Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 1. Wojciech Waloszek. Teresa Zawadzka.
|
|
- Ksawery Pawlik
- 7 lat temu
- Przeglądów:
Transkrypt
1 Eksploracja danych KLASYFIKACJA I REGRESJA cz. 1 Wojciech Waloszek wowal@ei.pg.gda.pl Teresa Zawadzka egra@ei.pg.gda.pl Kaedra Inżyrii Oprogramowania Wydział Elekroniki, Telekomunikacji i Informayki Poliechnika Gdańska W.Waloszek
2 Budowa drzew decyzyjnych Drzewa decyzyjne o najpopularjsza forma klasyfikaorów, Najczęściej budowane są meodą zsępującą, na zasadzie podejścia nauralnego dla drzew podejścia divide-and-conquer W.Waloszek
3 Przykład drzewa decyzyjnego wyższe Wykszałce śred podsawowe D.O.R. <=800 >800 Sam. ak Wiek ak <=45 ak > W.Waloszek
4 Budowa drzewa S.C. D.O.R. Wiek Wykszałce Sam. Z.K. S wyższe ak ak S śred ak ak S podsawowe M wyższe ak M śred ak ak S wyższe S śred ak M śred S podsawowe ak 1. Mamy wyróżniony arybu decyzyjny, wyznaczający klasy 2. Na każdym poziomie drzewa wybieramy jeden z pozosałych arybuów, najlepszy pod kąem dyskryminowania klas 3. Rozpoczynamy od pusego drzewa wyznaczając korzeń W.Waloszek
5 Dobór arybuu 4 x ak 5 x S.C. S M 2 x ak 4 x 2 x ak 1 x Czy podział pod względem warości arybuu S.C. jes korzysny? I w jakiej mierze? W.Waloszek
6 Miara jakości podziału Jedną z miar jakości podziału jes przyros zawarości informacji Przyros zawarości informacji jes określony jako różnica zawarości informacji w dzielonym zbiorze przykładów a enropią zasosowanego podziału (esu) W.Waloszek
7 Miara jakości podziału wzory d P IP ( ) log 2 P dc P d P I(P) zawarość informacyjna zbioru przykładów P C zbiór klas wyznaczony przez arybu decyzyjny P d podzbiór ych przykładów ze zbioru P, kóre należą do klasy d Pr E ( P) I( Pr ) P rr E (P) enropia esu dla zbioru przykładów P R zbiór możliwych wyników esu P r podzbiór ych przykładów ze zbioru P, kóre dają dla esu wynik r W.Waloszek
8 Dobór arybuu - przykład 4 x ak 5 x IP ( ) log 2 log 2 0, S S.C. M " S. C.?" R S, M 2 x ak 4 x 2 x ak 1 x IP ( ) log log 0, IP ( S. C. S ) log 2 log 2 0,92 S. C. M E ( P) 0,92 0,92 0, g ( P) 0,99 0,92 0, W.Waloszek
9 Dobór arybuu przykład (2) x ak 5 x IP ( ) log 2 log 2 0, wyższe Wykszałce śred R podsawowe " Wykszace?" wyższe, śred, podsawowe 2 x ak 1 x 2 x ak 2 x 0 x ak 2 x IP ( Wykszałce wyższe ) 0,92 IP ( Wykszałce śred ) 1 IP ( Wykszałce podsawowe ) E ( P) 0, , g ( P) 0,99 0, 75 0, W.Waloszek
10 Dobór arybuu przykład (3) 4 x ak 5 x IP ( ) log 2 log 2 0, ak Sam. " Sam.?" R ak, 3 x ak 2 x 1 x ak 3 x IP ( ) 0,97 Sam. ak IP ( ) 0,81 Sam. 5 4 E ( P) 0,97 0,81 0, g ( P) 0,99 0,90 0, W.Waloszek
11 Dobór arybuu przykład (4) Najwyższy zysk informacji (0,24) osiągnął arybu Wykszałce i on zosaje zapisany w korzeniu drzewa decyzyjnego wyższe Wykszałce śred podsawowe 2 x ak 1 x 2 x ak 2 x 0 x ak 2 x W.Waloszek
12 Divide-and-conquer S.C. D.O.R. Wiek Wykszałce Sam. Z.K. S wyższe ak ak S śred ak ak S podsawowe M wyższe ak M śred ak ak S wyższe S śred ak M śred S podsawowe ak 1. Zbiór przykładów zosał podzielony na rzy części 2. Dla każdej z części może zosać zasosowany en sam algorym dalszego działania W.Waloszek
13 Dalsza budowa drzewa Wzdłuż prawej gałęzi drzewa rzeba już rozbudowywać wyższe Wykszałce śred podsawowe 2 x ak 1 x 2 x ak 2 x 0 x ak 2 x W.Waloszek
14 Dalsza budowa drzewa (2) śred 2 x ak 2 x IP ( ) 1 ak Sam. " Sam.?" R ak, 2 x ak 1 x 0 x ak 1 x IP ( ) 0,92 Sam. ak IP ( ) 0 Sam. 3 1 E ( P) 0,92 0 0, g ( P) 10, 69 0, W.Waloszek
15 Arybuy numeryczne Do ej pory zakładaliśmy użycie ylko arybuów nominalnych, W rakcie budowy drzewa wykorzysywane mogą być eż arybuy numeryczne, Tuaj przedsawimy zasadę podziału binarnego minimalizującego enropię W.Waloszek
16 Arybuy numeryczne (2) S.C. D.O.R. Wiek Wykszałce Sam. Z.K. S wyższe ak ak S śred ak ak S podsawowe M wyższe ak M śred ak ak S wyższe S śred ak M śred S podsawowe ak 1. W rakcie budowy drzewa doszliśmy do wydzielenia 3 przykładów 2. W ym miejscu drzewa najlepiej zasosować podział względem warości arybuu numerycznego (wcześj oczywiście akie podziały eż były rozważane ale odrzucane) W.Waloszek
17 Dalsza budowa drzewa (2) ak 2 x ak 1 x IP ( ) 0,92 Wiek: Z.K.: ak ak " Wiek x" R x, x IP ( ) 0 Wiek x IP ( Wiek x) E ( P) 0 1 0, g ( P) 0,92 0, 67 0, W.Waloszek
18 Dalsza budowa drzewa (3) ak 2 x ak 1 x IP ( ) 0,92 Wiek: Z.K.: ak ak " Wiek x" R x, x IP ( ) 0 Wiek x IP ( Wiek x) E ( P) g ( P) 0,92 0 0, W.Waloszek
19 Algorym budowy drzew decyzyjnych Budowa drzewa polega na doborze najlepszego arybuu nominalnego lub najlepszego podziału binarnego arybuu numerycznego, powarzanym ieracyj, Rozszerzenia: Obsługa brakujących warości arybuów, Przycina drzew generalizacja W.Waloszek
20 Brakujące warości arybuów S.C. D.O.R. Wiek Wykszałce Sam. Z.K. S wyższe ak ak S śred ak ak S podsawowe M wyższe ak M śred ak ak S wyższe S śred ak M śred S podsawowe ak M ? Zakładamy, że mamy dodakowy przykład o znanej warości arybuu Wykszałce W.Waloszek
21 Brakujące warości arybuów (2) 4 x ak 6 x IP ( ) 0,92 wyższe Wykszałce śred R podsawowe " Wykszace?" wyższe, śred, podsawowe 2 x ak (1 + 3/9) x 2 x ak (2 + 4/9) x 0 x ak (2 + 2/9) x IP ( Wykszałce wyższe ) 0,97 IP ( Wykszałce śred ) 0,99 IP ( Wykszałce podsawowe ) E ( P) 0,97 0,99 0 0, g ( P) 0,92 0, 76 0, W.Waloszek
22 Przycina drzewa decyzyjnego wyższe Wykszałce śred podsawowe D.O.R. ak <=800 >800 Sam. ak Wiek ak <=45 ak > W.Waloszek
23 Przycina Przycina polega na zasąpieniu poddrzewa liściem, Przycina ma na celu uogól wyników i zapobieże błędowi nadmiernego dopasowania, Sosuje się różne kryeria przycinania: przycina apriori (w rakcie pracy zasadniczego algorymu), gdy węzeł drzewa pokrywa zby małą liczbę przykładów, przycina aposeriori (po pracy zasadniczego algorymu), najczęściej wsępująca w wyniku badania rezulaów klasyfikacji na zbiorze esującym, W wyniku przycinania liście sają się węzłami probabilisycznymi W.Waloszek
24 Redukcjonisyczne podejście do opisu algorymów Algorym budowy drzew decyzyjnych (~C4.5): 1. Zada: predykcja (klasyfikacja) 2. Srukura modelu: drzewo 3. Funkcja oceny jakości: przyros zawarości informacyjnej 4. Meody przeszukiwania: zachłanna, divide-and-conquer 5. Dodakowe założenia: Obsługa brakujących warości arybuów meodą podziału przykładu Obsługa arybuów numerycznych meodą podziału binarnego minimalizującego enropię Przycina drzewa meodą wsępującą aposeriori (walidacja krzyżowa) W.Waloszek
25 Dziękujemy za uwagę Zapraszamy na wykład: KLASYFIKACJA I REGRESJA cz W.Waloszek
Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 2. Wojciech Waloszek. Teresa Zawadzka.
Eksploracja danych KLASYFIKACJA I REGRESJA cz. 2 Wojciech Waloszek wowal@eti.pg.gda.pl Teresa Zawadzka tegra@eti.pg.gda.pl Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki
Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1
Analiza danych Drzewa decyzyjne. Enropia. Jakub Wróblewski jakubw@pjwsk.edu.pl hp://zajecia.jakubw.pl/ DRZEWA DECYZYJNE Meoda reprezenacji wiedzy (modelowania ablic decyzyjnych). Pozwala na przejrzysy
SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego
Eksploracja danych OCENA KLASYFIKATORÓW. Wojciech Waloszek. Teresa Zawadzka.
Eksploracja danych OCENA KLASYFIKATORÓW Wojciech Waloszek wowal@eti.pg.gda.pl Teresa Zawadzka tegra@eti.pg.gda.pl Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Dendrochronologia Tworzenie chronologii
Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu
Algorytmy klasyfikacji
Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe
SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
DYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH
SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów
PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH. Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew.
PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew. Wprowadzenie Drzewo klasyfikacyjne Wprowadzenie Formalnie : drzewo
Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych
Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II
Algorytmy metaheurystyczne Wykład 11. Piotr Syga
Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
POZYCJONOWANIE I NADĄŻANIE MINIROBOTA MOBILNEGO M.R.K
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 37, s. 97-104, Gliwice 2009 POZYCJONOWANIE I NADĄŻANIE MINIROBOTA MOBILNEGO M.R.K MARIUSZ GIERGIEL, PIOTR MAŁKA Kaedra Roboyki i Mecharoniki, Akademia Górniczo-Hunicza
Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
: idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
Złożoność i zagadnienia implementacyjne. Wybierz najlepszy atrybut i ustaw jako test w korzeniu. Stwórz gałąź dla każdej wartości atrybutu.
Konwersatorium Matematyczne Metody Ekonomii Narzędzia matematyczne w eksploracji danych Indukcja drzew decyzyjnych Wykład 3 - część 2 Marcin Szczuka http://www.mimuw.edu.pl/ szczuka/mme/ Plan wykładu Generowanie
Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji
Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji Michał Witczak Data Mining 20 maja 2012 r. 1. Wstęp Dostarczone zostały nam 4 pliki, z których dwa stanowiły zbiory uczące
Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona
Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu
Co to są drzewa decyzji
Drzewa decyzji Co to są drzewa decyzji Drzewa decyzji to skierowane grafy acykliczne Pozwalają na zapis reguł w postaci strukturalnej Przyspieszają działanie systemów regułowych poprzez zawężanie przestrzeni
ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków
WENTYLACJA i KLIMATYZACJA 2. Ćwiczenia nr 1
Insyu Inżynierii Cieplnej i Ochrony Powierza Poliechniki Krakowskiej Zakład Wenylacji Klimayzacji i Chłodnicwa WENTYLACJA i KLIMATYZACJA 2 Ćwiczenia nr 1 Urządzenia do uzdania powierza w klimayzacji Dr
Chemia Analityczna. Autor: prof. dr hab. inż Marek Biziuk
Cheia Analiyczna Auor: pro. dr hab. inż Marek Biziuk Kaedra Cheii Analiycznej Wydział Cheiczny Poliechnika Gdańska 21 ANALIZA MIARECZKOWA (dział analizy objęościowej - woluerii) Meody iareczkowe służą
ALGORYTMY I STRUKTURY DANYCH
LGORTM I STRUKTUR DNH Temat 6: Drzewa ST, VL Wykładowca: dr inż. bigniew TRPT e-mail: bigniew.tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/ Współautorami wykładu
Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
Indukcja drzew decyzyjnych
Konwersatorium Matematyczne Metody Ekonomii Narzędzia matematyczne w eksploracji danych Indukcja drzew decyzyjnych Wykład 3 - część 2 Marcin Szczuka http://www.mimuw.edu.pl/ szczuka/mme/ Divide et impera
Algorytmy klasyfikacji
Algorytmy klasyfikacji Konrad Miziński Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Warszawa, Polska k.mizinski@stud.elka.pw.edu.pl Streszczenie Niniejszy dokument opisuje jedna
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania
Drzewa decyzyjne i lasy losowe
Drzewa decyzyjne i lasy losowe Im dalej w las tym więcej drzew! ML Gdańsk http://www.mlgdansk.pl/ Marcin Zadroga https://www.linkedin.com/in/mzadroga/ 20 Czerwca 2017 WPROWADZENIE DO MACHINE LEARNING CZYM
Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz
Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia
Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz
Grafy (3): drzewa Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 13 (Wykłady z matematyki dyskretnej) Grafy (3): drzewa 13 1 / 107 Drzewo Definicja. Drzewo to graf acykliczny
RÓWNANIA RÓŻNICZKOWE WYKŁAD 13
RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 Geomeria różniczkowa Geomeria różniczkowa o dział maemayki, w kórym do badania obieków geomerycznych wykorzysuje się meody opare na rachunku różniczkowym. Obieky geomeryczne
PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk
PROJEKT nr 1 Projek spawanego węzła kraownicy Sporządził: Andrzej Wölk Projek pojedynczego węzła spawnego kraownicy Siły: 1 = 10 3 = -10 Kąy: α = 5 o β = 75 o γ = 75 o Schema węzła kraownicy Dane: Grubość
ĆWICZENIE NR 43 U R I (1)
ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości
specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).
4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi
Witold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu. Własności procesów STUR w świetle metod z teorii chaosu 1
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6-8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
ć Ą ą ą Ż Ż ó ą ż Ć ą ĆŻ Ż Ó Ó Ó ą Ó ń ą ę ą ę Ź ń ą Ó ą ą ą ą ą ą Ó Ż ęż ę ą ę ą ą ż ĘĆ ż ę Żą ż ą ń Ó ą Ó ą ę ż ęż ó ó ć ż ń ęż ń ń ć ń ż ć ć ą ą Ó Ó ó ó ń ó ę ó Ó ą ż Ć ę Ó ę ż Ó ó ą ó Ó ż Ć ę ó Ó ó
Optymalizacja przy pomocy roju cząstek bazy reguł klasyfikatora rozmytego
GŁUSZEK Adam 1 GORZAŁCZANY Marian B. 2 RUDZIŃSKI Filip 3 Opymalizacja przy pomocy roju cząsek bazy reguł klasyfikaora rozmyego WSTĘP Na przesrzeni osanich kilkunasu la obserwujemy inensywny rozwój w zakresie
Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne
WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne Reprezentacja wiedzy w postaci drzew decyzyjnych entropia, przyrost informacji algorytmy ID3, C4.5 problem przeuczenia wyznaczanie reguł rzykładowe drzewo decyzyjne
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
8. Drzewa decyzyjne, bagging, boosting i lasy losowe
Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Stanisław Cichocki Natalia Nehrebecka. Wykład 4
Sanisław Cichocki Naalia Nehrebecka Wykład 4 1 1. Badanie sacjonarności: o o o Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) Tes KPSS 2. Modele o rozłożonych opóźnieniach (DL) 3. Modele auoregresyjne
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny
E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,
Poprawność semantyczna
Poprawność składniowa Poprawność semantyczna Poprawność algorytmu Wypisywanie zdań z języka poprawnych składniowo Poprawne wartościowanie zdań języka, np. w języku programowania skutki wystąpienia wyróżnionych
KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1
KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych
Zostałeś delegowany do pracy za granicą w UE, EOG lub Szwajcarii? Sprawdź, gdzie jesteś ubezpieczony
Zosałeś delegowany do pracy za granicą w UE, EOG lub Szwajcarii? Sprawdź, gdzie jeseś ubezpieczony Każde z pańsw członkowskich Unii Europejskiej (UE), Europejskiego Obszaru Gospodarczego (EOG) oraz Szwajcaria
2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Ocena efektywności procedury Congruent Specyfication dla małych prób
243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji
Data Mining Wykład 4. Plan wykładu
Data Mining Wykład 4 Klasyfikacja danych Klasyfikacja poprzez indukcje drzew decyzyjnych Plan wykładu Sformułowanie problemu Kryteria oceny metod klasyfikacji Metody klasyfikacji Klasyfikacja poprzez indukcje
MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa
PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR
LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje
2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew
0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury
prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325
PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj
WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB X - ELECTRE TRI
WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB X - ELECTRE TRI 1. Meoda ELECTRE TRI ELECTRE TRI (skró od ang. riage) meoda wspomagająca rozwiązywanie problemów wielokryerialnego sorowania - bardzo podobna
Klasyfikacja. Indeks Gini Zysk informacyjny. Eksploracja danych. Klasyfikacja wykład 2
Klasyfikacja Indeks Gini Zysk informacyjny Klasyfikacja wykład 2 Kontynuujemy prezentacje metod klasyfikacji. Na wykładzie zostaną przedstawione dwa podstawowe algorytmy klasyfikacji oparte o indukcję
Cyfrowe przetwarzanie sygnału przetwornika obrotowo-impulsowego
Cyfrowe przewarzanie sygnału przewornika obroowo-impulsowego Eligiusz PAWŁOWSKI Poliechnika Lubelska, Kaedra Auomayki i Merologii ul. Nadbysrzycka 38 A, 20-68 Lublin, email: elekp@elekron.pol.lublin.pl
A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012)
A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) 211 220 Pierwsza wersja złożona 25 października 2011 ISSN Końcowa wersja zaakcepowana 3 grudnia 2012 2080-0339
Wysokość drzewa Głębokość węzła
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
WYKORZYSTANIE TESTU OSTERBERGA DO STATYCZNYCH OBCIĄŻEŃ PRÓBNYCH PALI
Prof. dr hab.inż. Zygmun MEYER Poliechnika zczecińska, Kaedra Geoechniki Dr inż. Mariusz KOWALÓW, adres e-mail m.kowalow@gco-consul.com Geoechnical Consuling Office zczecin WYKORZYAIE EU OERERGA DO AYCZYCH
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
Ocena płynności wybranymi metodami szacowania osadu 1
Bogdan Ludwiczak Wprowadzenie Ocena płynności wybranymi meodami szacowania osadu W ubiegłym roku zaszły znaczące zmiany doyczące pomiaru i zarządzania ryzykiem bankowym. Są one konsekwencją nowowprowadzonych
Analiza rynku projekt
Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes
Badanie funktorów logicznych TTL - ćwiczenie 1
adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami
EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE
Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji
PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych
ć ą ą ą ż ą ż ć Ę ą ą ż ć ą ą ń ą ą ż ń ą ą ą ą ą ą ą ą ż ż ń ą ą ą ż ą ń Ś ą ą Ó ą Ęż ż ń Ś ń ń ń Ę ą ą Ó ń ą ą Ż ą ą Ó ą Ó ą Ż Ó Ó ą Ż ą ą Ó Ó ą ą Ś ą ą ń ń ą ą ą Ó ą Ż Ó ą Ę Ę Ł ą ą Ł Ą Ł Ł Ś ć ą Ś
ż ę ć ę ę ę ę ę ę ę ć Ż ę ę ę ż ę ę ę ę ę Ż ć ż ż ę ż Ę ć ę ż ę ęż ę ę ę ę ż ć ź Ł Ę ę ż Ę ć ę Ż ę ęż ę ę ę ę ż ć ź Ę Ł ę ę Ą ż Ę ż Ę ż Ę ż ę Ą Ą ę Ę ę ę Ż ź Ż Ż ż ć ź ź ę ż Ę ż Ę ę Ę Ę ć ż ę ć ż ć ź Ł
ż ż Ę Ę Ę Ó ś ó ę Ć ęż ś ę ę ó ś ę ó ę ę Ę ę ó ść Ę ęć Ż Ś ę ę ę ó ż ż ź ę ż ż ś ę Ó ę ę Ł ęż ś ę ę ó ś ę ż ó Ę ę ę ę ść Ę ę ę ę ęć ę ż ś ę ę ę ę ó ż ę Ł Ę ę ż Ę ęż ś ę ó ę ś ę ż ó ę ę ż ść ę ę ę ę ę ęć
Urządzenia i Układów Automatyki Instrukcja Wykonania Projektu
KAEDRA ENERGOELEKRYKI POLIECHNIKI WROCŁAWSKIEJ Urądenia i Układów Auomayki Insrukcja Wykonania Projeku Auory: rof. dr hab. inż. Eugenius Rosołowski dr inż. Pior Pier dr inż. Daniel Bejmer Wrocław 5 I.
4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego
4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W
Prognozowanie średniego miesięcznego kursu kupna USD
Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska
PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
Metoda Automatycznej Detekcji Interakcji CHAID
Metoda Automatycznej Detekcji Interakcji CHAID Metoda ta pozwala wybrać z konkretnego, dużego zbioru zmiennych te z nich, które najsilniej wpływają na wskazaną zmienną (objaśnianą) zmienne porządkowane
AMD. Wykład Elektrotechnika z elektroniką
Andrzej M. Dąbrowski AGH Universiy of Science and Technology Kaedra Elekroechniki i Elekroenergeyki e-mail: amd@agh.edu.pl Wykład Elekroechnika z elekroniką Wykład. Informacje wsępne i organizacyjne, zaliczenie
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Struktury Danych i Złożoność Obliczeniowa
Struktury Danych i Złożoność Obliczeniowa Zajęcia 3 Struktury drzewiaste drzewo binarne szczególny przypadek drzewa, które jest szczególnym przypadkiem grafu skierowanego, stopień każdego wierzchołka jest
Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 7 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
Podział metod przeszukiwania
Podział meod przeszukiwania Algorymy geneyczne - selekcja Algorymy geneyczne - krzyŝowanie Algorymy geneyczne - muacja Algorymy geneyczne - algorym działania Opymalizacja dla funkcji jednej zmiennej Opymalizacja
Wybrane zagadnienia uczenia maszynowego. Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec
Wybrane zagadnienia uczenia maszynowego Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec Przygotowane na podstawie T. Mitchell, Machine Learning S.J. Russel, P. Norvig, Artificial Intelligence
Wykład 2. Drzewa zbalansowane AVL i 2-3-4
Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania
Analiza popytu. Ekonometria. Metody i analiza problemów ekonomicznych. (pod red. Krzysztofa Jajugi), Wydawnictwo AE Wrocław, 1999.
Analiza popyu Eonomeria. Meody i analiza problemów eonomicznych (pod red. Krzyszofa Jajugi) Wydawnicwo AE Wrocław 1999. Popy P = f ( X X... X ε ) 1 2 m Zmienne onrolowane: np.: cena (C) nałady na relamę
PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW
Udosępnione na prawach rękopisu, 8.04.014r. Publikacja: Knyziak P., "Propozycja nowej meody określania zuzycia echnicznego budynków" (Proposal Of New Mehod For Calculaing he echnical Deerioraion Of Buildings),
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut
Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono
Sprawozdanie z zadania Modele predykcyjne (2)
Maciej Karpus, 131529 Tomasz Skarżyński, 131618 19.04.2013r. Sprawozdanie z zadania Modele predykcyjne (2) 1. Wprowadzenie 1.1. Informacje wstępne Dane dotyczą wyników badań mammograficznych wykonanych
DYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika
Pulpitu sterowniczego KP-108
DOKUMENTACJA TECHNICZNO-RUCHOWA Pulpiu serowniczego KP-108 DzierŜoniów 2007 Srona 1 z 21 1. Wprowadzenie Pulpi serowniczy KP-108 jes nowoczesnym urządzeniem mikroprocesorowym przeznaczonym do serowania
Kompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
REGULAMIN FUNDUSZU ROZLICZENIOWEGO
REGULAMIN FUNDUSZU ROZLICZENIOEGO przyjęy uchwałą nr 10/60/98 Rady Nadzorczej Krajowego Depozyu Papierów arościowych S.A. z dnia 28 września 1998 r., zawierdzony decyzją Komisji Papierów arościowych i
D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.
D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań
Drzewa BST i AVL. Drzewa poszukiwań binarnych (BST)
Drzewa ST i VL Drzewa poszukiwań binarnych (ST) Drzewo ST to dynamiczna struktura danych (w formie drzewa binarnego), która ma tą właściwość, że dla każdego elementu wszystkie elementy w jego prawym poddrzewie