) i (6) ozacza brak ograiczeń czasowych i w efekcie wydłużeie czasu wykoaia zadaia przewozowego. Jeśli którykolwiek z waruków (3) i (4) ie zostaie spełioy, wówczas algorytm ulega zatrzymaiu do mometu, w którym waruki te zastaą spełioe. Warukom tym odpowiadają waruek popytu i podaży a przewozy. Waruek (7) wymusza, aby wartości współrzędych x i y w fukcjach wyszukiwaia ajkrótszych tras pomiędzy węzłami zawsze maksymalie dążyły do wartości współrzędych puktu docelowego. Dzięki temu bardzo łatwo moża określić ajkrótszą drogę p. z węzła adawczego do odbiorczego, z odbiorczego do adawczego, z odbiorczego do bazy itd. WNIOSKI Stosowaie przedstawioego algorytmu daje możliwość szukaia oszczędości w kosztach eksploatacji środków trasportu, określaia ilości środków trasportowych St potrzebych do wykoaia przewozów oraz czasu, w którym astąpi ich realizacja. Na uwagę zasługuje fakt, że może spełiać fukcje użyteczego i pomociczego arzędzia w chroologiczym plaowaiu przepływu pojazdów w sieci trasportowej. Opisay algorytm jest opracoway dla przewozu jedego rodzaju ładuku, jedak istieje możliwość rozszerzeia go o moduł dla większej ilości ładuków. Nie posiada ograiczeń, co do ilości węzłów i łuków oraz topografii tereu, którą moża dowolie przyjąć. Odpowiedie i poprawe stworzeie algorytmu w języku programowaia przyspiesza proces obliczeń, dając bogate arzędzie wspomagające proces podejmowaia decyzji w zarządzaiu flotą pojazdów w przedsiębiorstwie trasportowym. BIBLIOGRAFIA. Jędrzejczyk Z., Kukuła K., Skrzypek J., Walkosz A.: Badaia operacyje w przykładach i zadaiach. PWN, Warszawa Grabowski W.: Programowaie dyamicze. PWE, Warszawa Niestierow E. P.: Programowaie liiowe w trasporcie. WKiŁ, Warszawa 974. AUTOBUSY 5
6 AN OPTIMIZATION ALGORITHM FOR EXPLOITATION PARAMETRES OF MEANS OF TRANSPORT Abstract The paper presets a algorithm for determiatio of optimal exploitatio parameters of meas of trasport. The algorithm is based o dyamic programmig. The paper discusses the structure as well as the data set for the algorithm. The fuctio ad subfuctios of the aim cocerig exploitatio parameters of vehicles were formed. Moreover, the selectio of limitig coditios ad applicatio possibilities of the developed algorithm were discussed. Recezet: prof. dr hab. iż. Marek Opielak Autorzy: mgr iż. Łukasz WOJCIECHOWSKI - Politechika Lubelska dr hab. iż. Tadeusz CISOWSKI - Wyższa Szkoła Ekoomii i Iowacji w Lubliie iż. Piotr GRZEGORCZYK - Wyższa Szkoła Ekoomii i Iowacji w Lubliie 6 AUTOBUSY
MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU
Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera
Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki
D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem)
D. Miszczyńska, M.Miszczyński KBO UŁ, Badaia operacyje (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assigmet Problem) Bliskim "krewiakiem" ZT (w sesie podobieństwa modelu decyzyjego) jest zagadieie
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA
Chemia Teoretyczna I (6).
Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez
Politechnika Poznańska
Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)
WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa
Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Moduł 4. Granica funkcji, asymptoty
Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz
EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
Struktura czasowa stóp procentowych (term structure of interest rates)
Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,
EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI
Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:
Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.
x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem
9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))
46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę
8. Optymalizacja decyzji inwestycyjnych
8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy
12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!
a n 7 a jest ciągiem arytmetycznym.
ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg
Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski
olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Modele i arzędzia optymalizacji w systemach iformatyczych zarządzaia Prof. dr hab. iż. Joaa Józefowska Istytut Iformatyki Orgaizacja zajęć 8 godzi wykładów prof. dr hab. iż. J. Józefowska www.cs.put.poza.pl/jjozefowska
2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1
Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.
INWESTYCJE MATERIALNE
OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów
Definicja interpolacji
INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję
Metody Obliczeniowe w Nauce i Technice laboratorium
Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Ekonomia matematyczna 2-2
Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce a aklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-RAP-06 POZIOM ROZSZERZONY Czas pracy 0 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy zawiera 4 stro (zadaia
Materiał ćwiczeniowy z matematyki Marzec 2012
Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0
Metody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu
dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu
Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki
52 Sławomir Herma Sławomir HERMA atedra Iżyierii Produkcji, ATH w Bielsku-Białej E mail: slawomir.herma@gmail.com Harmoogramowaie liii motażowej jako elemet projektowaia cyfrowej fabryki Streszczeie: W
X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.
Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak
Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego
Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia
SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN
ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI
O liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
Scenariusz lekcji: Kombinatoryka utrwalenie wiadomości
Sceariusz lekcji: Kombiatoryka utrwaleie wiadomości 1 1. Cele lekcji a) Wiadomości Uczeń: za pojęcia: permutacja, wariacja i kombiacja, zdarzeie losowe, prawdopodobieństwo, za iezbęde wzory. b) Umiejętości
Twoja firma. Podręcznik użytkownika. Aplikacja Grupa. V edycja, kwiecień 2013
Twoja firma Podręczik użytkowika Aplikacja Grupa V edycja, kwiecień 2013 Spis treści I. INFORMACJE WSTĘPNE I LOGOWANIE...3 I.1. Wstęp i defiicje...3 I.2. Iformacja o możliwości korzystaia z systemu Aplikacja
System finansowy gospodarki
System fiasowy gospodarki Zajęcia r 5 Matematyka fiasowa Wartość pieiądza w czasie 1 złoty posiaday dzisiaj jest wart więcej iż 1 złoty posiaday w przyszłości, p. za rok. Powody: Suma posiadaa dzisiaj
Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego
doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
Parametryzacja rozwiązań układu równań
Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie
TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG
Tomasz ŚWIĘTOŃ 1 TRANSFORMACJA DO UKŁADU 2000 A ROBLEM ZGODNOŚCI Z RG Na mocy rozporządzeia Rady Miistrów w sprawie aństwowego Systemu Odiesień rzestrzeych już 31 grudia 2009 roku upływa termi wykoaia
ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie transportowe 1 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Klasyczne zagadnienie transportowe 1 Klasyczne zadanie transportowe problem najtańszego przewozu
a) symbole logiczne (wspólne dla wszystkich języków) zmienne przedmiotowe: x, y, z, stałe logiczne:,,,,,, symbole techniczne: (, )
PROGRAMOWANIE W JĘZYU OGII WPROWADZENIE OGIA PIERWSZEGO RZĘDU Symbole języka pierwszego rzędu dzielą się a: a symbole logicze (wspóle dla wszystkich języków zmiee przedmiotowe: x y z stałe logicze: symbole
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Zasilanie budynków użyteczności publicznej oraz budynków mieszkalnych w energię elektryczną
i e z b ę d i k e l e k t r y k a Julia Wiatr Mirosław Miegoń Zasilaie budyków użyteczości publiczej oraz budyków mieszkalych w eergię elektryczą Zasilacze UPS oraz sposoby ich doboru, układy pomiarowe
Jak obliczać podstawowe wskaźniki statystyczne?
Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń
MACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy
STATYSTYKA OPISOWA WYKŁAD 1 i 2
STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest
Jak skutecznie reklamować towary konsumpcyjne
K Stowarzyszeie Kosumetów Polskich Jak skuteczie reklamować towary kosumpcyje HALO, KONSUMENT! Chcesz pozać swoje praw a? Szukasz pomoc y? ZADZWOŃ DO INFOLINII KONSUMENCKIEJ BEZPŁATNY TELEFON 0 800 800
Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.
Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...
Analiza numeryczna Kurs INP002009W. Wykład 4 Rozwiązywanie równań nieliniowych. Karol Tarnowski A-1 p.
Aaliza umerycza Kurs INP002009W Wykład 4 Rozwiązywaie rówań ieliiowych Karol Tarowski karol.tarowski@pwr.wroc.pl A-1 p.223 Pla wykładu Metoda bisekcji Algorytm Aaliza błędu Metoda Newtoa Algorytm Aaliza
Twierdzenie Cayleya-Hamiltona
Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest
Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R
Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu
Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)
Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay
Badania Operacyjne Ćwiczenia nr 6 (Materiały)
Otwarte zagadnienie transportowe Jeżeli łączna podaż dostawców jest większa niż łączne zapotrzebowanie odbiorców to mamy do czynienia z otwartym zagadnieniem transportowym. Warunki dla dostawców (i-ty
1. Granica funkcji w punkcie
Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem
MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy przydziału
Istrukcja do ćwiczeń laboratoryjych z przediotu: Badaia operacyje Teat ćwiczeia: Probley przydziału Zachodiopoorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki Szczeci 20 Opracował:
Przejście światła przez pryzmat i z
I. Z pracowi fizyczej. Przejście światła przez pryzmat - cz. II 1. Przejście światła przez pryzmat. Kąt odchyleia. W paragrafie 8.10 trzeciego tomu e-podręczika opisao bieg światła moochromatyczego w pryzmacie.
(1) gdzie I sc jest prądem zwarciowym w warunkach normalnych, a mnożnik 1,25 bierze pod uwagę ryzyko 25% wzrostu promieniowania powyżej 1 kw/m 2.
Katarzya JARZYŃSKA ABB Sp. z o.o. PRODUKTY NISKONAPIĘCIOWE W INSTALACJI PV Streszczeie: W ormalych warukach pracy każdy moduł geeruje prąd o wartości zbliżoej do prądu zwarciowego I sc, który powiększa
obie z mocy ustawy. owego.
Kwartalik Prawo- o-ekoomia 3/015 Aa Turczak Separacja po faktycza lub prawa obie z mocy ustawy cza, ie ozacza defiitywego owego 1 75 1 61 3 Art 75 88 Kwartalik Prawo- o-ekoomia 3/015 zaspokajaia usp iedostatku
BADANIA DOCHODU I RYZYKA INWESTYCJI
StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r.
Dzieik Ustaw Nr 251 14617 Poz. 1508 1508 ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dia 21 paździerika 2011 r. w sprawie sposobu podziału i trybu przekazywaia podmiotowej dotacji a dofiasowaie
Prawdopodobieństwo i statystyka r.
Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1
30. Obliczyć wartość graicy ( 0 ( ( ( 4 +1 + 1 4 +3 + 4 +9 + 3 4 +7 +...+ 1 4 +3 + 1 ( ( 4 +3. Rozwiązaie: Ozaczmy sumę występującą pod zakiem graicy przez b. Zamierzamy skorzystać z twierdzeia o trzech
Agenda. Piotr Sawicki Optymalizacja w transporcie. Politechnika Poznańska WIT ZST 1. Kluczowe elementy wykładu
trasporcie Tytuł: 05 Klasyfikaca odeli plaowaia sieci Modele: PoPr_KT; PoPr_KT+KM Zastosowaie prograowaia liiowego Autor: Piotr SAWICKI Zakład Systeów Trasportowych WIT PP piotr.sawicki@put.poza.pl piotr.sawicki.pracowik.put.poza.pl
Egzamin maturalny z informatyki Poziom rozszerzony część I
Zadaie 1. Długość apisów biarych (7 pkt) Opisaa poiżej fukcja rekurecyja wyzacza, dla liczby aturalej 0, długość apisu uzyskaego przez sklejeie biarych reprezetacji liczb aturalych od 1 do 1. ukcja krok
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
WYBRANE METODY DOSTĘPU DO DANYCH
WYBRANE METODY DOSTĘPU DO DANYCH. WSTĘP Coraz doskoalsze, szybsze i pojemiejsze pamięci komputerowe pozwalają gromadzić i przetwarzać coraz większe ilości iformacji. Systemy baz daych staowią więc jedo
1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767
Egzami maturaly z iformatyki Zadaie. (0 pkt) Każdy z puktów tego zadaia zawiera stwierdzeie lub pytaie. Zazacz (otaczając odpowiedią literę kółkiem) właściwą kotyuację zdaia lub poprawą odpowiedź. W każdym
W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch
Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi
Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja
Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i
WYGRYWAJ NAGRODY z KAN-therm
Regulami Kokursu I. POSTANOWIENIA OGÓLNE. 1. Regulami określa zasady KONKURSU p. Wygrywaj agrody z KAN-therm (dalej: Kokurs). 2. Orgaizatorem Kokursu jest KAN Sp. z o.o. z siedzibą w Białymstoku- Kleosiie,
Zadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
System zarządzania magazynem
System zarządzaia magazyem Warehouse & DISTRIBUTION Efektywe zarządzaie magazyem Cosafe Logistics dostarcza rozwiązaia dopasowae do potrzeb aszych klietów. Pomagamy zmiejszyć koszty operacyje i uzyskać
METODY NUMERYCZNE dr inż. Mirosław Dziewoński
Metody Numerycze METODY NUMERYCZNE dr iż. Mirosław Dziewoński e-mail: miroslaw.dziewoski@polsl.pl Pok. 151 Wykład /1 Metody Numerycze Aproksymacja fukcji jedej zmieej Wykład / Aproksymacja fukcji jedej
ZAGADNIENIE TRANSPORTOWE(ZT)
A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że
PLANOWANIE PROCESÓW WYTWARZANIA
Politechika Pozańska Zakład Zarządzaia i Iżyierii Jakości PLANOWANIE PROCESÓW WYTWARZANIA Materiały pomocicze do projektu z przedmiotu: Zarządzaie produkcją i usługami Opracował Krzysztof ŻYWICKI Pozań,
SPIS TREŚCI CZEŚĆ ELEKTRYCZNA 1. PODSTAWA OPRACOWANIA 2. PRZEDMIOT OPRACOWANIA 3. ZAKRES OPRACOWANIA 4. OPIS TECHNICZNY 5.
SPIS TREŚCI CEŚĆ ELEKTRYCNA 1. PODSTAWA OPRACOWANIA 2. PREDMIOT OPRACOWANIA 3. AKRES OPRACOWANIA 4. OPIS TECHNICNY 4.1 asilaie budyku 4.2 Wewętrza liia zasilająca WL 4.3 Rozdzielica główa RG 4.4 Istalacje
KARTA PRZEDMIOTU. Język polski. Badania operacyjne Nazwa przedmiotu Język angielski operational research USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW
KARTA PRZEDMIOTU Kod przedmiotu E/FIRP/BOP Język polski Badania operacyjne Nazwa przedmiotu Język angielski operational research USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek studiów Forma studiów
POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne
D o u ż y t k u w e w ę t r z e g o Katedra Iżyierii i Aparatury Przemysłu Spożywczego POMIARY WARSZTATOWE Ćwiczeia laboratoryje Opracowaie: Urszula Goik, Maciej Kabziński Kraków, 2015 1 SUWMIARKI Suwmiarka
Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 1 Algorytmy sortowania (27.02.
Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 1 Algorytmy sortowaia (27.2.12)
Wykład 11. a, b G a b = b a,
Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada
Ekonomia matematyczna - 2.1
Ekoomia matematycza - 2.1 Przestrzeń produkcyja Zakładamy,że w gospodarce występuje towarów, każdy jako akład ( surowiec ) lub wyik ( produkt ) w procesach produkcji. Kokrety proces produkcji jest reprezetoway
Wykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh -
TEKST TRUDNY Postulat kwatowaia Bohra, czyli założoy ad hoc związek pomiędzy falą de Broglie a a geometryczymi własościami rozważaego problemu, pozwolił bez większych trudości teoretyczie przewidzieć rozmiary
KADD Metoda najmniejszych kwadratów
Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie
Statystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych