Metoda pasm skończonych płyty dwuprzęsłowe
|
|
- Grażyna Romanowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 etoda pasm skończonch płt dwuprzęsłowe Dla płt przedstawionej na rsunku należ: 1. Dla obciążenia ciężarem własnm q oraz obciążeniami p 1 i p obliczć ugięcia w punktach A i B oraz moment, i w punktach A,B i C prz podziale na i 1 pasm oraz dla 10 i 50 wrazów szeregu Fouriera (harmonicznch).. Dla podziału na 1 pasm i 50 wrazów harmonicznch wkonać wkres ugięć i momentów, i. Obliczenia wkonać dla min. 9 punktów na długości przęsła płt. 3. Obliczć obwiednie momentów zginającch wzdłuż osi α α od obciążenia p poruszającego się wzdłuż tej osi (środek obciążenia na osi). Obliczenia wkonać dla minimum 9 punktów na długości przęsła płt, 1 pasm, 50 wrazów harmonicznch szeregu Fouriera. Do obliczeń wkorzstać program PASKON-. p =,5 [m] Lp= 3,0 [m] p =,0 [m] krawędź swobodnie podparta α =,5 [m] Bp = 3,0 [m] p1 = 0,0 [kn/m] A C B B = 10,0 [m] p1 = 3,5 [kn/m] krawędź utwierdzona L/ =,0 [m] L/ =,0 [m] L/ =,0 [m] L/ =,0 [m] L = 16,0 [m] etoda pasm skończonch płt dwuprzęsłowe 1
2 Charakterstka geometrczna płt i obciążenia = 10, [ m], L = 16, 0[ m], p =, 0[ m], B p = 3, 0[ m], p =, 5[ m], L p = 3, 0[ m] grubość płt: H = 0, 5[ m] rzędna przekroju α α : =, 0[ m] B 0 α Wartości obciążeń działającch na płtę kn kn p 1 = 3, 5, p = 0, 0 m m Stałe fizczne materiału ciężar własn: kg ρ = 500 3, E = 30[ GPa], ν = 0, 1667 m N kn q = ρ g H = 500 9,81 0,5 = 16,5 = 1, 6 m m Sztwności płtowe 3 3 EH ,5 D = D = D = = = 313, 5[ knm] 1( 1 ν ) 1( 1 0,1667 ) ( 1 ν ) ( 1 0,1667) skrętna: D = D = 313,5 = 1339, 75 knm D =ν D = 0, ,5 5358, 76 knm sprzężona: [ ] 1 = [ ] Sposób podparcia krawędzi płt Krawędź 1: swobodnie podparta Krawędź : utwierdzona etoda pasm skończonch płt dwuprzęsłowe
3 Obliczenie ugięcia w punktach A i B oraz momentów, i w punktach A, B i C prz podziale na i 1 pasm oraz dla 10 i 50 wrazów szeregu Fouriera (harmonicznch) dla obciążenia ciężarem własnm q oraz obciążeniami p 1 i p. Obliczenia został wkonane prz pomoc programu PASKON-. Otrzmane wniki w formie tabelarcznej Wartości ugięcia,, i w punkcie A V [m] Liczba harmonicznch Liczba harmonicznch 1 0, , , , Liczba harmonicznch Liczba harmonicznch Wartości ugięcia,, i w punkcie B V [m] Liczba harmonicznch Liczba harmonicznch 1 0, , , , Liczba harmonicznch Liczba harmonicznch etoda pasm skończonch płt dwuprzęsłowe 3
4 Wartości, i w punkcie C Liczba harmonicznch Liczba harmonicznch Liczba harmonicznch etoda pasm skończonch płt dwuprzęsłowe
5 Wznaczenie wkresów ugięć i momentów, i dla podziału na 1 pasm i 50 harmonicznch. (obliczenia wkonano dla 9 punktów na długości przęsła płt). Otrzmane wniki X Y UGIECIE X Y XY ,00E+00.86E E-08.38E ,17E E-06.73E-06.13E ,8E-11.36E E E ,79E-11.73E E E ,06E-11.8E E E ,6E-11.79E E E ,5E-11.69E E E ,79E-11.6E E E ,3E E E E ,53E-11.9E E E ,9E E-07.81E E ,13E E E E ,00E E E-06 E ,00E E E E ,70E-05-6.E E E ,E E E E ,66E E E E ,93E E E E ,06E E E E ,0E E E E ,87E E E E ,58E E E E ,17E-0-5.6E E E ,9E E E E ,3E E E E ,00E+00.81E+01.68E+00 E ,00E E E E ,15E E E E ,13E-0-1.3E E E ,87E E E E ,35E-0-1.6E E E ,57E E E E ,53E E E E ,5E E E+01 -.E ,73E E E E ,0E E E E ,18E E E E ,88E E+01 -.E E ,00E+00.59E E+00 E ,00E E E-0.35E ,36E-0-1.1E E+01.17E ,53E E E E ,E E E E ,99E E E E ,5E E+01-3.E E ,0E E E E ,86E E E E ,5E E E E ,39E-0-1.0E E E ,39E E E E ,53E E+01.38E E ,00E E E+00 E ,00E E E E ,30E E E E ,0E E E E ,3E-0-1.7E E E ,77E E E E ,01E E E E ,97E E E E ,66E E E+01.7E ,08E-0-1.E E+01.01E ,7E E E+01.83E ,3E E E+00.90E ,30E E E E ,00E E E+00 E ,00E E E E ,78E E E E ,80E-0-1.0E E E ,1E-0-1.6E E E ,79E-0-1.E E E ,97E E E E ,95E E E+01.3E ,7E E E E ,31E E E E ,71E E E E ,00E E E E ,30E E E E ,00E E E+00 E ,00E E-01-9.E E ,0E E E E ,06E E E E ,19E E E E ,37E E+00.73E E ,5E-0-3.0E E E ,5E-0-3.3E E+00.59E ,36E E+00.39E E ,18E-0 -.E E E ,91E E E E ,31E E E E ,77E E E E ,00E+00.10E E+00 E ,00E E E-0-1.1E ,5E E E E ,85E-06.80E+00.E E ,6E E E E ,36E E E E ,6E E E E ,11E-05 6.E E E ,31E E E E ,1E-05 3.E+00.73E E ,7E E E E ,50E E E E ,88E E E E ,00E E E-01 E ,00E E E E ,95E E E E ,59E-1 9.1E E E ,69E-1 1.3E E E ,6E-1 1.0E E+01.89E ,1E-1 1.6E E E ,56E-1 1.0E E E ,60E-1 1.6E E E ,90E E E E ,7E E+00.53E E ,97E-1.39E+00.58E E ,60E E E E ,00E E E-0 E ,00E E E E ,18E E E+00.9E ,33E-0 -.1E E+01.37E ,79E E+00.8E E ,06E-0 -.0E+00.73E E ,15E E+00.90E E ,05E E+00.81E+01-7.E ,81E E-01.8E E ,5E E-0.00E E ,03E E-01 1.E E ,7E E E E ,79E E+00.E E ,00E+00.01E E+00 E ,00E E E E ,73E-0-1.E E E ,E E E+01.60E ,38E E E E ,08E-0 -.5E E E ,30E-0 -.3E E E ,07E E E E ,7E-0-1.7E E E ,60E-0-1.0E E E ,5E E E E ,E-0.99E E E ,6E-05.0E+01.8E E ,00E E E+00 E ,00E E E-01.7E ,60E E E+01.17E ,89E E E E ,66E E E E ,7E E E E ,08E E E E ,73E E E E ,80E-0 -.9E E E ,6E E E E ,85E E E E ,15E E E E ,75E E+01.7E E ,00E E E+01 E ,00E E-01-1.E E ,06E E E E ,77E-0-3.0E E E ,87E-0 -.6E E E ,16E E E+01.9E ,58E E E E ,17E E E E ,08E E E E ,9E E E E ,58E-0-1.0E E E ,55E-0 8.8E E E ,0E E+01.9E E ,00E E E+01 E ,00E E-01-1.E E ,99E E E E ,63E E E E ,67E-0 -.7E+01-5.E E ,93E E E E ,36E-0 -.7E E+01 8.E ,98E E E+01.07E ,9E E E E ,0E-0 -.E E E ,53E E E E ,53E-0 7.9E E E ,99E E+01.1E+00.8E ,00E E E+01 E ,00E+00-7.E E E ,38E E E E ,7E-0 -.7E E+01 -.E ,07E-0-3.5E E E ,06E-0-3.7E E E ,E E E E ,15E E E E ,36E E E E ,15E E E E ,66E E E E ,06E-0.85E E E ,57E E E-01 1.E ,00E E E+01 E ,00E E E E ,33E E E E ,9E E E E ,36E-0-1.9E E E ,91E E E E ,11E E E E ,98E E E E ,55E E E E ,90E-0-1.1E E+01.7E ,07E-0-6.E E+01.63E ,18E E+00-9.E+00.61E ,8E E E E ,00E+00.9E E+00 E ,00E+00 E+00 E E ,00E+00 E+00 E E ,00E+00 E+00 E E ,00E+00 E+00 E E ,00E+00 E+00 E+00-1.E ,00E+00 E+00 E E ,00E+00 E+00 E E ,00E+00 E+00 E E ,00E+00 E+00 E+00.50E ,00E+00 E+00 E+00.9E ,00E+00 E+00 E+00.95E ,00E+00 E+00 E+00.E ,00E+00 E+00 E+00 E+00 etoda pasm skończonch płt dwuprzęsłowe 5
6 oment zginające w płcie etoda pasm skończonch płt dwuprzęsłowe 6
7 oment zginające w płcie etoda pasm skończonch płt dwuprzęsłowe 7
8 oment skręcające w płcie etoda pasm skończonch płt dwuprzęsłowe 8
9 Ugięcie płt V etoda pasm skończonch płt dwuprzęsłowe 9
10 Obliczenie obwiedni momentów zginającch wzdłuż osi α α od obciążenia p poruszającego się wzdłuż tej osi (środek obciążenia na osi). (obliczenia wkonano dla 11 punktów na długości przęsła płt, 1 pasm, 50 wrazów harmonicznch szeregu Fouriera). Z powodu braku możliwości odcztania wartości w przekroju α α dla podziału na 1 pasm, do wznaczenia obwiedni przjęto rzędna przekroju α α zamiast: [ m], [ m],0 = 5 α = α, W związku z smetrią układu obliczenia został przeprowadzone tlko dla jednego przęsła. Obliczenia został wkonane prz pomoc programu PASKON-. Otrzmane wniki Położenie obciażenia Numer punktu sc E E+00.8E+00.0E E E-01 -.E-01-6.E E E E E E E E-0 -.1E E E E E E+00.7E E E E E E E E E E E-0-1.9E-0 8.8E E E E E E+00.3E E E E E E E E E E E-0.1E E E E E E E E E E E E E E E E E E-08.5 E+00.87E E E E E+01.5E E E E E E E E E E-0.13E E E E E E E E E E E E E E E E E-0 3.5E E E E+00.93E E E E E E E E E+00-9.E E E E-0.6E E E E E-01.33E E E E E E E E E-01 -.E E-0-1.8E E E E-03.1E E-01.93E E-01.09E+00.71E E+01.71E+00.09E E-01.93E E-01.1E E E-08 min ma Wkres maksmalnch momentów zginającch (ruch obciążenia tlko po jednm przęśle) dla przekroju α α etoda pasm skończonch płt dwuprzęsłowe 10
11 dla przekroju Wkres minimalnch momentów zginającch (ruch obciążenia tlko po jednm przęśle) α α Wkres ekstremalnch momentów zginającch dla przekroju α α etoda pasm skończonch płt dwuprzęsłowe 11
12 Korzstając z smetrii układu do narsowania obwiedni wzięto lewą część wkresu 0;8 maksmalnch wartości wraz z jego lustrzanm odbiciem oraz prawą część ( ) wkresu ( 8;16 ) minimalnch wartości wraz z jej lustrzanm odbiciem. Dla kontroli dokładności poniżej przedstawiam obwiednię w przekroju α α otrzmaną dla obciążenia zmieniającego położenie 1901 raz każdorazowo przesuwając się wzdłuż płt o odcinek s = 1 [cm] Analizując powższe obwiednie można zauważć, że mimo znacznego zwiększenia ilości punktów do którch przkładane jest obciążenie nie wpłnęło to istotnie na maksmalne i minimalne wartości momentów. etoda pasm skończonch płt dwuprzęsłowe 1
METODA PASM SKOŃCZONYCH PŁYTY DWUPRZĘSŁOWE
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI METODA PASM SKOŃCZONYCH PŁYTY DWUPRZĘSŁOWE Dla płyty przedstawionej na rysunku należy: 1)Obciążając ciężarem własnym q i
Poznań 17.XII.2007 r.
Zboralski Piotr KBI VII 007/008 Poznań 17.XII.007 r. 1. Schemat płyty: Krawędź 1 swobodnie podparta Krawędź utwierdzona. Dane materiałowe i geometryczne: B = 10[ m] kn p1 = 1,4 L = [ m] xp = 4[ m] kn p
P R O J E K T N R 1 WYTRZYMAŁOŚCI MATERIAŁÓW. Zawiera: Wyznaczenie wymiarów przekroju poprzecznego belki zginanej poprzecznie
atedra Wtrzmałości Materiałów Rok akad. 005/06 Wdział Inżnierii Lądowej emestr zimow Politechniki rakowskiej P R O J E T N R 1 Z WYTRZYMAŁOŚCI MATERIAŁÓW Zawiera: Wznaczenie wmiarów przekroju poprzecznego
ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią
ĆWICZENIE 8 i 9 Zginanie poprzeczne z wkładową częścią z z QzS J b z Dskusja wzoru na naprężenia stczne. Uśrednione naprężenie stczne, J bz Qz x S z jest funkcją dwóch zmiennch: x- położenia przekroju
Ć w i c z e n i e K 2 b
Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:
Ł Ś ź ź ź ć ć ć Ń ć ź ź ć ć Ń Ń ź Ą ź ć ć Ę ć Ń ź ć ć ć ć ź ć ć ć ć ć Ę ć ć ć ć ć ć Ą ć ć ć ć Ń ć ć ć ć Ę Ą ć ć ć ć ć Ń ć ć ć Ę ć ć ź ć ć ć ć ć ć ć Ż ć Ź ć ć Ź ć ć Ż ć Ą ć Ą ć Ź Ę Ę ĘĘĘ ć ć ć ć ć ć ć ć
II. OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE
II. OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE 1. KONSTRUKCJA STALOWA SZYBU WINDY 1.1. ZESTAWIENIE OBCIĄŻEŃ 1.1.1. Obciążenie stałe wg PN-82/B-02001 Obc. obl. Lp Opis obciążenia Obc. char. kn/m 2 γ f kn/m 2
Lista węzłów Nr węzła X [m] Y [m] 1 0.00 0.00 2 0.35 0.13 3 4.41 1.63 4 6.85 2.53 5 9.29 1.63 6 13.35 0.13 7 13.70 0.00 8 4.41-0.47 9 9.29-0.
7. Więźba dachowa nad istniejącym budynkiem szkoły. 7.1 Krokwie Geometria układu Lista węzłów Nr węzła X [m] Y [m] 1 0.00 0.00 2 0.35 0.13 3 4.41 1.63 4 6.85 2.53 5 9.29 1.63 6 13.35 0.13 7 13.70 0.00
- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET
Użtkownik: Biuro Inżnierskie SPECBUD Autor: mgr inż. Jan Kowalski Ttuł: Poz.4.1. Element żelbetowe Przkład 1 - Obliczenia przkładowe programu KEŻ Belka - zginanie - 1 - Kalkulator Elementów Żelbetowch
Ć w i c z e n i e K 1
kademia Górniczo Hutnicza Wdział nżnierii echanicznej i Robotki Katedra Wtrzmałości, Zmęczenia ateriałów i Konstrukcji azwisko i mię: azwisko i mię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena: Podpis:
Zaprojektować zbrojenie na zginanie w płycie żelbetowej jednokierunkowo zginanej, stropu płytowo- żebrowego, pokazanego na rysunku.
Zaprojektować zbrojenie na zginanie w płycie żelbetowej jednokierunkowo zginanej, stropu płytowo- żebrowego, pokazanego na rysunku. Założyć układ warstw stropowych: beton: C0/5 lastric o 3cm warstwa wyrównawcza
ROZWIĄZANIA I ODPOWIEDZI
Zastosowania matematki w analitce medcznej zestaw do kol. semestr. - rozwiązania i odpowiedzi (część I). ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. a) Rozważając dwa przpadki ze względu na moduł mam: skąd ostatecznie,3>.
Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji:
Zad. Wznaczć rozkład sił wewnętrznch N, T, M, korzstając z komputerowej wersji metod przemieszczeń. schemat konstrukcji: ϕ 4, kn 4, 4, macierz transformacji (pręt nr): α = - ϕ = -, () 5 () () E=5GPa; I
40 dla płyt wolnopodpartych, jednokierunkowo zbrojonych. 50 dla płyt zamocowanych i ciągłych oraz dwukierunkowo zbrojonych. w = = q.
Płt dwukierunkowo zbrojone l Płt zazwczaj są oparte na czterech krawędziach. Jeśli ma to przjmujem, że płta wmaga zbrojenia w lmin dwóch kierunkach (krzżowe zbrojenia). Płt krzżowo zbrojone mogą bć jedno
Zbrojenie konstrukcyjne strzemionami dwuciętymi 6 co 400 mm na całej długości przęsła
Zginanie: (przekrój c-c) Moment podporowy obliczeniowy M Sd = (-)130.71 knm Zbrojenie potrzebne górne s1 = 4.90 cm 2. Przyjęto 3 16 o s = 6.03 cm 2 ( = 0.36%) Warunek nośności na zginanie: M Sd = (-)130.71
Projektuje się płytę żelbetową wylewaną na mokro, krzyżowo-zbrojoną. Parametry techniczne:
- str.10 - POZ.2. STROP NAD KLATKĄ SCHODOWĄ Projektuje się płytę żelbetową wylewaną na mokro, krzyżowo-zbrojoną. Parametry techniczne: 1/ Grubość płyty h = 15cm 2/ Grubość otulenia zbrojenia a = 2cm 3/
PŁYTY WIELOKIERUNKOWO ZBROJONE
W. Bierut: Płt wielokierunkowo zginane 1 PŁYTY WIELOKIERUNKOWO ZBROJONE Prz obliczaniu łt rostokątnch, którch boki na kierunkach l i l znacznie różnią się długością rzjęto, że racują one tlko w jednm kierunku
Sprawdzenie stanów granicznych użytkowalności.
MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=
10.0. Schody górne, wspornikowe.
10.0. Schody górne, wspornikowe. OBCIĄŻENIA: Grupa: A "obc. stałe - pł. spocznik" Stałe γf= 1,0/0,90 Q k = 0,70 kn/m *1,5m=1,05 kn/m. Q o1 = 0,84 kn/m *1,5m=1,6 kn/m, γ f1 = 1,0, Q o = 0,63 kn/m *1,5m=0,95
1. Projekt techniczny żebra
1. Projekt techniczny żebra Żebro stropowe jako belka teowa stanowi bezpośrednie podparcie dla płyty. Jest to element słabo bądź średnio obciążony siłą równomiernie obciążoną składającą się z obciążenia
ZADANIE 1 Poniżej znajduje się fragment wykresu funkcji y = f (x). ZADANIE 2 Na podstawie podanego wykresu funkcji f
IMIE I NAZWISKO ZADANIE Poniżej znajduje się fragment wkresu funkcji = f (). -7 -- - - 6 7 Dorsuj brakujac a część wkresu wiedzac, że dziedzina funkcji f jest przedział,, a wkres jest smetrczn względem
Uwaga: Linie wpływu w trzech prętach.
Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać
Pręt nr 3 - Element drewniany wg EN 1995:2010
Pręt nr 3 - Element drewniany wg EN 1995:2010 Informacje o elemencie Nazwa/Opis: element nr 3 (belka) - Brak opisu elementu. Węzły: 3 (x4.000m, y2.000m); 4 (x2.000m, y1.000m) Profil: Pr 50x170 (C 30) Wyniki
Obliczenia statyczne - dom kultury w Ozimku
1 Obliczenia statyczne - dom kultury w Ozimku Poz. 1. Wymiany w stropie przy szybie dźwigu w hollu. Obciąż. stropu. - warstwy posadzkowe 1,50 1,2 1,80 kn/m 2 - warstwa wyrównawcza 0,05 x 21,0 = 1,05 1,3
1. Projekt techniczny Podciągu
1. Projekt techniczny Podciągu Podciąg jako belka teowa stanowi bezpośrednie podparcie dla żeber. Jest to główny element stropu najczęściej ślinie bądź średnio obciążony ciężarem własnym oraz reakcjami
ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP
ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP. Podstawowe związki (równania równowagi, liniowe i nieliniowe związki geometrczne, związki fizczne, warunki brzegowe) w zapisie wskaźnikowm
Imperfekcje globalne i lokalne
Imperfekcje globalne i lokalne Prz obliczaniu nośności i stateczności konstrukcji stalowch szczególnego znaczenia nabiera konieczność uwzględniania warunków wkonania, transportu i montażu elementów konstrukcjnch.
Pręt nr 4 - Element żelbetowy wg PN-EN :2004
Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,
KONSPEKT LEKCJI na temat: PRZESUWANIE PARABOLI
KONSPEKT LEKCJI na temat: PRZESUWANIE PARABOLI CELE LEKCJI: Poznawcze Uczeń utrwala wiadomości o: funkcji kwadratowej rsowanie wkresu, przesuwaniu wkresu funkcji wzdłuż osi 0 i 0 związkach międz równaniem
2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH
dam Bodnar: Wtrzmałość Materiałów. Charakterstki geometrczne figur płaskich.. CHRKTERSTKI GEOMETRCZNE FIGUR PŁSKICH.. Definicje podstawowch charakterstk geometrcznch Podczas zajęć z wtrzmałości materiałów
Szymon Skibicki, KATEDRA BUDOWNICTWA OGÓLNEGO
1 Obliczyć SGN (bez docisku) dla belki pokazanej na rysunku. Belka jest podparta w sposób ograniczający możliwość skręcania na podporze. Belki rozstawione są co 60cm. Obciążenia charakterystyczne belki
- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE KONSTRUKCJI MUROWYCH. Autor: mgr inż. Jan Kowalski Tytuł: Obliczenia ścian murowanych. Poz.2.2.
- 1 - Kalkulator Konstrukcji Murowych EN 1.0 OBLICZENIA WYTRZYMAŁOŚCIOWE KONSTRUKCJI MUROWYCH Użytkownik: Biuro Inżynierskie SPECBUD 2013 SPECBUD Gliwice Autor: mgr inż. Jan Kowalski Tytuł: Obliczenia
Pręt nr 0 - Element drewniany wg PN-EN 1995:2010
Pręt nr 0 - Element drewniany wg PN-EN 1995:010 Informacje o elemencie Nazwa/Opis: element nr 0 (belka) - Brak opisu elementu. Węzły: 0 (x0.000m, y-0.000m); 1 (x4.000m, y-0.000m) Profil: Pr 150x50 (C 0)
Współczynnik określający wspólną odkształcalność betonu i stali pod wpływem obciążeń długotrwałych:
Sprawdzić ugięcie w środku rozpiętości przęsła belki wolnopodpartej (patrz rysunek) od quasi stałej kombinacji obciążeń przyjmując, że: na całkowite obciążenie w kombinacji quasi stałej składa się obciążenie
Szymon Skibicki, KATEDRA BUDOWNICTWA OGÓLNEGO
1 Obliczyć SGN (bez docisku) dla belki pokazanej na rysunku. Belka jest podparta w sposób ograniczający możliwość skręcania na podporze. Belki rozstawione są co 60cm. Obciążenia charakterystyczne belki
Przykład: Płatew swobodnie podparta o przekroju z dwuteownika IPE
Dokument Ref: SX01a-PL-EU Strona 1 z Dot. Eurocodu EN Wkonanł Mladen Lukic Data Jan 006 Sprawdził Alain Bureau Data Jan 006 Przkład: Płatew swobodnie podparta o przekroju z Przkład ten podaje szczegół
10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej.
10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. OBCIĄŻENIA: 6,00 6,00 4,11 4,11 1 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P1(Tg): P2(Td): a[m]: b[m]: Grupa:
Stropy TERIVA - Projektowanie i wykonywanie
Stropy TERIVA obciążone równomiernie sprawdza się przez porównanie obciążeń działających na strop z podanymi w tablicy 4. Jeżeli na strop działa inny układ obciążeń lub jeżeli strop pracuje w innym układzie
I. OBLICZENIA WIĘŹBY DACHOWEJ wg PN-B-03150:2000
I. OBLICZENIA WIĘŹBY DACHOWEJ wg PN-B-050:000. ZałoŜenia o obliczeń.. Schemat geometrczn więźb achowej Więźba achowa płatwiowo-kleszczowa... Dane ogólne Lokalizacja bunku - Biłgoraj Strefa obciąŝenia śniegiem
Pręt nr 1 - Element żelbetowy wg. EN :2004
Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800
- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO
- 1 - Kalkulator Elementów Drewnianych v.2.2 OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO Użytkownik: Biuro Inżynierskie SPECBUD 2002-2010 SPECBUD Gliwice Autor: mg inż. Jan Kowalski Tytuł: Obliczenia elementów
Scenariusz lekcji matematyki z wykorzystaniem komputera
Scenariusz lekcji matematki z wkorzstaniem komputera Temat: Wpłw współcznników a i b na położenie wkresu funkcji liniowej. (Rsowanie wkresów prz użciu arkusza kalkulacjnego EXCEL.) Czas zajęć: 9 min Cele:
Widok ogólny podział na elementy skończone
MODEL OBLICZENIOWY KŁADKI Widok ogólny podział na elementy skończone Widok ogólny podział na elementy skończone 1 FAZA I odkształcenia od ciężaru własnego konstrukcji stalowej (odkształcenia powiększone
PROJEKT STROPU BELKOWEGO
PROJEKT STROPU BELKOWEGO Nr tematu: A Dane H : 6m L : 45.7m B : 6.4m Qk : 6.75kPa a :.7m str./9 Geometria nz : 5 liczba żeber B Lz : 5.8 m długość żebra nz npd : 3 liczba przęseł podciągu przyjęto długość
Załącznik nr 3. Obliczenia konstrukcyjne
32 Załącznik nr 3 Obliczenia konstrukcyjne Poz. 1. Strop istniejący nad parterem (sprawdzenie nośności) Istniejący strop typu Kleina z płytą cięŝką. Wartość charakterystyczna obciąŝenia uŝytkowego w projektowanym
Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)
Pręt nr 0 - Element żelbetowy wg PN-EN :2004
Budynek wielorodzinny - Rama żelbetowa strona nr 1 z 13 Pręt nr 0 - Element żelbetowy wg PN-EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 0 (belka) - Brak opisu elementu. Węzły: 0 (x=-0.120m,
[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.
rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem
Rys. 29. Schemat obliczeniowy płyty biegowej i spoczników
Przykład obliczeniowy schodów wg EC-2 a) Zebranie obciąŝeń Szczegóły geometryczne i konstrukcyjne przedstawiono poniŝej: Rys. 28. Wymiary klatki schodowej w rzucie poziomym 100 224 20 14 9x 17,4/28,0 157
e = 1/3xH = 1,96/3 = 0,65 m Dla B20 i stali St0S h = 15 cm h 0 = 12 cm 958 1,00 0,12 F a = 0,0029x100x12 = 3,48 cm 2
OBLICZENIA STATYCZNE POZ.1.1 ŚCIANA PODŁUŻNA BASENU. Projektuje się baseny żelbetowe z betonu B20 zbrojone stalą St0S. Grubość ściany 12 cm. Z = 0,5x10,00x1,96 2 x1,1 = 21,13 kn e = 1/3xH = 1,96/3 = 0,65
) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy.
rzkład 0.. Łuk trójprzegubow. Rsunek 0.. przedstawia łuk trójprzegubow, którego oś ma kształt półokręgu (jest to łuk kołow ). Łuk obciążon jest ciężarem konstrukcji podwieszonej. Narsować wkres momentów
1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ
.. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ od płem obciążenia prostolinioa oś podłużna belki staje się krzolinioa. Zakrzioną oś belki nazam linią ugięcia (osią ugiętą), przemieszczenie pionoe ( x) tej osi nazam
KONSTRUKCJE METALOWE II
1 POLITECHNIKA POZNAŃSKA Wdział Budownictwa, Architektur i Inżnierii Środowiska Insttut Konstrukcji Budowlanch dr inż. Jacek Tasarek KONSTRUKCJE METALOWE II POZNAŃ, 004 1.ELEMENTY ZGINANE - BELKI 1.1.Wiadomości
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
ZESPÓŁ BUDYNKÓW MIESZKLANYCH WIELORODZINNYCH E t a p I I i I I I b u d B i C
ZESPÓŁ BUDYNKÓW MIESZKLANYCH WIELORODZINNYCH E t a p I I i I I I b u d B i C W a r s z a w a u l. G r z y b o w s k a 8 5 OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE PODKONSTRUKCJI ELEWACYJNYCH OKŁADZIN WENTYLOWANYCH
700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:
Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny
- 1 - Belka Żelbetowa 3.0 A B C 0,30 5,00 0,30 5,00 0,25 1,00
- - elka Żelbetowa 3.0 OLIZENI STTYZNO-WYTRZYMŁOŚIOWE ELKI ŻELETOWEJ Użytkownik: iuro Inżynierskie SPEUD 200-200 SPEUD Gliwice utor: mgr inż. Jan Kowalski Tytuł: Poz.7.3. elka żelbetowa ciągła SZKI ELKI:
POZ. 1 ZESTAWIENIE OBCIĄŻEŃ Stropy pod lokalami mieszkalnymi przy zastosowaniu płyt WPS
OBLICZENIA STATYCZNE DO AKTUALIZACJI PROJEKTÓW BUDOWLANYCH REMONTU ELEWACJI WRAZ Z BALKONAMI I NAPRAWĄ RYS ORAZ REMONTU PIWNIC W BUDYNKU MIESZKALNYM PRZY UL. ŻELAZNEJ 64 r/ KROCHMALNEJ TOM I POZ. 1 ZESTAWIENIE
Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki
- 1 - Belka Żelbetowa 4.0
- 1 - elka Żelbetowa 4.0 OLIZENI STTYZNO-WYTRZYMŁOŚIOWE ELKI ŻELETOWEJ Użytkownik: iuro Inżynierskie SPEU utor: mgr inż. Jan Kowalski Tytuł: elki żelbetowe stropu 2001-2014 SPEU Gliwice Podciąg - oś i
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem
9.0. Wspornik podtrzymujący schody górne płytowe
9.0. Wspornik podtrzymujący schody górne płytowe OBCIĄŻENIA: 55,00 55,00 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P(Tg): P2(Td): a[m]: b[m]: Grupa: A "" Zmienne γf=,0 Liniowe 0,0 55,00 55,00
OPIS TECHNICZNY KONSTRUKCJA
OPIS TECHNICZNY KONSTRUKCJ 1.0 Ocena stanu konstrukcji istniejącego budynku Istniejący budynek to obiekt dwukondygnacyjny, z poddaszem, częściowo podpiwniczony, konstrukcja ścian nośnych tradycyjna murowana.
MATURA PRÓBNA 2 KLASA I LO
IMIE I NAZWISKO MATURA PRÓBNA KLASA I LO CZAS PRACY: 90 MIN. SUMA PUNKTÓW: 60 ZADANIE (5 PKT) Znajdź wszstkie funkcje liniowe określone na zbiorze ;, którch zbiorem wartości jest przedział ; 0. ZADANIE
WARIANTOWANIE ROZWIĄZAŃ ZBIORNIKÓW PODZIEMNYCH STOSOWANYCH W GOSPODARSTWACH ROLNO HODOWLANYCH
WRINTOWNIE ROZWIĄZŃ ZIORNIKÓW POZIEMNYH STOSOWNYH W GOSPORSTWH ROLNO HOOWLNYH nna ŻKOWIZ Wdział udownictwa i Inżnierii Środowiska, Politechnika iałostocka, ul. Wiejska 45, 15-351 iałstok Streszczenie:
- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET
- 1 - Kalkulator Elementów Żelbetowych 2.1 OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET Użytkownik: Biuro Inżynierskie SPECBUD 2001-2010 SPECBUD Gliwice Autor: mgr inż. Jan Kowalski Tytuł: Poz.4.1. Elementy żelbetowe
Pochodna funkcji wykład 5
Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu Wymiary: B=1,2m L=4,42m H=0,4m Stan graniczny I Stan graniczny II Obciążenie fundamentu odporem gruntu OBCIĄŻENIA: 221,02 221,02 221,02
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Pręt nr 1 - Element żelbetowy wg. PN-B-03264
Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x900 (Beton
długość całkowita: L m moment bezwładności (względem osi y): J y cm 4 moment bezwładności: J s cm 4
.9. Stalowy ustrój niosący. Poład drewniany spoczywa na dziewięciu belach dwuteowych..., swobodnie podpartych o rozstawie... m. Beli wyonane są ze stali... Cechy geometryczne beli: długość całowita: L
Tablica 1. Zestawienie obciążeń dla remizy strażackiej w Rawałowicach więźba dachowa
strona 1 Tablica 1. Zestawienie obciążeń dla remizy strażackiej w Rawałowicach więźba dachowa Lp Opis obciążenia Obc. char. kn/m 2 1. Blachodachówka o grubości 0,55 mm γ f k d Obc. obl. kn/m 2 0,35 1,30
POZ BRUK Sp. z o.o. S.K.A Rokietnica, Sobota, ul. Poznańska 43 INFORMATOR OBLICZENIOWY
62-090 Rokietnica, Sobota, ul. Poznańska 43 INFORMATOR OBLICZENIOWY SPIS TREŚCI Wprowadzenie... 1 Podstawa do obliczeń... 1 Założenia obliczeniowe... 1 Algorytm obliczeń... 2 1.Nośność żebra stropu na
OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE MOSTU NAD RZEKĄ ORLA 1. ZałoŜenia obliczeniowe
OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE MOSTU NAD RZEKĄ ORLA. ZałoŜenia obliczeniowe.. Własciwości fizyczne i mechaniczne materiałów R - wytrzymałość obliczeniowa elementów pracujących na rozciąganie i sciskanie
1. Dane : DANE OGÓLNE PROJEKTU. Poziom odniesienia: 0,00 m.
1. Dane : DANE OGÓLNE PROJEKTU Poziom odniesienia: 0,00 m. 4 2 0-2 -4 0 2. Fundamenty Liczba fundamentów: 1 2.1. Fundament nr 1 Klasa fundamentu: ława, Typ konstrukcji: ściana, Położenie fundamentu względem
1.3. Dane materiałowe wartości charakterystyczne (PN-B-03150:2000, Załącznik normatywny Z-2.2.3) f m.k = 30 MPa - wytrzymałość na zginanie
I. OBLICZENIA WIĘŹBY DACHOWEJ wg PN-B-050:000. ZałoŜenia o obiczeń.. Schemat geometrczn więźb achowej Więźba achowa płatwiowo-keszczowa... Dane ogóne Lokaizacja bunku - Biłgoraj Strefa obciąŝenia śniegiem
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematka Poziom rozszerzon Listopad W niniejszm schemacie oceniania zadań otwartch są prezentowane przkładowe poprawne odpowiedzi. W tego tpu ch
Podpora montażowa wielka stopa.
opracowanie: PROJEKT TECHNICZNY nazwa elementu: Podpora montażowa wielka stopa. treść opracowania: PROJEKT TECHNICZNY inwestor: Gloobal Industrial, ul.bukowa 9, 43-438 Brenna branża: KONSTRUKCJA Projektował
Zmienne losowe typu ciągłego. Parametry zmiennych losowych. Izolda Gorgol wyciąg z prezentacji (wykład III)
Zmienne losowe tpu ciągłego. Parametr zmiennch losowch. Izolda Gorgol wciąg z prezentacji (wkład III) Zmienna losowa tpu ciągłego Zmienna losowa X o ciągłej dstrbuancie F nazwa się zmienną losową tpu ciągłego,
Treść ćwiczenia T6: Wyznaczanie sił wewnętrznych w belkach
Instrukcja przygotowania i realizacji scenariusza dotyczącego ćwiczenia 6 z przedmiotu "Wytrzymałość materiałów", przeznaczona dla studentów II roku studiów stacjonarnych I stopnia w kierunku Energetyka
Wytrzymałość drewna klasy C 20 f m,k, 20,0 MPa na zginanie f v,k, 2,2 MPa na ścinanie f c,k, 2,3 MPa na ściskanie
Obliczenia statyczno-wytrzymałościowe: Pomost z drewna sosnowego klasy C27 dla dyliny górnej i dolnej Poprzecznice z drewna klasy C35 lub stalowe Balustrada z drewna klasy C20 Grubość pokładu górnego g
Zginanie proste belek
Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach
OBLICZENIA STATYCZNE konstrukcji wiaty handlowej
OBLICZENIA STATYCZNE konstrukcji wiaty handlowej 1.0 DŹWIGAR DACHOWY Schemat statyczny: kratownica trójkątna symetryczna dwuprzęsłowa Rozpiętości obliczeniowe: L 1 = L 2 = 3,00 m Rozstaw dźwigarów: a =
POŁĄCZENIA ŚRUBOWE I SPAWANE Dane wstępne: Stal S235: f y := 215MPa, f u := 360MPa, E:= 210GPa, G:=
POŁĄCZENIA ŚRUBOWE I SPAWANE Dane wstępne: Stal S235: f y : 25MPa, f u : 360MPa, E: 20GPa, G: 8GPa Współczynniki częściowe: γ M0 :.0, :.25 A. POŁĄCZENIE ŻEBRA Z PODCIĄGIEM - DOCZOŁOWE POŁĄCZENIE KATEGORII
Charakterystyki geometryczne figur płaskich. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji
Charakterstki geometrczne figur płaskich dr hab. inż. Tadeusz Chż Katedra Mechaniki Konstrukcji Wielkości geometrczne charakterzujące przekrój pod względem wtrzmałościowm to: pole przekroju (A), (ang.
Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE
WIADOMOŚCI OGÓLNE O zginaniu mówimy wówczas, gdy prosta początkowo oś pręta ulega pod wpływem obciążenia zakrzywieniu, przy czym włókna pręta od strony wypukłej ulegają wydłużeniu, a od strony wklęsłej
Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7
ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe
- 1 - ANALIZA STATYCZNA BELKI
- 1 - elka v.3.0 NLIZ STTYZN ELKI Użytkownik: iuro Inżynierskie SPEU 2004-2010 SPEU Gliwice utor obliczeń: mgr inż. Jan Kowalski Tytuł obliczeń: elka pochylona SHEMT ELKI 0,60 Parametry belki (prostokąt):
Fizyka I (mechanika), ćwiczenia, seria 1
Fizka I (mechanika), ćwiczenia, seria 1 Układ współrzędnch na płaszczźnie. Zadanie 1 Odcinek o stałej długości porusza się tak, że jego punkt końcowe A i B ślizgają się po osiach odpowiednio x i pewnego
Rachunek różniczkowy funkcji jednej zmiennej
Rachunek różniczkow funkcji jednej zmiennej wkład z MATEMATYKI Budownictwo, studia niestacjonarne sem. I, rok ak. 2008/2009 Katedra Matematki Wdział Informatki Politechnika Białostocka 1 Iloraz różnicow
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 01/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA GM-M7-1 KWIECIEŃ 01 Liczba punktów za zadania zamknięte i otwarte: 9 Zadania
Funkcja Tytuł, Imię i Nazwisko Specjalność Nr Uprawnień Podpis Data. kontr. bud bez ograniczeń
WYKONAWCA: Firma Inżynierska GF MOSTY 41-940 Piekary Śląskie ul. Dębowa 19 Zamierzenie budowlane: Przebudowa mostu drogowego nad rzeką Brynicą w ciągu drogi powiatowej nr 4700 S (ul. Akacjowa) w Bobrownikach
Wstępne obliczenia statyczne dźwigara głównego
Instytut Inżynierii Lądowej Wstępne obliczenia statyczne dźwigara głównego Materiały dydaktyczne dla kursu Podstawy Mostownictwa Dr inż. Mieszko KUŻAWA 6.11.014 r. Obliczenia wstępne dźwigara głównego
Ą Ń Ś Ę ź Ś Ś ź ź Ś Ś ź Ł Ś Ś Ś Ł ĘĘ Ś Ś Ś ć Ś Ś Ś Ś Ł Ó Ś Ł ć Ś Ść Ś Ś Ś Ń ć Ś Ł Ś Ź Ą ć ć Ł ź Ś Ą Ś Ł Ą Ś Ś Ą Ś Ś ź Ś ć Ł ć ć Ł Ł ć Ź ć ć Ś ć ź Ź ć Ś ć ć ć Ś Ą Ś Ś Ś ć Ś Ść Ś ć Ł ć Ś ć Ś Ś Ń ć ć Ł Ś
Ł Ł Ś Ś ź Ć ź ź ź Ń Ł Ż Ś ź Ę Ż Ń Ę ź ź ź Ę ź Ł Ę ź Ę Ę Ę ź ź Ś ź ź Ł Ł Ź Ę Ł Ś ź Ę Ę Ę ń ź Ą ó Ę ĘĘ ź Ę ź Ą Ł Ę Ł Ą ź Ę ó Ź Ś ź Ń Ę Ę ĘĘ Ą Ś Ę Ł Ę Ć Ź ź Ź Ę Ę Ź ź Ź Ź Ź Ł Ż Ł Ę ź Ż Ź ź Ź Ź Ź Ź Ą Ż ŚĆ
Ł Ł ń ń Ą ń ń Ś ń Ź ń ń ń Ż ń Ł ń Ś ń ń ń Ą Ą Ł Ż ń ń Ś ń Ź ń ń ć Ź ń ć Ś ć ć ń Ź ń Ą Ł Ł Ę ĘĘ Ż Ź ć Ł ń Ś Ą Ł Ł Ł Ą Ę Ę ń Ń ń Ź ń ć Ż ń Ż Ś ń Ń ń Ń Ź Ą ć Ł ń ć ć Ź Ą Ą Ą Ź Ą Ł Ą Ś ń ń Ś Ś Ą Ć ŚĆ Ł ć Ż