PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.

Wielkość: px
Rozpocząć pokaz od strony:

Download "PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach."

Transkrypt

1 CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o ębach skośnych stożkowe (hipoidalne) globoidalna o ębach łukowych

2

3 Stożkowa prekładnia cołowa służy do prenosenia ruchu obrotowego pry skryżowanych osiach, pry cym ęby mogą mieć linie: proste, łukowe. Podobnie jak to jest w cołowych prekładniach walcowych, w prekładniach stożkowych o ębach łukowych występuje więksy stopień pokrycia, co apewnia lepsą współpracę ębów. Kąt międy osiami obrotów kół stożkowych Σ może wynosić: Σ 90, Σ < 90, Σ > 90.

4 KOŁA STOŻKOWE ęby proste łukowe

5 W kołach ębatych stożkowych ęby nacinane są na stożku ściętym (arys jest ewolwentowy w każdym prekroju prostopadłym do osi stożka). Wymiary poprecne ęba mniejsają się ku wierchołkowi stożka; tego też wględu wykonywanie uębień kół stożkowych wymaga specjalnych obrabiarek. łoże cęść obrabiana kąt pochylenia

6

7

8 Koła ębate stożkowe, których teoretycne linie ębów są liniami prostymi prechodącymi pre wierchołek stożka podiałowego naywamy kołami stożkowymi prostymi ( ębami prostymi).

9 koło stożkowe proste linia ęba prostego

10 Jeżeli linie ębów na rowinięciu stożka podiałowego są łukami kołowymi, to koła naywamy kołami stożkowymi łukowymi ( ębami łukowymi).

11 linia ęba łukowego

12

13 Rokład naprężeń dociskowych: a) pry ębach prostych, b) pry ębach łukowych.

14 Sc d e O r e r e Cechy geometrycne kół stożkowych C δ δ Sc d e d m O Σ O

15 W stożkowych kołach ębatych podstawowymi powierchniami są stożki podiałowe, które na ogół są równoceśnie stożkami tocnymi. δ δ stożki podiałowe O Σ

16 Stożki podiałowe są określone pre półkąt podiałowy δ, δ i pre średnicę podstawy stożka podiałowego d e,d e. d e δ δ O Σ d e

17 Wselkie agadnienia geometrycne dotycące wymiarów ębów (a więc i korekcji uębienia) ropatruje się na powierchniach stożków cołowych Sc,Sc (dopełniających), które są uprosceniem powierchni kulistych, na których odbywa się aębienie. C O

18 Geometrycnie najważniejsym okręgiem podiałowym jest okrąg ewnętrnej podstawy stożka podiałowego: d m e te gdie: m te -moduł cołowy ewnętrny. W prypadku kół o łukowej linii ębów do obliceń pryjmuje się średnicę średniej podstawy występującą w połowie serokości wieńca średnicy podiałowej: d m m tm gdie m tm - moduł cołowy średni.

19 Moduł cołowy średni m tn : m tn m nn cosβ gdie m nn moduł normalny średni, β m m nominalny kąt pochylenia linii ęba (występujący w połowie serokości wieńca).

20 Prełożenie enie prekładni stożkowej

21 W celu wynacenia ależności międy pół-kątem stożka podiałowego a prełożeniem prekładni ropatrymy prypadek ogólny w którym Σ 90. O Σ σ O d e σ C O d e

22 Kąt σ oblicamy na podstawie rysunku wychodąc ałożenia, że długość tworących łącących środek prekładni O centralnym biegunem aębienia C jest wspólną wielkością obydwu stożków podiałowych. O O d e Σ σ σ mte m te m te C O d e

23 O O d e Σ σ σ mte m te C O d e

24 OC Δ OCO sinσ OC O Σ σ σ mte O d e OC OC sinσ O m te C OC Δ OCO sinσ sin( Σ σ) OC d e OC OC sin Σ - σ ( ) Z rysunku wynika: O C m te ora O C m te

25 Wiemy, że: d e OC OC sinσ O O ora OC OC sin Σ - σ ( ) Σ σ a także, że: σ mte m te C O C m te ora O C m te d e O Podstawiając: OC OC sinσ OC sin ( Σ - σ ) m/ m/ / sinσ / sin te te ( Σ σ ) Uyskamy kolejno: sinσ sin( Σ σ) ( ) sin Σ σ sinσ sin Σ σ sinσ ( )

26 Wiemy, że prełożenie kinematycne można wyraić stosunkiem licby ębów: i sinσ sin ( Σ - σ ) i Po odwróceniu uyskamy: ( Σ σ ) sin sinσ Z trygonometrii wiemy, że: sin ( α β ) sinα cosβ sinβ cosα Po podstawieniu uyskamy: i sinσ sinσcosσ -sinσ cosσ

27 Dieląc licnik i mianownik pre cosσ : uyskamy: sinσ cosσ sinσ cosσ sinσ cosσ cosσ cosσ sinσ tgσ tgσ cosσ Po prekstałceniach uyskamy : tgσ sinσ tgσ cosσ

28 Z wyrażenia: tgσ tgσ + tgσ cosσ wynacamy tgσ : + sinσ cosσ sinσ Dla Σ 90 sin90 cos90 i tgσ 0 W ten sposób wyrailiśmy prełożenie a pomocą tangensa półkąta σ stożka podiałowego.

29 i tgσ Analia tego woru pokauje bardo istotne ogranicenia w maksymalnym prełożeniu tego typu prekładni. Wielkość kątów stożków podiałowych δ, δ, współpracujących kół ębatych ależy: jednej strony od kąta Σ, drugiej strony od licby ębów obydwu współpracujących kół, cyli od prełożenia prekładni i.

30 Istotną aletą prekładni stożkowej jest możliwość prenosenia ruchu obrotowego i wiąanego nim obciążenia pod adanym kątem. Wady: mniejsa dokładność wykonania, koniecność jednostronnego łożyskowania jednego kół, naciski reguły koncentrują się w pobliżu ewnętrnej średnicy, występuje więksone obciążenie łożysk również w kierunku wdłużnym, ogranicona wielkość prełożenia i 5, a w asadie i 4,5.

31 koniecność jednostronnego łożyskowania jednego kół Wymienione wady powodują to, że cołowe prekładnie stożkowe są stosowane do prenosenia niebyt dużych obciążeń małymi prędkościami obwodowymi.

32

Przekładnie zębate. Klasyfikacja przekładni zębatych. 1. Ze względu na miejsce zazębienia. 2. Ze względu na ruchomość osi

Przekładnie zębate. Klasyfikacja przekładni zębatych. 1. Ze względu na miejsce zazębienia. 2. Ze względu na ruchomość osi Przekładnie zębate Klasyfikacja przekładni zębatych 1. Ze względu na miejsce zazębienia O zazębieniu zewnętrznym O zazębieniu wewnętrznym 2. Ze względu na ruchomość osi O osiach stałych Planetarne przynajmniej

Bardziej szczegółowo

Ćw. 5. Określenie współczynnika strat mocy i sprawności przekładni ślimakowej.

Ćw. 5. Określenie współczynnika strat mocy i sprawności przekładni ślimakowej. Laboratorium Podstaw Konstrukcji Masyn - - Ćw. 5. Określenie współcynnika strat mocy i sprawności prekładni ślimakowej.. Podstawowe wiadomości i pojęcia. Prekładnie ślimakowe są to prekładnie wichrowate,

Bardziej szczegółowo

Przekładnie zębate - cel

Przekładnie zębate - cel Prekładnie ębate Prekładnie ębate - cel V M Prekładnia SILNIK = M M w w M w w ORGAN ROBOCZY Preniesienie ruchu jednego wału na drugi Zmiana momentu Zmiana prędkości obrotowej Podiał kryterium: układ osi

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

Mechanizmy zębate Przekładnie zębate

Mechanizmy zębate Przekładnie zębate Mechanimy ębate Prekładnie ębate Prekładnie ębate - cel V M Prekładnia SILNIK = M M w w M w w ORGAN ROBOCZY Preniesienie ruchu jednego wału na drugi Zmiana momentu Zmiana prędkości obrotowej Podiał kryterium:

Bardziej szczegółowo

OWE PRZEKŁADNIE WALCOWE O ZĘBACH Z BACH ŚRUBOWYCH

OWE PRZEKŁADNIE WALCOWE O ZĘBACH Z BACH ŚRUBOWYCH CZOŁOWE OWE PRZEKŁADNIE WALCOWE O ZĘBACH Z BACH ŚRUBOWYCH Klasyfikacja przekładni zębatych w zależności od kinematyki zazębień PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe)

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn. Wykład nr. 13 Przekładnie zębate

Podstawy Konstrukcji Maszyn. Wykład nr. 13 Przekładnie zębate Podstawy Konstrukcji Maszyn Wykład nr. 13 Przekładnie zębate 1. Podział PZ ze względu na kształt bryły na której wykonano zęby A. walcowe B. stożkowe i inne 2. Podział PZ ze względu na kształt linii zębów

Bardziej szczegółowo

Koła stożkowe o zębach skośnych i krzywoliniowych oraz odpowiadające im zastępcze koła walcowe wytrzymałościowo równoważne

Koła stożkowe o zębach skośnych i krzywoliniowych oraz odpowiadające im zastępcze koła walcowe wytrzymałościowo równoważne Spis treści PRZEDMOWA... 9 1. OGÓLNA CHARAKTERYSTYKA I KLASYFIKACJA PRZEKŁADNI ZĘBATYCH... 11 2. ZASTOSOWANIE I WYMAGANIA STAWIANE PRZEKŁADNIOM ZĘBATYM... 22 3. GEOMETRIA I KINEMATYKA PRZEKŁADNI WALCOWYCH

Bardziej szczegółowo

3. WSPÓŁCZYNNIK ŚCINANIA (KOREKCYJNY)

3. WSPÓŁCZYNNIK ŚCINANIA (KOREKCYJNY) Cęść 1. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY) 1.. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY).1. Wstęp Współcynnik κ naywany współcynnikiem ścinania jest wielkością ewymiarową, ależną od kstałtu prekroju. Występuje

Bardziej szczegółowo

PODSTAWY KONSTRUKCJI MASZYN

PODSTAWY KONSTRUKCJI MASZYN POLITECHNIA LUBELSA J. Banasek, J. Jonak PODSTAW ONSTRUCJI MASN WPROWADENIE DO PROJETOWANIA PREŁADNI ĘBATCH I DOBORU SPRĘGIEŁ MECHANICNCH Wydawnictwa Ucelniane 008 Opiniodawca: dr hab. inŝ. Stanisław rawiec

Bardziej szczegółowo

ności od kinematyki zazębie

ności od kinematyki zazębie Klasyfikacja przekładni zębatych z w zależno ności od kinematyki zazębie bień PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o zebach prostych o zębach

Bardziej szczegółowo

Spis treści. Przedmowa 11

Spis treści. Przedmowa 11 Przykłady obliczeń z podstaw konstrukcji maszyn. [Tom] 2, Łożyska, sprzęgła i hamulce, przekładnie mechaniczne / pod redakcją Eugeniusza Mazanka ; autorzy: Andrzej Dziurski, Ludwik Kania, Andrzej Kasprzycki,

Bardziej szczegółowo

UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NARZĘDZIEM JEDNOOSTRZOWYM

UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NARZĘDZIEM JEDNOOSTRZOWYM MODELOWANIE INŻYNIESKIE ISSN 896-77X 40, s. 7-78, Gliwice 00 UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NAZĘDZIEM JEDNOOSTZOWYM PIOT FĄCKOWIAK Instytut Technologii Mechanicnej, Politechnika

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

>> ω z, (4.122) Przybliżona teoria żyroskopu

>> ω z, (4.122) Przybliżona teoria żyroskopu Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y

Bardziej szczegółowo

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 ĆWICZENIE NR 1 TEMAT: Próba statycna rociągania metali. Obowiąująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 Podać nacenie następujących symboli: d o -.....................................................................

Bardziej szczegółowo

Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski

Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski Katedra Geotechniki i Budownictwa Drogowego WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Maurski Mechanika Gruntów dr inż. Ireneus Dyka http://pracownicy.uwm.edu.pl/i.dyka e-mail: i.dyka@uwm.edu.pl

Bardziej szczegółowo

Przekładnie zębate : zasady działania : obliczenia geometryczne i wytrzymałościowe / Antoni Skoć, Eugeniusz Świtoński. Warszawa, 2017.

Przekładnie zębate : zasady działania : obliczenia geometryczne i wytrzymałościowe / Antoni Skoć, Eugeniusz Świtoński. Warszawa, 2017. Przekładnie zębate : zasady działania : obliczenia geometryczne i wytrzymałościowe / Antoni Skoć, Eugeniusz Świtoński. Warszawa, 2017 Spis treści Przedmowa XV 1. Znaczenie przekładni zębatych w napędach

Bardziej szczegółowo

Koła zębate. T. 3, Sprawdzanie / Kazimierz Ochęduszko. wyd. 5, dodr. Warszawa, Spis treści

Koła zębate. T. 3, Sprawdzanie / Kazimierz Ochęduszko. wyd. 5, dodr. Warszawa, Spis treści Koła zębate. T. 3, Sprawdzanie / Kazimierz Ochęduszko. wyd. 5, dodr. Warszawa, 2012 Spis treści Część pierwsza Geometryczne zaleŝności w przekładniach zębatych I. Wiadomości podstawowe 21 1. Klasyfikacja

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

ogólna charakterystyka

ogólna charakterystyka PRZEKŁADNIE ogólna charakterystyka Większość maszyn nie może być napędzana bezpośrednio silnikiem i wymaga ogniwa pośredniczącego w postaci przekładni. Przekładnie są to mechanizmy służące do przenoszenia

Bardziej szczegółowo

PRZEKŁADNIE FALOWE. 1. Wstęp. (W. Ostapski)

PRZEKŁADNIE FALOWE. 1. Wstęp. (W. Ostapski) PRZEKŁADNIE FALOWE (W. Ostapsk). Wstęp Perwsy patent na prekładnę harmoncną waną w Polsce falową otrymał w 959 roku w USA C.W. Musser, [04, 05]. Rok późnej była ona preentowana na wystawe w Nowym Yorku

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn 0-05-7 Podstawy Konstrukcji Maszyn Część Wykład nr.3. Przesunięcie zarysu przypomnienie znanych zagadnień (wykład nr. ) Zabieg przesunięcia zarysu polega na przybliżeniu lub oddaleniu narzędzia od osi

Bardziej szczegółowo

Analiza transformatora

Analiza transformatora ĆWICZENIE 4 Analia transformatora. CEL ĆWICZENIA Celem ćwicenia jest ponanie bodowy, schematu astępcego ora ocena pracy transformatora.. PODSTAWY TEORETYCZNE. Budowa Podstawowym adaniem transformatora

Bardziej szczegółowo

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN BADANIE ŚLADÓW DOLEGANIA ZĘBÓW NA PRZYKŁADZIE PRZEKŁADNI HIPOIDALNEJ ĆWICZENIE LABORATORYJNE NR 4 Z PODSTAW KONSTRUKCJI

Bardziej szczegółowo

POMIAR KÓŁ ZĘBATYCH WALCOWYCH cz. 1.

POMIAR KÓŁ ZĘBATYCH WALCOWYCH cz. 1. I. Cel ćwiczenia: POMIAR KÓŁ ZĘBATYCH WALCOWYCH cz. 1. 1. Zidentyfikować koło zębate przeznaczone do pomiaru i określić jego podstawowe parametry 2. Dokonać pomiaru grubości zęba suwmiarką modułową lub

Bardziej szczegółowo

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd

Bardziej szczegółowo

1. Zasady konstruowania elementów maszyn

1. Zasady konstruowania elementów maszyn 3 Przedmowa... 10 O Autorów... 11 1. Zasady konstruowania elementów maszyn 1.1 Ogólne zasady projektowania.... 14 Pytania i polecenia... 15 1.2 Klasyfikacja i normalizacja elementów maszyn... 16 1.2.1.

Bardziej szczegółowo

Badanie transformatora jednofazowego. (Instrukcja do ćwiczenia)

Badanie transformatora jednofazowego. (Instrukcja do ćwiczenia) 1 Badanie transformatora jednofaowego (Instrukcja do ćwicenia) Badanie transformatora jednofaowego. CEL ĆICZENI: Ponanie asady diałania, budowy i właściwości.transformatora jednofaowego. 1 IDOMOŚCI TEORETYCZNE

Bardziej szczegółowo

ĆWICZENIE NR OBRÓBKA UZĘBIENIA W WALCOWYM KOLE ZĘBATYM O UZĘBIENIU ZEWNĘTRZNYM, EWOLWENTOWYM, O ZĘBACH PROSTYCH, NA FREZARCE OBWIEDNIOWEJ

ĆWICZENIE NR OBRÓBKA UZĘBIENIA W WALCOWYM KOLE ZĘBATYM O UZĘBIENIU ZEWNĘTRZNYM, EWOLWENTOWYM, O ZĘBACH PROSTYCH, NA FREZARCE OBWIEDNIOWEJ ĆWICZENIE NR 6. 6. OBRÓBKA UZĘBIENIA W WALCOWYM KOLE ZĘBATYM O UZĘBIENIU ZEWNĘTRZNYM, EWOLWENTOWYM, O ZĘBACH PROSTYCH, NA FREZARCE OBWIEDNIOWEJ 6.1. Zadanie technologiczne Dla zadanego rysunkiem wykonawczym

Bardziej szczegółowo

Ruch kulisty bryły. Kąty Eulera. Precesja regularna

Ruch kulisty bryły. Kąty Eulera. Precesja regularna Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje

Bardziej szczegółowo

PL B1. POLITECHNIKA RZESZOWSKA IM. IGNACEGO ŁUKASIEWICZA, Rzeszów, PL BUP 21/15

PL B1. POLITECHNIKA RZESZOWSKA IM. IGNACEGO ŁUKASIEWICZA, Rzeszów, PL BUP 21/15 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 227819 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 407801 (22) Data zgłoszenia: 04.04.2014 (51) Int.Cl. F16H 1/16 (2006.01)

Bardziej szczegółowo

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie 05-0-5. Opis różnicę pomiędy błędem pierwsego rodaju a błędem drugiego rodaju Wyniki eksperymentu składamy w dwie hipotey statystycne: H0 versus H, tak, by H0 odrucić i pryjąć H. Jeśli decydujemy, że pryjmujemy

Bardziej szczegółowo

Materiały pomocnicze do ćwiczenia laboratoryjnego z korekcji kół zębatych (uzębienia i zazębienia)

Materiały pomocnicze do ćwiczenia laboratoryjnego z korekcji kół zębatych (uzębienia i zazębienia) Materiały pomocnicze do ćwiczenia laboratoryjnego z korekcji kół zębatych (uzębienia i zazębienia) 1. WPROWADZENIE Koła zębate znajdują zastosowanie w rozlicznych mechanizmach, począwszy od przemysłu zegarmistrzowskiego

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn Podstawy Konstrukcji Maszyn Część Wykład nr. 1 1. Podstawowe prawo zazębienia I1 przełożenie kinematyczne 1 i 1 = = ω ω r r w w1 1 . Rozkład prędkości w zazębieniu 3 4 3. Zarys cykloidalny i ewolwentowy

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie OB-2 BUDOWA I MOŻLIWOŚCI TECHNOLOGICZNE FREZARKI OBWIEDNIOWEJ

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie OB-2 BUDOWA I MOŻLIWOŚCI TECHNOLOGICZNE FREZARKI OBWIEDNIOWEJ POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie OB-2 Temat: BUDOWA I MOŻLIWOŚCI TECHNOLOGICZNE FREZARKI OBWIEDNIOWEJ Opracował: mgr inż. St. Sucharzewski Zatwierdził: prof.

Bardziej szczegółowo

Modelowanie wspomagające projektowanie maszyn (TMM) Wykład 3 Analiza kinematyczna przekładnie zębate

Modelowanie wspomagające projektowanie maszyn (TMM) Wykład 3 Analiza kinematyczna przekładnie zębate Politechnika Lubelska Katedra Podstaw Konstrukcji Maszyn i Mechatroniki Modelowanie wspomagające projektowanie maszyn (TMM) Wykład 3 Analiza kinematyczna przekładnie zębate Lublin 2017 Dr inż. Łukasz Jedliński

Bardziej szczegółowo

Danuta Jasińska Choromańska, Dariusz Kołodziej, Marcin Zaczyk. Człowiek- najlepsza inwestycja

Danuta Jasińska Choromańska, Dariusz Kołodziej, Marcin Zaczyk. Człowiek- najlepsza inwestycja Danuta Jasińska Choromańska, Dariusz Kołodziej, Marcin Zaczyk WKPI Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego STOSOWANIE

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

Przekładnie ślimakowe / Henryk Grzegorz Sabiniak. Warszawa, cop Spis treści

Przekładnie ślimakowe / Henryk Grzegorz Sabiniak. Warszawa, cop Spis treści Przekładnie ślimakowe / Henryk Grzegorz Sabiniak. Warszawa, cop. 2016 Spis treści Przedmowa XI 1. Podział przekładni ślimakowych 1 I. MODELOWANIE I OBLICZANIE ROZKŁADU OBCIĄŻENIA W ZAZĘBIENIACH ŚLIMAKOWYCH

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie UNIWERSYT E ZACHODNIOPOMOR T T E CH LOGICZNY W SZCZECINIE NO SKI KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZAKŁAD PODSTAW KONSTRUKCJI MASZYN

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

Zginanie Proste Równomierne Belki

Zginanie Proste Równomierne Belki Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie

Bardziej szczegółowo

Wyznaczenie równowagi w mechanizmie. Przykład 6

Wyznaczenie równowagi w mechanizmie. Przykład 6 Wyznaczenie równowagi w mechanizmie Przykład 6 3 m, J Dane: m, J masa, masowy moment bezwładności prędkość kątowa członu M =? Oraz siły reakcji 0 M =? M b F ma b a M J b F b M b Para sił F b M b F b h

Bardziej szczegółowo

Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu.

Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu. TEMATYKA: Optymaliacja nakładania wyników pomiarów Ćwicenia nr 6 DEFINICJE: Optymaliacja: metoda wynacania najlepsego (sukamy wartości ekstremalnej) rowiąania punktu widenia określonego kryterium (musimy

Bardziej szczegółowo

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁAD ELEKTROENERGETYKI Ćwicenie: URZĄDZENIA PRZECIWWYBUCHOWE BADANIE TRANSFORMATORA JEDNOFAZOWEGO Opracował: kpt.dr inż. R.Chybowski Warsawa

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN KOREKCJA ZAZĘBIENIA ĆWICZENIE LABORATORYJNE NR 5 Z PODSTAW KONSTRUKCJI MASZYN OPRACOWAŁ: dr inż. Jan KŁOPOCKI Gdańsk 2000

Bardziej szczegółowo

Reduktor 2-stopniowy, walcowy.

Reduktor 2-stopniowy, walcowy. Reduktor 2-stopniowy, walcowy. 1. Dane wejściowe Projektowana przekładnia należy do grupy reduktorów walcowych. Funkcję sprzęgła pełni przekładnia pasowa na wejściu, która charakteryzuje się pewną elastycznością

Bardziej szczegółowo

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E'' GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

Podstawy Konstrukcji Urządzeń Precyzyjnych

Podstawy Konstrukcji Urządzeń Precyzyjnych Studia Inżynierskie Dzienne (I stopnia) Wydział Mechatroniki Politechniki Warszawskiej Podstawy Konstrukcji Urządzeń Precyzyjnych Wykład sem. 4 Przekładnie mechaniczne 2 Sprzęgła Opracował: dr inż. Wiesław

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2017 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2017 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące

Bardziej szczegółowo

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił . REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:

Bardziej szczegółowo

Badanie transformatora jednofazowego

Badanie transformatora jednofazowego BADANIE TRANSFORMATORA JEDNOFAZOWEGO Cel ćwicenia Ponanie budowy i asady diałania ora metod badania i podstawowych charakterystyk transformatora jednofaowego. I. WIADOMOŚCI TEORETYCZNE Budowa i asada diałania

Bardziej szczegółowo

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6 achunek prawdopodobieństwa MP6 Wydiał Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab.. Jurlewic Prykłady do listy : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo

Bardziej szczegółowo

MarGear. Technika pomiarów uzębień

MarGear. Technika pomiarów uzębień 3 MarGear. Technika pomiarów uzębień MarGear. GMX 275, GMX 400, GMX 600 MarGear. Rozwiązania branżowe 17-3 17-4 MarGear. Oprogramowanie 17-6 dajcie prospektu lub patrz WebCode 2266 na stronie internetowej

Bardziej szczegółowo

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 06/15

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 06/15 PL 221264 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 221264 (13) B1 (21) Numer zgłoszenia: 405298 (51) Int.Cl. B23F 1/08 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Obróbka wytaczarska: Obróbka frezerska: Obróbka mechaniczna w ZAMET Budowa Maszyn S.A.

Obróbka wytaczarska: Obróbka frezerska: Obróbka mechaniczna w ZAMET Budowa Maszyn S.A. Obróbka mechaniczna w ZAMET Budowa Maszyn S.A. Obróbka wytaczarska: Wiertarko-frezarki typu "Skoda" z czytnikiem optycznym maksymalne ciężary: na płycie możliwość obróbki z głowicy kątowej: maksymalny

Bardziej szczegółowo

10.0. Przekładnie 10.1. Podział i cechy konstrukcyjne

10.0. Przekładnie 10.1. Podział i cechy konstrukcyjne Postawy Kostrukcji Masy - projektowaie.. Prekłaie.. Poiał i cechy kostrukcyje Zespoły służące o miay astępujących parametrów prekaywaej eergii mechaicej ruchu obrotowego: prekaywaego mometu (lub w scególych

Bardziej szczegółowo

Charakterystyka frezarki uniwersalnej oraz zastosowanie podzielnicy uniwersalnej

Charakterystyka frezarki uniwersalnej oraz zastosowanie podzielnicy uniwersalnej POLITECHNIA POZNAŃSA Instytut Technologii Mechanicnej Masyny i urądenia technologicne laboratorium Charakterystyka frearki uniwersalnej ora astosowanie podielnicy uniwersalnej Opracował: dr inż. rystof

Bardziej szczegółowo

Sprawdzanie transformatora jednofazowego

Sprawdzanie transformatora jednofazowego Sprawdanie transformatora jednofaowego SPRAWDZANIE TRANSFORMATORA JEDNOFAZOWEGO Cel ćwicenia Ponanie budowy i asady diałania ora metod badania i podstawowych charakterystyk transformatora jednofaowego.

Bardziej szczegółowo

X = r cosα = (R+r sinα) cosβ = (R+r sinα) sinβ

X = r cosα = (R+r sinα) cosβ = (R+r sinα) sinβ Krzywe Krzywa przez punkty XYZ Rysunek 18.1. Schemat wymiarów torusa i wynik nawinięcia W rozdziale zostanie przedstawiony przykład nawinięcia krzywej na ścianę torusa. Poniżej (rysunek 18.1) schemat wymiarów

Bardziej szczegółowo

Sposób kształtowania plastycznego uzębień wewnętrznych kół zębatych metodą walcowania poprzecznego

Sposób kształtowania plastycznego uzębień wewnętrznych kół zębatych metodą walcowania poprzecznego Sposób kształtowania plastycznego uzębień wewnętrznych kół zębatych metodą walcowania poprzecznego Przedmiotem wynalazku jest sposób kształtowania plastycznego uzębień wewnętrznych kół zębatych metodą

Bardziej szczegółowo

3. Wstępny dobór parametrów przekładni stałej

3. Wstępny dobór parametrów przekładni stałej 4,55 n1= 3500 obr/min n= 1750 obr/min N= 4,55 kw 0,70 1,00 16 37 1,41 1,4 8 30,7 1,41 1. Obliczenie momentu Moment na kole n1 obliczam z zależności: 9550 9550 Moment na kole n obliczam z zależności: 9550

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Rok skolny 2015/16 POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopscająca (2); (3) - ocena dostatecna (3); (4) - ocena dobra (4);

Bardziej szczegółowo

PROJEKTOWANIE WYSOKOSPRAWNYCH POMP I SILNIKÓW HYDRAULICZNYCH NA PRZYKŁADZIE MASZYN GEROTOROWYCH I ORBITALNYCH

PROJEKTOWANIE WYSOKOSPRAWNYCH POMP I SILNIKÓW HYDRAULICZNYCH NA PRZYKŁADZIE MASZYN GEROTOROWYCH I ORBITALNYCH 63 Rodiał 5 PROJEKTOWANIE WYSOKOSPRAWNYCH POMP I SILNIKÓW HYDRAULICZNYCH NA PRZYKŁADZIE MASZYN GEROTOROWYCH I ORBITALNYCH 5.. Wprowadenie W budowie pomp i silników hydraulicnych prowadi się stałe prace

Bardziej szczegółowo

Belki złożone i zespolone

Belki złożone i zespolone Belki łożone i espolone efinicja belki łożonej siła rowarswiająca projekowanie połąceń prkła obliceń efinicja belki espolonej ałożenia echnicnej eorii ginania rokła naprężeń normalnch prkła obliceń Belki

Bardziej szczegółowo

Dobór sprzęgieł hydrokinetycznych 179 Bibliografia 183

Dobór sprzęgieł hydrokinetycznych 179 Bibliografia 183 Podstawy konstrukcji maszyn. T. 3 / autorzy: Tadeusz Kacperski, Andrzej Krukowski, Sylwester Markusik, Włodzimierz Ozimowski ; pod redakcją Marka Dietricha. wyd. 3, 3 dodr. Warszawa, 2015 Spis treści 1.

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 1.

Ekoenergetyka Matematyka 1. Wykład 1. Ekoenergetyka Matematyka 1. Wykład 1. Literatura do wykładu M. Gewert, Z. Skocylas, Analia matematycna 1; T. Jurlewic, Z. Skocylas, Algebra liniowa 1; Stankiewic, Zadania matematyki wyżsej dla wyżsych

Bardziej szczegółowo

Materiały pomocnicze do rysunku wał maszynowy na podstawie L. Kurmaz, O. Kurmaz: PROJEKTOWANIE WĘZŁÓW I CZĘŚCI MASZYN, 2011

Materiały pomocnicze do rysunku wał maszynowy na podstawie L. Kurmaz, O. Kurmaz: PROJEKTOWANIE WĘZŁÓW I CZĘŚCI MASZYN, 2011 Materiały pomocnicze do rysunku wał maszynowy na podstawie L. Kurmaz, O. Kurmaz: PROJEKTOWANIE WĘZŁÓW I CZĘŚCI MASZYN, 2011 1. Pasowania i pola tolerancji 1.1 Łożysk tocznych 1 1.2 Kół zębatych: a) zwykłe:

Bardziej szczegółowo

Ćwiczenie 10. Wyznaczanie współczynnika rozpraszania zwrotnego promieniowania beta.

Ćwiczenie 10. Wyznaczanie współczynnika rozpraszania zwrotnego promieniowania beta. Ćwicenie 1 Wynacanie współcynnika roprasania wrotnego promieniowania beta. Płytki roprasające Ustawienie licnika Geigera-Műllera w ołowianym domku Student winien wykaać się najomością następujących agadnień:

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Katedra Technologii Maszyn i Automatyzacji

Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Katedra Technologii Maszyn i Automatyzacji Akademia Technicno-Humanistycna w Bielsku-Białej Wydiał Budowy Masyn i Informatyki Katedra Technologii Masyn i Automatyacji LABORATORIUM OBRABIAREK INSTRUKCJA Temat: Obróbka kół batych walcowych na earce

Bardziej szczegółowo

PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ

PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU ol. 7 nr Archiwum Technologii Maszyn i Automatyzacji 007 LESZEK SKOCZYLAS PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ W artykule przedstawiono sposób

Bardziej szczegółowo

WYMIAROWANIE ZASADY SPORZĄDZANIA RYSUNKU TECHNICZNEGO

WYMIAROWANIE ZASADY SPORZĄDZANIA RYSUNKU TECHNICZNEGO WYMIAROWANIE ZASADY SPORZĄDZANIA RYSUNKU TECHNICZNEGO 1 Zarys przedmiotu (widoczne krawędzie) rysujemy zawsze linią grubą 2 Wszystkie linie wymiarowe, linie pomocnicze i osie symetrii rysujemy linią cienką

Bardziej szczegółowo

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch

Bardziej szczegółowo

Projektowanie i dobieranie zespołów maszyn 311[20].Z2.03

Projektowanie i dobieranie zespołów maszyn 311[20].Z2.03 MINISTERSTWO EDUKACJI i NAUKI Marek Olsza Projektowanie i dobieranie zespołów maszyn 311[0].Z.03 Poradnik dla uczeń Wydawca Instytut Technologii Eksploatacji Państwowy Instytut Badawczy Radom 005 0 Recenzenci:

Bardziej szczegółowo

Koła zębate. T. 1, Konstrukcja / Kazimierz Ochęduszko. wyd. 8, dodr. Warszawa, Spis treści

Koła zębate. T. 1, Konstrukcja / Kazimierz Ochęduszko. wyd. 8, dodr. Warszawa, Spis treści Koła zębate. T. 1, Konstrukcja / Kazimierz Ochęduszko. wyd. 8, dodr. Warszawa, 2012 Spis treści 0. Wiadomości wstępne 25 1. Pojęcia podstawowe 25 2. Znamionowe cechy przekładni mechanicznych 25 3. Klasyfikacja

Bardziej szczegółowo

1. Dostosowanie paska narzędzi.

1. Dostosowanie paska narzędzi. 1. Dostosowanie paska narzędzi. 1.1. Wyświetlanie paska narzędzi Rysuj. Rys. 1. Pasek narzędzi Rysuj W celu wyświetlenia paska narzędzi Rysuj należy wybrać w menu: Widok Paski narzędzi Dostosuj... lub

Bardziej szczegółowo

PL 216311 B1. Sposób kształtowania plastycznego uzębień wewnętrznych kół zębatych metodą walcowania poprzecznego. POLITECHNIKA LUBELSKA, Lublin, PL

PL 216311 B1. Sposób kształtowania plastycznego uzębień wewnętrznych kół zębatych metodą walcowania poprzecznego. POLITECHNIKA LUBELSKA, Lublin, PL PL 216311 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 216311 (13) B1 (21) Numer zgłoszenia: 392273 (51) Int.Cl. B23P 15/14 (2006.01) B21D 53/28 (2006.01) Urząd Patentowy Rzeczypospolitej

Bardziej szczegółowo

Funkcje pola we współrzędnych krzywoliniowych cd.

Funkcje pola we współrzędnych krzywoliniowych cd. Funkcje pola we współrędnych krywoliniowych cd. Marius Adamski 1. spółrędne walcowe. Definicja. Jeżeli M jest rutem punktu P na płascynę xy, a r i ϕ są współrędnymi biegunowymi M, to mienne u = r, v =

Bardziej szczegółowo

Schematy kinematyczne. Technologia napraw - ćwiczenia 133

Schematy kinematyczne. Technologia napraw - ćwiczenia 133 Schematy kinematyczne Technologia napraw - ćwiczenia 133 Plan zajęć Wprowadzenie Schemat - definicja Rodzaje schematów Schemat kinematyczny zasadniczy Schemat kinematyczny vs. normy Zasady wykonywania

Bardziej szczegółowo

ZARYS TEORII MECHANIZMÓW I MASZYN

ZARYS TEORII MECHANIZMÓW I MASZYN cssno JAN ODERFELD ZARYS TEORII MECHANIZMÓW I MASZYN ŁÓDŹ - 1959 - WARSZAWA PAŃSTWOWE WYDAWNICTWO NAUKOWE Spia- rzeczy SPIS' RZECZY Pr a edmowa... 4... *.... 3 1. Wstęp '. 5 2. Struktura mechanizmów-k

Bardziej szczegółowo

KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI

KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI TEMAT ĆWICZENIA: ĆWICZENIE NR 3 POMIAR KÓŁ ZĘBATYCH WALCOWYCH ZADANIA DO WYKONANIA: 1. Zidentyfikować koło zębate przeznaczone do pomiaru i określić

Bardziej szczegółowo

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania

Bardziej szczegółowo

Skrypt 19. Trygonometria: Opracowanie L3

Skrypt 19. Trygonometria: Opracowanie L3 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Trygonometria: 9. Proste

Bardziej szczegółowo

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost

Bardziej szczegółowo

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej Wyiał Matematyki Stosowanej Zestaw adań nr 8 Akademia Górnico-Hutnica w Krakowie WFiIS, informatyka stosowana, II rok Elżbieta Adamus grudnia 206r. Funkcje espolone Ciągi i seregi licb espolonych Zadanie.

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11)

(12) OPIS PATENTOWY (19) PL (11) RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 170629 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 299518 (22) Data zgłoszenia: 30.06.1993 (51) IntCl6: B23P 15/14 B23F

Bardziej szczegółowo

Łożysko stożkowe CX

Łożysko stożkowe CX Łożyska > Łożyska stożkowe > Model :.30202 CX Producent : Cx ŁOŻYSKO STOŻKOWE - wymiary metryczne JEDNORZĘDOWE 30202 Cena za 1 sztukę! DANE TECHNICZNE: wał 15mm Strona 1/{nb} Łożyska > Łożyska stożkowe

Bardziej szczegółowo

Listwy zębate / Koła modułowe / Koła stożkowe

Listwy zębate / Koła modułowe / Koła stożkowe Strona Listwy zębate.2 Koła modułowe z piastą.4 Koła modułowe bez piasty. Koła stożkowe. z uzębieniem prostym Koła stożkowe. z uzębieniem łukowym Koła modułowe.34 i listwy zębate specjalne czesci.maszyn@haberkorn.pl

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn II Machine Desing. podstawowy obowiązkowy polski V

Podstawy Konstrukcji Maszyn II Machine Desing. podstawowy obowiązkowy polski V Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2015/2016 Podstawy

Bardziej szczegółowo

GEOMETRIA GWINTÓW Pracę wykonał Mateusz Szatkowski 1h.

GEOMETRIA GWINTÓW Pracę wykonał Mateusz Szatkowski 1h. GEOMETRIA GWINTÓW Pracę wykonał Mateusz Szatkowski 1h. Gwint to śrubowe nacięcie na powierzchni walcowej lub stożkowej, zewnętrznej lub wewnętrznej. Komplementarne gwinty wewnętrzny i zewnętrzny mają tak

Bardziej szczegółowo

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia

Bardziej szczegółowo

Analiza Matematyczna MAEW101 MAP1067

Analiza Matematyczna MAEW101 MAP1067 Analiza Matematyczna MAEW MAP67 Wydział Elektroniki Przykłady do Listy Zadań nr 4 Funkcje wielu zmiennych. Pochodne cząstkowe Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania 4.: Wyznaczyć

Bardziej szczegółowo

KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI

KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI TEMAT ĆWICZENIA: ĆWICZENIE NR 3 POMIAR KÓŁ ZĘBATYCH WALCOWYCH ZADANIA DO WYKONANIA: 1. Zidentyfikować koło zębate przeznaczone do pomiaru i określić

Bardziej szczegółowo

Powierzchnie stopnia drugiego

Powierzchnie stopnia drugiego Algebra WYKŁAD 3 Powierchnie sopnia drugiego Deinicja Powierchnią sopnia drugiego kwadrką nawam biór punków presreni rójwmiarowej, spełniającch równanie A B C D E F G H I K gdie A, B,, K są sałmi i prnajmniej

Bardziej szczegółowo

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona. Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech

Bardziej szczegółowo