ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO"

Transkrypt

1 ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO Sreszczenie Michał Barnicki Poliechnika Śląska, Wydział Oranizacji i Zarządzania Monika Odlanicka-Poczobu Poliechnika Śląska, Wydział Oranizacji i Zarządzania W przedsawionej pracy podjęo problem opymalizacji łącznych koszów urzymania oówki w oddziałach bankowych. ZaleŜą one łównie od dwóch czynników, wyceny oówki i koszów jej ransporu. Celem łównym pracy było opracowanie meody minimalizacji w/w koszów przy oraniczeniu liczby wykonywanych ransporów oówki. Słowa kluczowe: zarządzanie oówką, opymalizacja ilości ransporów, minimalizacja łącznych koszów urzymania oówki. Wsęp Prowadzona od wielu miesięcy poliyka Narodoweo Banku Polskieo (NBP), poleająca na niewielkich i w miarę sysemaycznych obniŝkach sóp procenowych, powoduje sałe zmniejszanie się cen ransferowych na rynku międzybankowym. Ceny ransferowe wyceny oówki, kóre opierają się na wycenie akywów i pasywów nieobciąŝonych rezerwą obowiązkową, sale obni- Ŝają się. I ak z poziomu 18,8140% w syczniu 2001 obniŝyły się do poziomu 5,3748 % w marcu Spadek cen ransferowych ma sały kierunek i nic nie zapowiada odwrócenia eo rendu. Ceny ransferowe 20,00 18,00 16,00 14,00 12,00 10,00 8,00 6,00 4,00 sy-01 mar-01 maj-01 lip-01 wrz-01 lis-01 sy-02 mar-02 maj-02 lip-02 wrz-02 lis-02 sy-03 mar-03 maj-03 lip-03 wrz-03 lis-03 sy-04 mar-04 Rys 1. Spadek cen ransferowych wyceny akywów

2 470 Realizacja Sysemów Wspomaania Oranizacji i rozwiązania Tendencja aka powoduje, iŝ warość wyceny oówki sysemaycznie maleje. Skukuje o coraz mniejszym wpływem wyceny środków w kasie na wynik finansowy oddziałów banków. Oraniczanie limiów oówkowych, jak i ich ryorysyczne przesrzeanie, nie przynosi juŝ, jak o miało miejsce w laach ubiełych, znacząceo polepszenia wysokości wyniku finansoweo oddziałów banków. Usalanie niskich limiów i ich przesrzeanie, powodować moŝe braki oówki w placówkach bankowych. Zjawisko o odczuwalne moŝe być szczeólnie, w odzinach porannych, przed przybyciem konwoju do placówki. Model Baumola Zodnie z Modelem Baumola łączny kosz urzymania oówki (w badanym okresie) o suma koszów ransakcyjnych (K ) i koszów alernaywnych (K u ). K = K + K ( 1 ) c u Koszy Kosz ransporu (kosz ransakcyjny ) Kosz urzymania oówki (Kosz alernaywny) Kosz całkowiy Liczba ransporów oówki Rys 2. Łączne koszy oówki Koszem ransakcyjnym w badanym przypadku jes kosz łączny kosz ransporu. K = C * I ( 2 ) j dzie: I - Średnia miesięczna ilości ransporów, C j - Kosz jednoskowy ransporu. Koszem alernaywnym jes kosz urzymania oówki (K u ).

3 Zarządzanie koszami urzymania oówki w oddziałach banku K u = S * I p * Cr * ( 3 ) 365 dzie: S - Średni miesięczny san oówki w placówkach, I p - Ilości placówek, C r - Cena ransferowa akywów. Na podsawie równań (1), (2) i (3) orzymano: K c C j * I + S * I p * Cr 31 * 365 = ( 4 ) Badania Celem podjęych badań było określenie fakycznych relacji zachodzących pomiędzy koszami ransakcyjnymi a koszami alernaywnymi. Przeanalizowano dane doyczące średnich zasiłków i średnieo sanu oówki, pochodzące z 23 oddziałów wybraneo banku. Na podsawie ych danych (Tablica 1) swierdzono, iŝ isnieje wysoka korelacja pomiędzy wielkością średnich zasiłków i średnimi sanami oówki. Współczynnik korelacji pomiędzy badanymi wielkościami wynosi 0,9071. Tabela 1 Średnie zasiłki i średnie sanu oówki w poszczeólnych placówkach. Oddział Średni Zasiłek Średni san oówki Oddział Średni Zasiłek Średni san oówki O , ,89 O , ,72 O , ,22 O , ,06 O , ,96 O , ,34 O , ,08 O , ,55 O , ,94 O , ,83 O , ,35 O , ,26 O , ,35 O , ,53 O , ,17 O , ,87 O , ,45 O , ,43 O , ,43 O , ,82 O , ,11 O , ,63 O , ,64 Wysoka korelacja pomiędzy wielkością średnich zasiłków i średnimi sanami oówki oraz dalsza analiza pozwoliła na wyznaczenie eoreyczneo równania linioweo obrazująceo wzajemną zaleŝność pomiędzy badanymi czynnikami (Rysunek 3).

4 472 Realizacja Sysemów Wspomaania Oranizacji i rozwiązania y = 1,5232* x ( 5 ) ,00 ZaleŜność pomiędzy średnim zasiłkiem a średnim sanem oówki ,00 średni san oówki , , ,00 y = 1,5232x R 2 = 0, , , , , ,00 średni zasiłek , , ,00 Rys. 3. Korelacja i wyznaczenie linii średnieo sanu oówki Wyznaczenie powyŝszej zaleŝności pozwala wierdzić, iŝ: S = f S ) ( 6 ) ( z do dalszych badań przyjęo liniową zaleŝność pomiędzy badanymi wekorami S = a * S b ( 7 ) z + dzie: - średni zasiłek. S z Wiedząc, Ŝe: Z S z = ( 8 ) I dzie: (Z ) - Łączne średniomiesięczne zaporzebowanie na oówkę w oddziałach (róŝnica pomiędzy sumą wypła (S wy ) a sumą wpła (S wp ) w badanych placówkach). Z = S S ( 9 ) wy wp Przyjęo osaecznie:

5 Zarządzanie koszami urzymania oówki w oddziałach banku 473 a * Z 31 Kc C j * I b * I p * Cr * I = ( 10 ) ZałoŜyć moŝna, Ŝe sałymi w skali miesiąca są: 1. Cena ransferowa 1, 2. Cena jednoskowa ransporu 2, 3. Średnie zaporzebowanie na oówkę 3, 4. Ilość placówek 4. Dzięki powyŝszym załoŝeniom oraz zaleŝności (5) równanie (10) jes równaniem jednej zmiennej (I ). ZróŜniczkowano równanie (10) wzlędem I. Obliczając I = I dla pierwszej pochodnej równej zero orzymujemy równanie (11), pozwalające usalić ilość ransporów, kóra minimalizuje całkowie koszy urzymania oówki. 31 a * Z * I p * Cr * I 365 C '= ( 11 ) j Znając powyŝszą zaleŝność moŝna określić punk wyznaczający opymalną ilość ransporów oówki w miesiącu oówki w jednym ransporcie przy minimalizacji łącznych koszów urzymania oówki i ransporów (punk B na rysunku 4). 1 Zmiany w osanim czasie w skali miesiąca pomijalnie małe (rysunek 1). 2 ZałoŜenie akie wydaje się być słusznym dyŝ zmianami w okresie syczeń 2001 marzec 2004 było jedynie obniŝenie jednoskowych koszów ransporu: - W kwieniu 2003 z poziomu 118,34 PLN do poziomu 111,24PLN. - W październiku 2003 z poziomu 111,24PLN do poziomu 97,6 PLN. 3 RóŜnice w poszczeólnych miesiącach badaneo okresu były pomijalnie małe. 4 W okresie badawczym ilość placówek nie zmieniła się.

6 474 Realizacja Sysemów Wspomaania Oranizacji i rozwiązania ZaleŜność łącznych koszów oówki od ransporów , , ,00 E ,00 kosz , ,00 D ,00 A C ,00 B , , ilość ransporów Rys. 4. Łączne koszy oówki 1. Punk A równowaŝny poziom koszów, 2. Punk B punk opymalny, 3. Punk C san obecny, 4. Linia A B - zalecane scenariusze (poprawa ekonomiczna, zarządzania i loisyki), 5. Linia B C - scenariusze poprawiające ekonomikę, ale nieefekywne z punku widzenia zarządzania i loisyki, 6. Linia A C wyznacza dopuszczalny poziom koszów (nieprzekraczanie obecnych), 7. Linie E A i C D obrazują syuację poarszającą wyniki ekonomiczne. Po przeprowadzeniu badań dla 23 oddziałów, do kórych odbywają się ranspory usalono, iŝ w badanym przypadku poszczeólne paramery przyjmują średnio nasępujące warości: K j - 97,6 PLN, Z PLN, I p - 23, C - 5,37%. Znając ponado paramery a i b równania (5) wyznaczono opymalną ilość ransporów, kóra minimalizuje koszy całkowie. I ' = 380, Znając I wyznaczono: 8. Minimalny kosz całkowiy (K c )

7 Zarządzanie koszami urzymania oówki w oddziałach banku 475 K c = PLN, 9. Wysokość średnieo zasiłku (S z ) S z = PLN, 10. Średni miesięczny san oówki w placówkach S S = 1,5232 * S z = Warian en jes najbardziej opymalny z punku widzenia ekonomii i efekywny z punku zarządzania i loisyki, poniewaŝ: maksymalnie redukuje koszy, pozwala na zwiększenie limiów kasowych, co z w nasępswie zwiększa ilość oówki na placówkach i uławia pracę placówkom, zmniejszenie liczby ransporów upraszcza loisykę ransporów. Przeprowadzono obliczenia dla punków A,B,C (parz rys. 4). Porównanie scenariuszy Punk "B" Punk "C" Opymalny San obecny (marzec 2003) Tabela 2 Punk "A" RównowaŜny koszowo z punkem "C" Ilość ransporów Wielkość średnieo zasiłku Średni san oówki ( w ys.) Wycena oówki Kosz ransporów Łączny kosz oówki San obecny (punk C) 1. Średni san oówki wynosi PLN, kórej wycena wynosi PLN, 2. Wykonywanych jes 443 ranspory, kórych kosz wynosi PLN, 3. Łączny kosz oówki PLN, 4. Średni zasiłek na placówkę wynosi PLN. Jes o san niekorzysny z punku widzenia ekonomii, zarządzania i loisyki dyŝ: eneruje nieporzebne koszy (podejście ekonomiczne), oranicza ilość oówki na placówkach, co urudnia funkcjonowanie jednosek sprzedaŝowych (podejście zarządzania placówką),

8 476 Realizacja Sysemów Wspomaania Oranizacji i rozwiązania znaczna ilość ransporów urudnia loisykę ransporów (loisyka ransporów). Wnioski 1. Średni san oówki w placówkach jes funkcją średnich zasiłków. 2. Przy przyjęych załoŝeniach łączny kosz oówki jes funkcją ilości ransporów. 3. MoŜna zwiększyć wynik finansowy opymalizując wielkości zasiłków oówki oraz ilości ransporów do placówek, poprzez zwiększenie limiów oówkowych i zmniejszenie ilości ransporów. 4. Przeprowadzoną analizę naleŝy poszerzyć o badanie wykonane na większej liczbie oddziałów, co spowoduje bardziej precyzyjne wyznaczenie paramerów. 5. Pozosawiając wynik finansowy na niezmienionym poziomie moŝna znacząco zwiększyć ilość oówki na placówkach, przy jednoczesnym uproszczeniu loisyki ransporów. Lieraura [Baum52] [Bel 99] Baumol W.J., The Translaions Demamd for Cash: An Inrovenory Theoreic Approach, Quarerly Journal of Economics. November 1952, s Euene F. Briham, Louis C. Gapenski; Zarządzanie finansami Warszawa 2000: Polskie Wydaw. Ekonomiczne. ISBN THE MANAGEMENT OF THE CASH COST MAINTENANCE IN COMMERCIAL BANK BRANCHES. The presened work deals wih he opimizaion of he cash mainenance oal coss in bank branches. The main aim of he work is he reducion of hese coss and of he number of ranspors. Key words: cash manaemen, opimizaion of he ranspor number, reducion of he oal cos of he cash mainenance.

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Kaedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Sposoby usalania płac w gospodarce Jednym z głównych powodów, dla kórych na rynku pracy obserwujemy poziom bezrobocia wyższy

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego 4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

WYKORZYSTANIE RACHUNKU WARIACYJNEGO DO ANALIZY WAHAŃ PRODUKCJI W PRZEDSIĘBIORSTWACH

WYKORZYSTANIE RACHUNKU WARIACYJNEGO DO ANALIZY WAHAŃ PRODUKCJI W PRZEDSIĘBIORSTWACH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36, T. 1 Sefan Grzesiak * WYKORZYSTANIE RACHUNKU WARIACYJNEGO DO ANALIZY WAHAŃ PRODUKCJI W PRZEDSIĘBIORSTWACH STRESZCZENIE W arykule podjęo problem

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

( ) ( ) ( τ) ( t) = 0

( ) ( ) ( τ) ( t) = 0 Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany

Bardziej szczegółowo

Kinematyka W Y K Ł A D I. Ruch jednowymiarowy. 2-1 Przemieszczenie, prędkość. x = x 2 - x x t

Kinematyka W Y K Ł A D I. Ruch jednowymiarowy. 2-1 Przemieszczenie, prędkość. x = x 2 - x x t Wykład z fizyki. Pior Posmykiewicz W Y K Ł A D I Ruch jednowymiarowy Kinemayka Zaczniemy wykład z fizyki od badania przedmioów będących w ruchu. Dział fizyki, kóry zajmuje się badaniem ruchu ciał bez wnikania

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb)

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb) Swap (IRS) i FRA Przykład. Sandardowy swap procenowy Dealer proponuje nasępujące sałe sopy dla sandardowej "plain vanilla" procenowej ransakcji swap. ermin wygaśnięcia Sopa dla obligacji skarbowych Marża

Bardziej szczegółowo

INWESTYCJE. Makroekonomia II Dr Dagmara Mycielska Dr hab. Joanna Siwińska-Gorzelak

INWESTYCJE. Makroekonomia II Dr Dagmara Mycielska Dr hab. Joanna Siwińska-Gorzelak INWESTYCJE Makroekonomia II Dr Dagmara Mycielska Dr hab. Joanna Siwińska-Gorzelak Inwesycje Inwesycje w kapiał rwały: wydaki przedsiębiorsw na dobra używane podczas procesu produkcji innych dóbr Inwesycje

Bardziej szczegółowo

Metody rachunku kosztów Metoda rachunku kosztu działań Podstawowe pojęcia metody ABC Kalkulacja obiektów kosztowych metodą ABC Zasobowy rachunek

Metody rachunku kosztów Metoda rachunku kosztu działań Podstawowe pojęcia metody ABC Kalkulacja obiektów kosztowych metodą ABC Zasobowy rachunek Meody rachunku koszów Meoda rachunku koszu Podsawowe pojęcia meody ABC Kalkulacja obieków koszowych meodą ABC Zasobowy rachunek koszów Kalkulacja koszów meodą ABC podsawową informacja dla rachunkowości

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa

Bardziej szczegółowo

Finanse. cov. * i. 1. Premia za ryzyko. 2. Wskaźnik Treynora. 3. Wskaźnik Jensena

Finanse. cov. * i. 1. Premia za ryzyko. 2. Wskaźnik Treynora. 3. Wskaźnik Jensena Finanse 1. Premia za ryzyko PR r m r f. Wskaźnik Treynora T r r f 3. Wskaźnik Jensena r [ rf ( rm rf ] 4. Porfel o minimalnej wariancji (ile procen danej spółki powinno znaleźć się w porfelu w a w cov,

Bardziej szczegółowo

Wykład 4 Metoda Klasyczna część III

Wykład 4 Metoda Klasyczna część III Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)

Bardziej szczegółowo

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój

Bardziej szczegółowo

Zarządzanie Projektami. Wykład 3 Techniki sieciowe (część 1)

Zarządzanie Projektami. Wykład 3 Techniki sieciowe (część 1) Zarządzanie Projekami Wykład 3 Techniki sieciowe (część ) Przedsięwzięcie wieloczynnościowe Przedsięwzięcie wieloczynnościowe skończona liczba wzajemnie ze sobą powiązanych czynności (eapów). Powiązania

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Warszawa, dnia 5 czerwca 2017 r. Poz. 13 UCHWAŁA NR 29/2017 ZARZĄDU NARODOWEGO BANKU POLSKIEGO. z dnia 2 czerwca 2017 r.

Warszawa, dnia 5 czerwca 2017 r. Poz. 13 UCHWAŁA NR 29/2017 ZARZĄDU NARODOWEGO BANKU POLSKIEGO. z dnia 2 czerwca 2017 r. DZIENNIK URZĘDOWY NARODOWEGO BANKU POLSKIEGO Warszawa, dnia 5 czerwca 2017 r. Poz. 13 UCHWAŁA NR 29/2017 ZARZĄDU NARODOWEGO BANKU POLSKIEGO z dnia 2 czerwca 2017 r. zmieniająca uchwałę w sprawie wprowadzenia

Bardziej szczegółowo

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA Makroekonomia II Wykład 3 POLITKA PIENIĘŻNA POLITKA FISKALNA PLAN POLITKA PIENIĘŻNA. Podaż pieniądza. Sysem rezerwy ułamkowej i podaż pieniądza.2 Insrumeny poliyki pieniężnej 2. Popy na pieniądz 3. Prowadzenie

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

Wykład 5. Kryzysy walutowe. Plan wykładu. 1. Spekulacje walutowe 2. Kryzysy I generacji 3. Kryzysy II generacji 4. Kryzysy III generacji

Wykład 5. Kryzysy walutowe. Plan wykładu. 1. Spekulacje walutowe 2. Kryzysy I generacji 3. Kryzysy II generacji 4. Kryzysy III generacji Wykład 5 Kryzysy waluowe Plan wykładu 1. Spekulacje waluowe 2. Kryzysy I generacji 3. Kryzysy II generacji 4. Kryzysy III generacji 1 1. Spekulacje waluowe 1/9 Kryzys waluowy: Spekulacyjny aak na warość

Bardziej szczegółowo

Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu

Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu Henryk FILCEK Akademia Górniczo-Hunicza, Kraków Dynamiczne formy pełzania i relaksacji (odprężenia) góroworu Sreszczenie W pracy podano rozważania na ema możliwości wzbogacenia reologicznego równania konsyuywnego

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile

Bardziej szczegółowo

Ocena płynności wybranymi metodami szacowania osadu 1

Ocena płynności wybranymi metodami szacowania osadu 1 Bogdan Ludwiczak Wprowadzenie Ocena płynności wybranymi meodami szacowania osadu W ubiegłym roku zaszły znaczące zmiany doyczące pomiaru i zarządzania ryzykiem bankowym. Są one konsekwencją nowowprowadzonych

Bardziej szczegółowo

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX Krzyszof Ćwikliński Uniwersye Ekonomiczny we Wrocławiu Wydział Zarządzania, Informayki i Finansów Kaedra Ekonomerii krzyszof.cwiklinski@ue.wroc.pl Daniel Papla Uniwersye Ekonomiczny we Wrocławiu Wydział

Bardziej szczegółowo

Założenia metodyczne optymalizacji ekonomicznego wieku rębności drzewostanów Prof. dr hab. Stanisław Zając Dr inż. Emilia Wysocka-Fijorek

Założenia metodyczne optymalizacji ekonomicznego wieku rębności drzewostanów Prof. dr hab. Stanisław Zając Dr inż. Emilia Wysocka-Fijorek Założenia meodyczne opymalizacji ekonomicznego wieku rębności drzewosanów Prof. dr hab. Sanisław Zając Dr inż. Emilia Wysocka-Fijorek Plan 1. Wsęp 2. Podsawy eoreyczne opymalizacji ekonomicznego wieku

Bardziej szczegółowo

Model logistycznego wsparcia systemu eksploatacji środków transportu

Model logistycznego wsparcia systemu eksploatacji środków transportu Poliechnika Wrocławska Insyu Konsrukcji i Eksploaacji Maszyn Zakład Logisyki i Sysemów Transporowych Rozprawa dokorska Model logisycznego wsparcia sysemu eksploaacji środków ransporu Rapor serii: PRE nr

Bardziej szczegółowo

Makroekonomia II. Plan

Makroekonomia II. Plan Makroekonomia II Wykład 5 INWESTYCJE Wyk. 5 Plan Inwesycje 1. Wsęp 2. Inwesycje w modelu akceleraora 2.1 Prosy model akceleraora 2.2 Niedosaki prosego modelu akceleraora 3. Neoklasyczna eoria inwesycji

Bardziej szczegółowo

q s,t 1 r k 1 t k s q k 1 q k... q n 1 q n q 1 i ef e, v 1 q,

q s,t 1 r k 1 t k s q k 1 q k... q n 1 q n q 1 i ef e, v 1 q, Maemayka finanowa i ubezpieczeniowa - 3 Przepływy pienięŝne 1 Warość akualna i przyzła przepływów dykrenych i ciągłych Oprocenowanie - dykonowanie ciągłe ze zmienną opą (iłą). 1. Sopy przedziałami ałe

Bardziej szczegółowo

Inwestycje. Makroekonomia II Dr hab. Joanna Siwińska-Gorzelak

Inwestycje. Makroekonomia II Dr hab. Joanna Siwińska-Gorzelak Inwesycje Makroekonomia II Dr hab. Joanna Siwińska-Gorzelak CIASTECZOWY ZAWRÓT GŁOWY o akcja mająca miejsce w najbliższą środę (30 lisopada) na naszym Wydziale. Wydarzenie o związane jes z rwającym od

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono

Bardziej szczegółowo

Zerowe stopy procentowe nie muszą być dobrą odpowiedzią na kryzys Andrzej Rzońca NBP, SGH, FOR

Zerowe stopy procentowe nie muszą być dobrą odpowiedzią na kryzys Andrzej Rzońca NBP, SGH, FOR Zerowe sopy procenowe nie muszą być dobrą odpowiedzią na kryzys Andrzej Rzońca NBP, SGH, FOR 111 seminarium BRE-CASE Warszaw awa, 25 lisopada 21 Plan Wprowadzenie Hipoezy I, II, III i IV Próba (zgrubnej)

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

Analiza opłacalności inwestycji logistycznej Wyszczególnienie

Analiza opłacalności inwestycji logistycznej Wyszczególnienie inwesycji logisycznej Wyszczególnienie Laa Dane w ys. zł 2 3 4 5 6 7 8 Przedsięwzięcie I Program rozwoju łańcucha (kanału) dysrybucji przewiduje realizację inwesycji cenrum dysrybucyjnego. Do oceny przyjęo

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012)

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) 211 220 Pierwsza wersja złożona 25 października 2011 ISSN Końcowa wersja zaakcepowana 3 grudnia 2012 2080-0339

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 Geomeria różniczkowa Geomeria różniczkowa o dział maemayki, w kórym do badania obieków geomerycznych wykorzysuje się meody opare na rachunku różniczkowym. Obieky geomeryczne

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych 25.01.2003 r.

Matematyka ubezpieczeń życiowych 25.01.2003 r. Maemayka ubezpieczeń życiowych 25.01.2003 r. 1.. Dany jes wiek całkowiy x. Nasępujące prawdopodobieńswa przeżycia: g= 2p x + 1/3, h= 2p x + 1/ 2, j= 2p x + 3/4 obliczono sosując inerpolację zakładającą,

Bardziej szczegółowo

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG Doroa Wikowska, Anna Gasek Kaedra Ekonomerii i Informayki SGGW dwikowska@mors.sggw.waw.pl ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYC INDEKSÓW GIEŁDOWYC: WIG, WIG2, MIDWIG I TECWIG Sreszczenie:

Bardziej szczegółowo

Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych

Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 7 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu

Bardziej szczegółowo

Management Systems in Production Engineering No 4(20), 2015

Management Systems in Production Engineering No 4(20), 2015 EKONOMICZNE ASPEKTY PRZYGOTOWANIA PRODUKCJI NOWEGO WYROBU Janusz WÓJCIK Fabryka Druu Gliwice Sp. z o.o. Jolana BIJAŃSKA, Krzyszof WODARSKI Poliechnika Śląska Sreszczenie: Realizacja prac z zakresu przygoowania

Bardziej szczegółowo

Ćwiczenie E-5 UKŁADY PROSTUJĄCE

Ćwiczenie E-5 UKŁADY PROSTUJĄCE KŁADY PROSJĄCE I. Cel ćwiczenia: pomiar podsawowych paramerów prosownika jedno- i dwupołówkowego oraz najprosszych filrów. II. Przyrządy: płyka monaŝowa, wolomierz magneoelekryczny, wolomierz elekrodynamiczny

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Gdański Zasosowanie modelu

Bardziej szczegółowo

WYKORZYSTANIE MIERNIKÓW KREOWANIA WARTOŚCI W RACHUNKU ODPOWIEDZIALNOŚCI

WYKORZYSTANIE MIERNIKÓW KREOWANIA WARTOŚCI W RACHUNKU ODPOWIEDZIALNOŚCI ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 668 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 41 2011 BARTŁOMIEJ NITA Uniwersye Ekonomiczny we Wrocławiu WYKORZYSTANIE MIERNIKÓW KREOWANIA WARTOŚCI W RACHUNKU

Bardziej szczegółowo

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO PROBLEY NIEONWENCJONALNYCH ŁADÓW ŁOŻYSOWYCH Łódź, 4 maja 999 r. Jadwiga Janowska, Waldemar Oleksiuk Insyu ikromechaniki i Fooniki, Poliechnika Warszawska ETROLOGICZNE WŁASNOŚCI SYSTE BADAWCZEGO SŁOWA LCZOWE:

Bardziej szczegółowo

Nowokeynesowski model gospodarki

Nowokeynesowski model gospodarki M.Brzoza-Brzezina Poliyka pieniężna: Neokeynesowski model gospodarki Nowokeynesowski model gospodarki Model nowokeynesowski (laa 90. XX w.) jes obecnie najprosszym, sandardowym narzędziem analizy procesów

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak E i E E i r r 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa Oczekiwania Reguła poliyki monearnej

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

OPRACOWANIE MONIKA KASIELSKA

OPRACOWANIE MONIKA KASIELSKA KONSPEKT LEKCJI MATEMATYKI DIAGNOZA UMIEJĘTNOŚCI ZGODNYCH ZE STANDARDAMI WYMAGAŃ MATURALNYCH PRZEDMIOT : Matematyka KLASA: III TEMAT: Rozwiązywanie problemów poprzez stosowanie algorytmów. STANDARDY WYMAGAŃ

Bardziej szczegółowo

OPCJE. Slide 1. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A.

OPCJE. Slide 1. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A. OPCJE Slide 1 Informacje ogólne definicje opcji: kupna (call)/sprzedaŝy (put) terminologia typy opcji krzywe zysk/strata Slide 2 Czym jest opcja KUPNA (CALL)? Opcja KUPNA (CALL) jest PRAWEM - nie zobowiązaniem

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

Józef Myrczek, Justyna Partyka Bank Spółdzielczy w Katowicach, Akademia Techniczno-Humanistyczna w Bielsku-Białej

Józef Myrczek, Justyna Partyka Bank Spółdzielczy w Katowicach, Akademia Techniczno-Humanistyczna w Bielsku-Białej Józef Myrczek, Justyna Partyka Bank Spółdzielczy w Katowicach, Akademia Techniczno-Humanistyczna w Bielsku-Białej Analiza wraŝliwości Banków Spółdzielczych na dokapitalizowanie w kontekście wzrostu akcji

Bardziej szczegółowo

Budowa i odbudowa zaufania na rynku finansowym. Piotr Szpunar Departament Systemu Finansowego Narodowy Bank Polski

Budowa i odbudowa zaufania na rynku finansowym. Piotr Szpunar Departament Systemu Finansowego Narodowy Bank Polski Budowa i odbudowa zaufania na rynku finansowym Piotr Szpunar Departament Systemu Finansowego Narodowy Bank Polski Aktywa instytucji finansowych w Polsce w latach 2000-2008 (w mld zł) 2000 2001 2002 2003

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) E i E E i r r ν φ θ θ ρ ε ρ α 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa Oczekiwania

Bardziej szczegółowo

Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym

Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym Jacek Batóg Uniwersytet Szczeciński Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym Jednym z ważniejszych elementów każdej gospodarki jest system bankowy. Znaczenie

Bardziej szczegółowo

KONTROLA JAKOŚCI ŻELIWA AUSTENITYCZNEGO METODĄ ATD

KONTROLA JAKOŚCI ŻELIWA AUSTENITYCZNEGO METODĄ ATD 50/ Archives of Foundry, Year 001, Volume 1, 1 (/) Archiwum Odlewnicwa, Rok 001, Rocznik 1, Nr 1 (/) PAN Kaowice PL ISSN 164-5308 KONTROLA JAKOŚCI ŻLIWA AUSTNITYCZNGO MTODĄ ATD R. WŁADYSIAK 1 Kaedra Sysemów

Bardziej szczegółowo

LINIA DŁUGA Konspekt do ćwiczeń laboratoryjnych z przedmiotu TECHNIKA CYFROWA

LINIA DŁUGA Konspekt do ćwiczeń laboratoryjnych z przedmiotu TECHNIKA CYFROWA LINIA DŁUGA Z Z, τ e u u Z L l Konspek do ćwiczeń laboraoryjnych z przedmiou TECHNIKA CYFOWA SPIS TEŚCI. Definicja linii dłuiej... 3. Schema zasępczy linii dłuiej przedsawiony za pomocą elemenów o sałych

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 4

Stanisław Cichocki Natalia Nehrebecka. Wykład 4 Sanisław Cichocki Naalia Nehrebecka Wykład 4 1 1. Badanie sacjonarności: o o o Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) Tes KPSS 2. Modele o rozłożonych opóźnieniach (DL) 3. Modele auoregresyjne

Bardziej szczegółowo

Analiza wyników ekonomiczno-finansowych Banku Spółdzielczego w Niedrzwicy Dużej na dzień roku

Analiza wyników ekonomiczno-finansowych Banku Spółdzielczego w Niedrzwicy Dużej na dzień roku Analiza wyników ekonomiczno-finansowych Banku Spółdzielczego w Niedrzwicy Dużej na dzień 31.12.211 roku Niedrzwica Duża, 212 ` 1. Rozmiar działalności Banku Spółdzielczego mierzony wartością sumy bilansowej,

Bardziej szczegółowo

Portfele Comperii - wrzesień 2011

Portfele Comperii - wrzesień 2011 1 S t r o n a Portfele Comperii - wrzesień 2011 Czym są Portfele Comperii? Portfele Comperii (dawniej zwane Wskaźnikami Comperii ) to analiza ukazująca, jak w ostatnich kilku tygodniach (a także miesiąc

Bardziej szczegółowo

ANALIZA WPŁYWU ROZWOJU ELEKTROMOBILNOŚCI NA ZAPOTRZEBOWANIE NA MOC I ENERGIĘ W KRAJOWYM SYSTEMIE ELEKTROENERGETYCZNYM

ANALIZA WPŁYWU ROZWOJU ELEKTROMOBILNOŚCI NA ZAPOTRZEBOWANIE NA MOC I ENERGIĘ W KRAJOWYM SYSTEMIE ELEKTROENERGETYCZNYM Pior MARCHEL, Józef PASKA, Łukasz MICHALSKI Poliechnika Warszawska, Insyu Elekroenergeyki ANALIZA WPŁYWU ROZWOJU ELEKTROMOBILNOŚCI NA ZAPOTRZEBOWANIE NA MOC I ENERGIĘ W KRAJOWYM SYSTEMIE ELEKTROENERGETYCZNYM

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( ) Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Jerzy Czesław Ossowski Politechnika Gdańska. Dynamika wzrostu gospodarczego a stopy procentowe w Polsce w latach

Jerzy Czesław Ossowski Politechnika Gdańska. Dynamika wzrostu gospodarczego a stopy procentowe w Polsce w latach DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Poliechnika Gdańska Dynamika wzrosu

Bardziej szczegółowo

KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1

KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE.   Strona 1 KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych

Bardziej szczegółowo

Postęp techniczny. Model lidera-naśladowcy. Dr hab. Joanna Siwińska-Gorzelak

Postęp techniczny. Model lidera-naśladowcy. Dr hab. Joanna Siwińska-Gorzelak Posęp echniczny. Model lidera-naśladowcy Dr hab. Joanna Siwińska-Gorzelak Założenia Rozparujemy dwa kraje; kraj 1 jes bardziej zaawansowany echnologicznie (lider); kraj 2 jes mniej zaawansowany i nie worzy

Bardziej szczegółowo

Reakcja banków centralnych na kryzys

Reakcja banków centralnych na kryzys Reakcja banków cenralnych na kryzys Andrzej Rzońca Warszawa, 18 lisopada 2011 r. Plan Podsawowa lekcja z kryzysu dla poliyki pieniężnej Jak wyglądała reakcja poliyki pieniężnej na kryzys? Dlaczego reakcja

Bardziej szczegółowo

Wskazówki projektowe do obliczania nośności i maksymalnego zanurzenia statku rybackiego na wstępnym etapie projektowania

Wskazówki projektowe do obliczania nośności i maksymalnego zanurzenia statku rybackiego na wstępnym etapie projektowania CEPOWSKI omasz 1 Wskazówki projekowe do obliczania nośności i maksymalnego zanurzenia saku rybackiego na wsępnym eapie projekowania WSĘP Celem podjęych badań było opracowanie wskazówek projekowych do wyznaczania

Bardziej szczegółowo

EFEKTYWNOŚĆ INWESTYCJI W ZAPASY W OPODATKOWANYCH I NIE OPODATKOWANYCH ORGANIZACJACH 1

EFEKTYWNOŚĆ INWESTYCJI W ZAPASY W OPODATKOWANYCH I NIE OPODATKOWANYCH ORGANIZACJACH 1 GRZEGORZ MICHALSKI EFEKTYWNOŚĆ INWESTYCJI W ZAPASY W OPODATKOWANYCH I NIE OPODATKOWANYCH ORGANIZACJACH 1 1. Wsęp Organizacje, mogą działać jako opodakowane przedsiębiorswa działające na zasadach komercyjnych

Bardziej szczegółowo

Europejska opcja kupna akcji calloption

Europejska opcja kupna akcji calloption Europejska opcja kupna akcji callopion Nabywca holder: prawo kupna long posiion jednej akcji w okresie epiraiondae po cenie wykonania eercise price K w zamian za opłaę C Wysawca underwrier: obowiązek liabiliy

Bardziej szczegółowo

I. KINEMATYKA I DYNAMIKA

I. KINEMATYKA I DYNAMIKA piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne

Bardziej szczegółowo

A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t

A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t B: 1 Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych 1. ZałóŜmy, Ŝe zmienna A oznacza stęŝenie substratu, a zmienna B stęŝenie produktu reakcji chemicznej

Bardziej szczegółowo

WYKORZYSTANIE TESTU OSTERBERGA DO STATYCZNYCH OBCIĄŻEŃ PRÓBNYCH PALI

WYKORZYSTANIE TESTU OSTERBERGA DO STATYCZNYCH OBCIĄŻEŃ PRÓBNYCH PALI Prof. dr hab.inż. Zygmun MEYER Poliechnika zczecińska, Kaedra Geoechniki Dr inż. Mariusz KOWALÓW, adres e-mail m.kowalow@gco-consul.com Geoechnical Consuling Office zczecin WYKORZYAIE EU OERERGA DO AYCZYCH

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

Prowadzisz lub będziesz prowadzić działalność gospodarczą? Przeczytaj koniecznie!

Prowadzisz lub będziesz prowadzić działalność gospodarczą? Przeczytaj koniecznie! Prowadzisz lub będziesz prowadzić działalność gospodarczą? Przeczyaj koniecznie! Jeseś osobą prowadzącą pozarolniczą działalność, jeśli: prowadzisz pozarolniczą działalność gospodarczą na podsawie przepisów

Bardziej szczegółowo